所有正奇数从小到大排列
初一数学代数式规律题

1、一列数a1,a2,a3,…,其中a1=,an=〔n 为不小于2的整数〕,那么a100=〔 〕A . 21B .2C .-1D .-2 2、如下图的数码叫“莱布尼茨调与三角形〞,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为n1,每个数是它下一行左右相邻两数的与,那么第8行第3个数〔从左往右数〕为〔 〕A . 601B . 1681C . 2521D . 2801 3、如图,以下各图形中的三个数之间均具有一样的规律.根据此规律,图形中M 与m 、n 的关系是〔 〕A .M=mnB .M=n 〔m+1〕C .M=mn+1D .M=m 〔n+1〕 4、给定一列按规律排列的数:21,52,103,174 ,…,那么这列数的第6个数是〔 〕A . 376B . 356C . 315D .397 5、把所有正奇数从小到大排列,并按如下规律分组:〔1〕,〔3,5,7〕,〔9,11,13,15,17〕,〔19,21,23,25,27,29,31〕,…,现用等式A M =〔i ,j 〕表示正奇数M 是第i 组第j 个数〔从左往右数〕,如A 7=〔2,3〕,那么A 2021=〔 〕A .〔45,77〕 B .〔45,39〕 C .〔32,46〕 D .〔32,23〕6、大于1的正整数m 的三次幂可“分裂〞成假设干个连续奇数的与,如23=3+5,33=7+9+11,43=13+15+17+19,…假设m 3分裂后,其中有一个奇数是2021,那么m 的值是〔 〕A .43 B .44 C .45 D .467、整数a 1,a 2,a 3,a 4,…满足以下条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,那么a 2021的值为〔 〕A .-1005 B .-1006C .-1007D .-20218、一列数a 1,a 2,a 3,…,其中a 1=21,a n =1a 11-+n 〔n 为不小于2的整数〕,那么a 4的值为〔 〕A .85B . 58C . 813D .13813 9、古希腊数学家把1,3,6,10,15,…叫做三角形数,那么第16个三角形数与第14个三角形数的差是〔 〕A .30B .31C .32D .3310、小明在一本有一千页的书中,从第1页开场,逐页依顺序在第1页写1,第2页写2、3,第3页写3、4、5,…,依此规那么,即第n 页从n 开场,写n 个连续正整数.求他第一次写出数字1000是在第几页?〔 〕A .500B .501C .999D .100011、世运会、亚运会、奥运会分别于公元2021年、2021年、2021年举办.假设这三项运动会均每四年举办一次,那么这三项运动会均不在以下哪一年举办?〔 〕A .公元2070年B .公元2071年C .公元2072年D .公元2073年12、如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中 所填整数之与都相等,那么第2021个格子中的数为〔 〕13、观察以下各式:〔1〕1=12;〔2〕2+3+4=32;〔3〕3+4+5+6+7=52;〔4〕4+5+6+7+8+9+10=72; …A .3B .2C .0D .-1请你根据观察得到的规律判断以下各式正确的选项是〔 〕A .1005+1006+1007+…+3016=20212B .1005+1006+1007+…+3017=20212C .1006+1007+1008+…+3016=20212D .1007+1008+1009+…+3017=2021214、一个容器装有1升水,按照如下要求把水倒出:第1次倒出21升水,第2次倒出的水量是21升的31,第3次倒出的水量是31升的41,第4次倒出的水量是41升的51,…按照这种倒水的方法,倒了10次后容器内剩余的水量是〔 〕A .1110 升 B . 91升 C .101升 D . 111升 15、下面是一个按某种规律排列的数阵:根据规律,自然数2 000应该排在从上向下数的第m 行,是该行中的从左向右数的第n 个数,那么m+n 的值是〔 〕A .110B .109C .108D .10716、如下图的运算程序中,假设开场输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,那么第2021次输出的结果为〔 〕A .6B .3C . 200623D . 100323+3×100317、3的正整数次幂:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…观察归纳,可得32007的个位数字是〔 〕A .1 B .3 C .7 D .918、将一个正整数n 输入一台机器内会产生出 2)1(n n 的个位数字.假设给该机器输入初始数a ,将所产生的第一个数字记为a 1;再输入a 1,将所产生的第二个数字记为a 2;…;依此类推.现输入a=2,那么a 2021是〔 〕A .2 B .3 C .6D.119、四个电子宠物排座位,一开场,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号座位上〔如下图〕,以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换…这样一直下去,那么第2005次交换位置后,小兔所在的号位是〔〕A.1 B.2 C.3 D.420、某校生物教师李教师在生物实验室做试验时,将水稻种子分组进展发芽试验;第1组取3粒,第2组取5粒,第3组取7粒…即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数〔〕粒.A.2n+1 B.2n-1 C.2n D.n+221、为了求1+2+22+23+…+22021的值,可令S=1+2+22+23+…+22021,那么2S=2+22+23+…+22021,因此2S-S=22021-1,所以1+2+22+23+…+22021=22021-1.仿照以上推理计算出1+5+52+53+…+52021的值是〔〕A.52021-1 B.52021-1 C.4152009-D.4152010-22、观察图寻找规律,在“〞处填上的数字是〔〕A.128 B.136 C.162D.18823、观察以下图形,那么第n个图形中三角形的个数是〔〕A.2n+2 B.4n+4 C.4n-4D.4n24、观察以下图形,并判断照此规律从左向右第2007个图形是〔〕A.B.C.D.25、观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜测第n个点阵中的点的个数s为〔〕A.3n-2 B.3n-1 C.4n+1 D.4n-326、如图是某广场用地板铺设的局部图案,中央是一块正六边形的地板砖,周围是正三角形与正方形的地板砖.从里向外的第1层包括6个正方形与6个正三角形,第2层包括6个正方形与18个正三角形,依此递推,第8层中含有正三角形个数是〔〕A.54个B.90个C.102个D.114个27、我国古代的“河图〞是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之与均相等.以下图给出了“河图〞的局部点图,请你推算出P处所对应的点图是〔〕A.B.C.D.28、如图〔1〕是一个水平摆放的小正方体木块,图〔2〕,〔3〕是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是〔〕个.A.25 B.66 C.91 D.12029、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的与.现以这组数中的各个数作为正方形的长度构造一组正方形〔如以下图〕,再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:序号①②③④周长6101626假设按此规律继续作长方形,那么序号为⑧的长方形周长是〔〕A.288 B.178 C.28 D.11030、以下图案由边长相等的黑、白两色正方形按一定规律拼接而成.依此规律,第n个图案中白色正方形的个数为31、一串有黑有白,其排列有一定规律的珠子,被盒子遮住一局部〔如下图〕,那么这串珠子被盒子遮住的局部有颗.32、用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,那么第10个图案中,所包含的黑色正三角形的个数是〔〕A.36 B.38 C.40 D.42。
中考数学规律题及答案解析

中考数学规律题及答案解析1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式AM=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33…… 分别计作a1,a2,a3,a4,a5……an, an表示第n 组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……an = an-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46,A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32(注意区别an和An)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为( )A. cm2B. cm2C. cm2D. cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S= ,…,依此类推,平行四边形AO4C5B的面积= = =cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:×1×2=1,三条直线的最多交点数为:×2×3=3,四条直线的最多交点数为:×3×4=6,所以,六条直线的最多交点数为:×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征( )A. B. C. D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )A. 502B. 503C. 504D. 505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解答:解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A.0B.1C.3D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013• 德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为( )A. (1,4)B. (5,0)C. (6,4)D. (8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.8、(2013•呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需( )根火柴.A. 156B. 157C. 158D. 159考点:规律型:图形的变化类.3718684分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n 个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A. 8B. 9C. 16D. 17考点:规律型:图形的变化类.3718684分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171 .考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解答:解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC 上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200 .考点:规律型:数字的变化类.3718684分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。
九年级数学中考规律探究题(附答案)

专题6 数学规律探究问题根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。
解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。
一、数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同位置的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.一般地,常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律① 1、4、9、16......n2② 1、3、6、10……(1)2n n+数列的变化规律③ 1、3、7、15……2n -1④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 数列的和⑥ 2+4+6+…+2n=n(n+1)数式规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第n个等式为(用含n的式子表示)分析:将等式竖排:1×12=1-12n=12×23=2-23n=23×34=3-34n=34×45=4-45n=4观察相应位置上变化的数字与序列号的对应关系(注意分清正整数的奇偶)易观察出结果为:n ×1n n +=n-1n n +例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么 32009的个位数字是 。
二轮复习:新定义和阅读理解专练

【走近中考】
10.(2012 浙江嘉兴)将△ABC 绕点 A 按逆时针方向旋转 θ 度,并使各边 10.【考点】新定义,旋
9.(2013 年甘肃兰州)如图,在平面直角坐标系 中,A、B 为 x 轴上 两点,C、D 为 y 轴上的两点,经过点 A、C、B 的抛物线的一部分 C1 与 长变为原来的 n 倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n]. 经过点 A、D、B 的抛物线的一部分 C2 组合成一条封闭曲线,我们把这 ( 1 ) 如 图 ① , 对 △ABC 作 变 换 [60° , 3 ] 得 △AB′C′ , 则 S△AB′C′ : 3 条封闭曲线称为“蛋线” .已知点 C 的坐标为(0, ) ) ,点 M 是 2 S△ABC= ;直线 BC 与直线 B′C′所夹的锐角为 度; (2)如图②,△ABC 中,∠BAC=30° ,∠ACB=90° ,对△ABC 作变换[θ,
6.【考点】新定义,估计 6.规定用符号[m]表示一个实数 m 的整数部分,例如: [ 0.65]=0, 无理数的大小。
[3.14]=3。按此规定 [
10 1
]的值为
。
9. 【考点】 二次函数综合 题, 二次函数的性质, 待 定系数法的应用, 曲线上 点的坐标与方程的关系, 勾股定理, 分类思想和转 换思想的应用。
【 分 析 】( 1 ) 在 抛物线 C2: y mx 2 2mx 3m ( m < 0)的顶点.
y mx 2 2mx 3m 中 令 (1)求 A、B 两点的坐标; n]得△AB'C',使点 B、C、C′在同一直线上,且四边形 ABB'C'为矩形,求 θ (2) “蛋线”在第四象限上是否存在一点 P,使得△PBC 的面积最大? 和 n 的值; y=0, 即可得到 A、 B 两点 若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求 m 的值. (4)如图③,△ABC 中,AB=AC,∠BAC=36° ,BC=l,对△ABC 作变换 的坐标。
北师大版数学7年级上册3.5《探索与表达规律》同步练习

《探索与表达规律》同步练习A 100 B. 125 C. 150 D.175答案:C解析:解答:∵2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,∴下一个数是53+52=125+25=150.(第n个数为n3+n2).故选C分析:所给的数正好可以分成同一个数的立方与平方的和,从而得解.2.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)答案:D解析:解答:A.∵ 2有3个,∴不可以作为S1,故A选项错误;B.∵ 2有3个,∴不可以作为S1,故B选项错误;C.3只有1个,∴不可以作为S1,故C选项错误;D.符合定义的一种变换,故D选项正确.选:D.分析:根据题意可知,S1中2有2的倍数个,3有3的倍数个,据此即可作出选择3.将正奇数按下表排成5列:第一列第二列第三列第四列第五列第一行 1 3 5 7第二行15 13 11 9第三行17 19 21 23第四行31 29 27 25…根据上面规律,2007应在()A.125行,3列B.125行,2列C.251行,2列D.251行,5列答案:D解析:解答: 因为(2007+1)÷2=2008÷2=1004所以2007是第1004个奇数;因为1004÷4=251,所以2007在第251行;又因为奇数行的数从小到大排列,偶数行的数从大到小排列,所以2007应在第5列,综上,可得2007应在第251行第5列.选:D.分析: 首先判断出2007是第1004个奇数;然后根据每行有4个奇数,用1004除以4,判断出2007在第251行;最后根据奇数行的数从小到大排列,偶数行的数从大到小排列,可得2007应在第5列,据此判断4. 一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8 B.9 C.13 D.15答案:A解析:解答:∵每个数都等于它前面的两个数之和,∴x=1+2=3,∴y=x+5=3+5=8,即这组数中y表示的数为8.故选:A分析: 根据每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,据此解答即可.5.多位数139713…、684268…,都是按如下方法得到的:将第1位数字乘以3,积为一位数时,将其写在第2位;积为两位数时,将其个位数字写在第2位.对第2位数字进行上述操作得到第3位数字…后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字为4时,所得多位数前2014位的所有数字之和是()A.10072 B.10066 C.10064 D.10060答案:B解析:解答:当第1位数字为4时,得到42684268…,每四个数字一循环,∵2014÷4=503…2,∴第2014位的数字是2,则(4+2+6+8)×503+4+2=20×503+6=10066.选:B.分析: 通过计算发现,每4位数为一个循环组依次循环,然后用2014除以4即可得出第2014位数字是第几个循环组的第几个数字,由此进一步计算得出答案6.小张在做数学题时,发现了下面有趣的结果:3-2=1,8+7-6-5=4,15+14+13-12-11-10=9,24+23+22+21-20-19-18-17=16,…根据以上规律可知,第20行左起第一个数是()A.360 B.339 C.440 D.483答案:C解析:解答: ∵3=22-1,8=32-1,15=42-1,24=52-1,…∴第20个式子左起第一个数是:212-1=440.选:C.分析: 根据左起第一个数3,8,15,24…的变化规律得出第n行左起第一个数为(n+1)2-1,由此求出7.四个小朋友站成一排,老师按图中的规则数数,数到2015时对应的小朋友可得一朵红花.那么得红花的小朋友是()A.小沈B.小叶C.小李D.小王答案:A解析:解答: 去掉第一个数,每6个数一循环,(2015-1)÷6=2014÷6=335…4,则2015时对应的小朋友与5对应的小朋友是同一个.选:C.分析: 从图上可以看出,去掉第一个数,每6个数一循环,用(2015-1)÷6算出余数,再进一步确定2015的位置8.观察下列数据:0,3,8,15,24…它们是按一定规律排列的,依照此规律,第201个数据是()A.40400 B.40040 C.4040 D.404答案:A解析:解答: ∵0=12-1,3=22-1,8=32-1,15=42-1,24=52-1,…,∴第201个数据是:2012-1=40400.选A.分析: 观察不难发现,各数据都等于完全平方数减1,然后列式计算即可得解9.对于每个正整数n,设f(n)表示n(n+1)的末位数字.例如:f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),…则f(1)+f(2)+f(3)+…+f(2012)的值为()A.6 B.4022 C.4028 D.6708答案:C解析:解答:∵f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,∴每5个数一循环,分别为2,6,2,0,0…∴2012÷5=402..2∴f(1)+f(2)+f(3)+…+f(2012)=2+6+2+0+0+2+6+2+…+2+6=402×(2+6+2)+8=4028.选:C.分析: 首先根据已知得出规律,f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,进而求出10.两列数如下:7,10,13,16,19,22,25,28,31,…7,11,15,19,23,27,31,35,39,…第1个相同的数是7,第10个相同的数是()A.115 B.127 C.139 D.151答案:A解析:解答: 第一组数7,10,13,16,19,22,25,28,31,…第m个数为:3m+4,第二组数7,11,15,19,23,27,31,35,39,…第n个数为:4n+3,∵3与4的最小公倍数为12,∴这两组数中相同的数组成的数列中两个相邻的数的差值为12,∵第一个相同的数为7,∴相同的数的组成的数列的通式为12a-5,第10个相同的数是:12×10-5=120-1=115.选:A.分析: 根据两组数的变化规律写出两组数的通式,从而得到它们的相同数列中两个相邻的数的差值,再结合第一个相同的数写出通式,然后把序数10代入进行计算11.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5答案:C解析:解答: ∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.选C.分析: 根据n!=1×2×3×...×n得到1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,且5!、...、10!的数中都含有2与5的积,则5!、...、10!的末尾数都是0,于是得到1!+2!+3!+ (10)的末尾数为312.一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8 B.9 C.13 D.15答案:A解析:解答: ∵每个数都等于它前面的两个数之和,∴x=1+2=3,∴y=x+5=3+5=8,即这组数中y表示的数为8.选:A.分析: 根据每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,据此解答13.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252答案:C解析:解答: ∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209选:C.分析: 首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x的值14.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)答案:B解析:解答:2015是第201512+=1008个数,设2015在第n组,则1+3+5+7+…+(2n-1)≥1008,即()1212n n+-≥1008,解得:当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024-1=2047,第32组的第一个数为:2×962-1=1923,则2015是(201512923-+1)=47个数.故A2015=(32,47).选B.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是()A.25 B.27 C.55 D.120答案:C解析:解答:1+1=2,1+2=3,2+3=5,3+5=8,5+8=13,8+13=21,13+21=34,21+34=55.所以第10个数是55.选C.分析: 观察发现,从第三个数开始,后一个数是前两个数的和,依次计算求解得之差在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后也可以产生一个新数串:3,3,6,3,9,-10,9,8,依此类推,则从数串,开始操作第100次以后所产生的那个新数串的所有数之和是___答案:520解析:解答:一个依次排列的n个数组成一个数串:a1,a2,a3,…,a n,依题设操作方法可得新增的数为:a2- a1,a3- a2,a4- a3,a n- a n -1,所以,新增数之和为:(a2- a1)+(a3- a2)+(a4- a3)+…+(a n - a n -1)= a n - a1,原数串为3个数:3,9,8,第1次操作后所得数串为:3,6,9,-1,8,根据(*)可知,新增2项之和为:6+(-1)=5=8-3,第2次操作后所得数串为:3,3,6,3,9,-10,-1,9,8,根据(*)可知,新增2项之和为:3+3+(-10)+9=5=8-3,按这个规律下去,第100次操作后所得新数串所有数的和为:(3+9+8)+100×(8-3)=520,答案为:520.分析: 根据题意,计算可得第1次操作后所得数串为:3,6,9,-1,8;进而可得第2次操作后所得数串;分析可得其规律,运用规律可得答案17.将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是______答案: 50解析:解答: 由排列的规律可得,第n-1行结束的时候排了1+2+3+…+n-1=12n(n-1)个数.所以第n行从左向右的第5个数12n(n-1)+5.所以n=10时,第10行从左向右的第5个数为50.答案为:50.分析:先找到数的排列规律,求出第n-1行结束的时候一共出现的数的个数,再求第n行从左向右的第5个数,即可求出第10行从左向右的第5个数18.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为_________答案:4解析:解答: ∵甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束;∴50÷4=12余2,∴甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,∴报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需报到:9,21,33,45这4个数时,应拍手4次.答案为:4.分析: 根据报数规律得出甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,即可得出报出的数为3的倍数的个数,即可得出答案19.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42,…,则1+3+5+7+…+2015= _________ 答案:1016064解析:解答:因为1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,所以1+3+5+…+2015=1+3+5+…+(2×1008-1)=10082=1016064答案为:1016064.分析: 根据1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,可得1+3+5+…+(2n-1)=n2,据此求出1+3+5+…+2015的值20.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是________ 答案:45解析:解答: 第9个三角形数是1+2+3+4+5+6+7+8+9=45分析: 根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案52-1=24=8×3,72-1=48=8×6,92-1=80=8×10,…你发现了什么?答案:(2n+1)2-1=8×(1+2+3+…+n)解答: (1)n=1时,(2×1+1)2-1=8×1;n=2时,(2×2+1)2-1=24=8×(1+2);n=3时,(2×3+1)2-1=48=8×(1+2+3);n=4时,(2×4+1)2-1=80=8×(1+2+3+4);…n=n时,(2n+1)2-1=8×(1+2+3+…+n).即发现的规律为:(2n+1)2-1=8×(1+2+3+…+n)解析:分析: 式子的左边是一个奇数的平方减去1;等式右边是8的倍数,即(2n+1)2-1=8×(1+2+3+…+n)22.观察下列各式你会发现什么规律?1×5=5,而5=32-222×6=12,而12=42-223×7=21,而21=52-22…(1)求10×14的值,并写出与题目相符合的形式;答案:解答: 10×14=140=122-22;(2)将你猜想的规律用只含一个字母n的等式表示出来,并说明等式的正确性.答案: n(n+4)=(n+2)2-22.解答:第n个等式为n(n +4)=(n+2)2-22.∵左边= n(n +4)=n2+4n右边=(n +2)2-22=n2+4n+4-4═n2+4n左边=右边∴n(n+4)=(n+2)2-22.解析:分析: 由1×5=5,而5=5=32-22;2×6=12,而12=42-22;3×7=21,而21=52-22…可以看出两个因数相差4,所得的积是大的因数减去2的差的平方再减去2的平方,由此规律计算23.有规律排列的一列数:2、4、6、8…它的每一项可用式子2n(n是正整数)来表示;有规律的一列数:1、-2、3、-4、5、-6、7、-8…它的第100个数是什么?第n个数是什么?答案:100个数是-100,第n个数,(-1)n+1n;解析:解答:(1)奇数为正数,偶数为负数,并且第n个数的绝对值为n,所以100个数是-100,第n个数,(-1)n+1n;分析: 先得到符号的规律,再得到绝对值的规律即可;24.观察下列等式:12-02 ①,22-12 ②,32-22 ③,42-32 ④,…(1)按此规律猜想写出第⑥和第⑩个算式;答案:观察所给的4个算式,可知⑥、⑩个算式为:62-52,102-92;(2)请用含自然数n的等式表示这种规律.答案:用含自然数n的式子表示这种规律为:n2-(n-1)2解析:解答:(1)观察所给的4个算式,可知⑥、⑩个算式为:62-52,102-92;(2)用含自然数n的式子表示这种规律为:n2-(n-1)2分析: 本题考查规律型终端额数字变化问题,比较简单,考查学生的观察和总结能力25.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?答案:末尾都是24;(2)如果按照上面的规律计算:124×126(请写出计算过程).答案:124×126=12×(12+1)×100+24=15600+24=15624;答案:(10a+4)(10a+6)=100a2+100a+24=100a(a+1)+24.解析:分析:本题考查了数字的变化类问题,仔细观察算式发现规律是解答本题的关键。
中考《规律探索》题训练含答案

规律探索一.选择题1.(2015湖南邵阳第10题3分)如图.在矩形ABCD中.已知AB=4.BC=3.矩形在直线上绕其右下角的顶点B 向右旋转90°至图①位置.再绕右下角的顶点继续向右旋转90°至图②位置.….以此类推.这样连续旋转2015次后.顶点A在整个旋转过程中所经过的路程之和是()考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长.发现每4次循环.找到规律然后计算即可.解答:解:转动一次A的路线长是:.转动第二次的路线长是:.转动第三次的路线长是:.转动第四次的路线长是:0.转动五次A的路线长是:.以此类推.每四次循环.故顶点A转动四次经过的路线长为:+2π=6π.2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用.发现规律是解决问题的关键.2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列.并按如下规律分组:(1).(3.5.7).(9.11.13.15.17).(19.21.23.25.27.29.31).….现有等式A m=(i.j)表示正奇数m是第i组第j个数(从左往右数).如A7=(2.3).则A2015=()A.(31.50)B.(32.47)C.(33.46)D.(34.42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数.然后判断第1008个数在第几组.再判断是这一组的第几个数即可.解答:解:2015是第=1008个数.设2015在第n组.则1+3+5+7+…+(2n﹣1)≥1008.即≥1008.解得:n≥.当n=31时.1+3+5+7+…+61=961;当n=32时.1+3+5+7+…+63=1024;故第1008个数在第32组.第1024个数为:2×1024﹣1=2047.第32组的第一个数为:2×962﹣1=1923.则2015是(+1)=47个数.故A2015=(32.47).故选B.点评:此题考查数字的变化规律.找出数字之间的运算规律.利用规律解决问题.3.(2015湖北鄂州第10题3分)在平面直角坐标系中.正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置.其中点B1在y轴上.点C1、E1、E2、C2、E3、E4、C3……在x轴上.已知正方形A1B1C1D1 的边长为1.∠B1C1O=60°.B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A. B. C. D.【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•山东威海.第12 题3分)如图.正六边形A1B1C1D1E1F1的边长为2.正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切.正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切.…按这样的规律进行下去.A10B10C10D10E10F10的边长为()A.B.C.D.考点:正多边形和圆..专题:规律型.分析:连结OE1.OD1.OD2.如图.根据正六边形的性质得∠E1OD1=60°.则△E1OD1为等边三角形.再根据切线的性质得OD2⊥E1D1.于是可得OD2=E1D1=×2.利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2.同理可得正六边形A3B3C3D3E3F3的边长=()2×2.依此规律可得正六边形A10B10C10D10E10F10的边长=()9×2.然后化简即可.解答:解:连结OE1.OD1.OD2.如图.∵六边形A1B1C1D1E1F1为正六边形.∴∠E1OD1=60°.∴△E1OD1为等边三角形.∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切.∴OD2⊥E1D1.∴OD2=E1D1=×2.∴正六边形A2B2C2D2E2F2的边长=×2.同理可得正六边形A3B3C3D3E3F3的边长=()2×2.则正六边形A10B10C10D10E10F10的边长=()9×2=.故选D.点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份.依次连接各分点所得的多边形是这个圆的内接正多边形.这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.(2015•山东日照 .第11题3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66考点:完全平方公式..专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1.8.28.56.70.56.28.8.1;第9个式子系数分别为:1.9.36.84.126.126.84.36.9.1;第10个式子系数分别为:1.10.45.120.210.252.210.120.45.10.1.则(a+b)10的展开式第三项的系数为45.故选B.点:此题考查了完全平方公式.熟练掌握公式是解本题的关键6 , (2015•山东临沂,第11题3分)观察下列关于x 的单项式.探究其规律:x .3x 2.5x 3.7x 4.9x 5.11x 6.…. 按照上述规律.第2015个单项式是( ) (A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015.【答案】C 【解析】试题分析:根据这组数的系数可知它们都是连续奇数.即系数为(2n -1).而后面因式x 的指数是连续自然数.因此关于x 的单项式是.所以第2015个单项式的系数为2×2015-1=4029.因此这个单项式为.故选C考点:探索规律7.(2015·河南.第8题3分)如图所示.在平面直角坐标系中.半径均为1个单位长度的半圆O 1.O 2.O 3.… 组成一条平滑的曲线.点P 从原点O 出发.沿这条曲线向右运动.速度为每秒2个单位长度.则第2015秒时.点P 的坐标是( )A .(2014,0)B .(2015.-1)C . (2015,1)D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索.∵半圆的半径r =1.∴半圆长度=π. ∴第2015秒点P 运动的路径长为:2π×2015. ∵2π×2015÷π=1007…1.∴点P 位于第1008个半圆的中点上.且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015.纵坐标为-1.∴点P (2015.-1) .第8题图”中的“○”的个数.若第n个“龟图”中有245个“○”.则n=()A.14 B.15 C.16 D.17考点:规律型:图形的变化类..分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○.第二个图形有:2×1+5=7个○.第三个图形有:3×2+5=11个○.第四个图形有:4×3+5=17个○.由此可得第n个图形有:[n(n﹣1)+5]个○.则可得方程:[n(n﹣1)+5]=245解得:n1=16.n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律.通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.注意公式必须符合所有的图形.8. (2015•四川省宜宾市.第7题.3分)如图.以点O为圆心的20个同心圆.它们的半径从小到大依次是1、2、3、4、……、20.阴影部分是由第l个圆和第2个圆.第3个圆和第4个圆.…….第l9个圆和第20个圆形成的所有圆环.则阴影部分的面积为(B)A.231πB.210πC.190πD.171π9. (2015•浙江宁波.第10题4分)如图.将△ABC 沿着过AB 中点D 的直线折叠.使点A 落在BC 边上的A 1处.称为第1次操作.折痕DE 到BC 的距离记为1h ;还原纸片后.再将△ADE 沿着过AD 中点D 1的直线折叠.使点A 落在DE 边上的A 2处.称为第2次操作.折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去.经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h .若1h =1.则2015h 的值为【 】A .201521 B .201421 C . 2015211-D . 2014212-【答案】D .【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质.DE 是△ABC 的中位线.D 1E 1是△A D 1E 1的中位线.D 2E 2是△A 2D 2E 1的中位线.… ∴21111122h =+=-. 32211111222h =++=-.42331111112222h =+++=-.…20152201420141111112222h =+++⋅⋅⋅+=-. 故选B二.填空题1.(2015•甘肃武威,第18题3分)古希腊数学家把数1.3.6.10.15.21.…叫做三角形数.其中1是第一个三角形数.3是第2个三角形数.6是第3个三角形数.…依此类推.那么第9个三角形数是 45 .2016是第 63 个三角形数.4. (2015•四川省内江市.第16题.5分)如图是由火柴棒搭成的几何图案.则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1.2.3.….所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1.根数为:4=2×1×(1+1);n=2.根数为:12=2×2×(2+1);n=3.根数为:24=2×3×(3+1);n =n 时.根数为:2n (n +1).点评: 本题是一道找规律的题目.这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化.是按照什么规律变化的.5.(2015·深圳.第15题 分)观察下列图形.它们是按一定规律排列的.依照此规律.第56个图形有 个太阳。
中考数学 真题精选 专题试卷 代数式(含答案解析) (含答案解析)
代数式一.选择题(共19小题)1.(•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()2.(•吉林)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()3.(•自贡)为庆祝战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为()4.(•恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()a+b+a5.(•江阴市模拟)某厂1月份产量为a吨,以后每个月比上一个月增产x%,则该厂3月份的产量(单位:吨)为()6.(•海南)已知x=1,y=2,则代数式x﹣y的值为()7.(•娄底)已知a2+2a=1,则代数式2a2+4a﹣1的值为()8.(•漳州)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()9.(•湖州)当x=1时,代数式4﹣3x的值是()10.(•广西)下列各组中,不是同类项的是()与﹣11.(•柳州)在下列单项式中,与2xy是同类项的是()12.(•玉林)下列运算中,正确的是()13.(•泰安模拟)下列各式计算正确的是()14.(•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()15.(•济宁)化简﹣16(x﹣0.5)的结果是()16.(•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m 是第i组第j个数(从左往右数),如A7=(2,3),则A=()17.(•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()B18.(•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()19.(•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()二.填空题(共11小题)20.(•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)=.21.(•盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为.22.(•苏州)若a﹣2b=3,则9﹣2a+4b的值为.23.(•扬州)若a2﹣3b=5,则6b﹣2a2+=.24.(•潜江)已知3a﹣2b=2,则9a﹣6b=.25.(•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖元.26.(•株洲)如果手机通话每分钟收费m元,那么通话n分钟收费元.27.(•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.28.(•天津模拟)计算3a﹣2a的结果等于.29.(•徐州模拟)化简:2x2﹣3x2=.30.(春•南县校级期中)若﹣2a m b4与5a n+2b2m+n的和为单项式,则m n的值是.初中数学组卷代数式参考答案与试题解析一.选择题(共19小题)1.(•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()2.(•吉林)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()3.(•自贡)为庆祝战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为()4.(•恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()a+b+ax=a+5.(•江阴市模拟)某厂1月份产量为a吨,以后每个月比上一个月增产x%,则该厂3月份的产量(单位:吨)为()6.(•海南)已知x=1,y=2,则代数式x﹣y的值为()7.(•娄底)已知a2+2a=1,则代数式2a2+4a﹣1的值为()8.(•漳州)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()代入得:代入得:代入得:=1代入得:代入得:代入得:代入得:=1代入得:9.(•湖州)当x=1时,代数式4﹣3x的值是()10.(•广西)下列各组中,不是同类项的是()与﹣11.(•柳州)在下列单项式中,与2xy是同类项的是()12.(•玉林)下列运算中,正确的是()13.(•泰安模拟)下列各式计算正确的是()14.(•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是(),.15.(•济宁)化简﹣16(x﹣0.5)的结果是()16.(•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m 是第i组第j个数(从左往右数),如A7=(2,3),则A=()解:是第≥≥+117.(•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()B个数为,,,个数为时,=.个数为18.(•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()19.(•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()二.填空题(共11小题)20.(•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)=1.21.(•盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为18.22.(•苏州)若a﹣2b=3,则9﹣2a+4b的值为3.23.(•扬州)若a2﹣3b=5,则6b﹣2a2+=2005.24.(•潜江)已知3a﹣2b=2,则9a﹣6b=6.25.(•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a 元.,得结果.,故答案为:26.(•株洲)如果手机通话每分钟收费m元,那么通话n分钟收费mn元.27.(•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a元.28.(•天津模拟)计算3a﹣2a的结果等于a.29.(•徐州模拟)化简:2x2﹣3x2=﹣x2.30.(春•南县校级期中)若﹣2a m b4与5a n+2b2m+n的和为单项式,则m n的值是1.。
初中数学初一年级复习强化训练练习版
初一年级复习强化训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列是按一定规律排列的一组数: 12,16,112,120,…,1a ,190,1b ,…(其中a ,b 为整数),则 a b 的值为( ). A .182 B .172 C .242 D .2002.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为( )A.19B.21C.32D.413.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A.159B.209C.170D.2524.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2017=()A.(45,77)B.(45,39)C.(32,48)D.(32,25)5.某轮船在静水中的速度为u 千米/时,A 港,B 港之间的航行距离为S 千米,水流速度为v 千米/时.如果该轮船从A 港驶往B 港,接着返回A 港,航行所用时间为1t 小时,假设该轮船在静水中航行2S 千米所用时间为2t 小时,那么1t 与2t 的大小关系为, ,A.1t ,2tB.1t ,2tC.1t ,2tD.与u ,v 的值有关二、填空题6.如图,在各个手指间标记字母A ,B ,C ,D .请按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A 开始数连续的正整数1,2,3,4,….当字母C 第2019次出现时,数到的数恰好是_________.7.已知一列数的和1220191(122019)2x x x +++=⨯+++,1223|31||32|x x x x -+=-+==20182019|3x x -+2018,=20191|32019|x x -+,则12323x x x --=_____.8.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第2019个图形比第2009个图形棋子数多_______枚.9.观察下列各式数:0,3,8,15,24,…,试按此规律写出第2020个数是_____.10.若a 是不为1的有理数,我们把11a-称为a 的差倒数,如2的差倒数是1112=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,依此类推,则2019a =_____.11.如图是一个玩具火车轨道,A 点有个变轨开关,可以连接B 或C .小圈轨道的周长是1.5米,大圈轨道的周长是3米.开始时,A 连接C ,火车从A 点出发,按照顺时针方向再轨道上移动,同时变轨开关每隔一分钟变换一次轨道连接.若火车的速度是每分钟10米,则火车第10次回到A 点时用了______分钟.12.某轮船顺水航行3小时,逆水航行2小时,已知轮船在静水中的速度为a 千米/小时,水流速度为y 千米/小时,则轮船共航行___________千米.13.设,x y 是两个不同的正整数,且1125x y +=,则x y +=_____. 14.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,则表示“无所谓”的家长人数为________.三、解答题15.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P 从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x,x大于0)秒.,1)点C表示的数是,,2)当x=秒时,点P到达点A处?,3)运动过程中点P表示的数是(用含字母x的式子表示);,4)当P,C之间的距离为2个单位长度时,求x的值.16.如图,数轴上A、B两点分别对应有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是_______.(2)数轴上一个点到表示2的点的距离为5.2,这个点表示的数为______.(3)若x表示一个数,数轴上表示x和﹣5的两点之间的距离是____;(用含x的式子表示)(4)若x表示一个数,|x+1|+|x﹣2|的最小值是______,相应的x的取值范围_______.17.已知数轴上三点A 、O 、B 对应的数分别为﹣3,0,1,点P 为数轴上任意一点,其表示的数为x . (1)如果点P 到点A ,点B 的距离相等,那么x = ;(2)当x = 时,点P 到点A 、点B 的距离之和是6;(3)若点P 到点A ,点B 的距离之和最小,则x 的取值范围是 ;(4)若点P 到点A ,点B ,点O 的距离之和最小,则最小距离为 .18.已知数轴上点A 、B 分别表示的数是a 、b ,记A 、B 两点间的距离为AB(1) 若a =6,b =4,则AB = ;若a =-6,b =4,则AB = ;(2) 若A 、B 两点间的距离记为d ,试问d 和a 、b 有何数量关系?(3)写出所有符合条件的整数点P ,使它到5和-5的距离之和为10,并求所有这些整数的和.,4,|x -1|+|x +2|取得的值最小为 ,|x -1|-|x +2|取得最大值为 .19.先阅读,并探究相关的问题:(阅读)a b -的几何意义是数轴上a ,b 两数所对的点A ,B 之间的距离,记作AB a b ,如25-的几何意义:表示2与5两数在数轴上所对应的两点之间的距离;63+可以看做()63--,几何意义可理解为6与3-两数在数轴上对应的两点之间的距离.(1)数轴上表示x 和2-的两点A 和B 之间的距离可表示为____________;如果5AB =,求出x 的值;(2)探究:32x x ++-是否存在最小值,若存在,求出最小值;若不存在,请说明理由;(3)求1232019x x x x -+-+-++-的最小值,并指出取最小值时x 的值.20.早在1960年、中国登山队首次从珠穆朗玛北侧中国境内登上珠峰,近几十年,珠峰更是吸引了大批的登山爱好者,某日,登山运动员傅博准备从海拔7400米的3号营地登至海拔近7900米的4号营地,由于天气骤变,近6小时的攀爬过程中他不得不几次下撤躲避强高空风,记向上爬升的海拔高度为正数,向下撒退时下降的海拔高度为负数,傅博在这一天攀爬的海拔高度记录如下:(单位:米)+320、-55、+116、-20、+81、-43、+115.(1)傳博能按原计划在这天登至4号营地吗?(2)若在这一登山过程中,傅博所处位置的海拔高度上升或下降1米平均消耗8大卡的卡路里,则傅博这天消耗了多少卡路里?(3)登山消耗的卡路里预估为:1千克身体重量(体重或负重)1天需要55~65(大于等于55,小于等于65)大卡的卡路里,海拔6000米以上会使卡路里消耗增加20%,登山协会约定海拔5000米以上运动员负重14千克,在(2)的条件下,请你估算傳博的体重范围.(精确到1千克)21.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,2-,3-观察数轴,B,C两点之间的距离为_______;与点A的距离为3的点表示的数是_______;(2)若将数轴折叠,使得A点与C点合,则与B点重合的点表示的数是______;若此数轴上M,N两点之间的距离为20(M在N的左侧),且A点与C点重合时,M点N点也恰好重合,则M,N两点表示的数分别是:M:_______,N_______.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P______,Q______.(用含m,n的式子表示这两个数).22.已知a 、b 满足()25|1|0a b -++=.请回管问题:(1)请直接写出a 、b 的值,a=______,b=_______.(2)当x 的取值范围是_________时,||||x a x b -+-有最小值,这个最小值是_____.(3)数轴a 、b 上两个数所对应的分别为A 、B ,AB 的中点为点C ,点A 、B 、C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,当A 、B 两点重合时,运动停止.①经过2秒后,求出点A 与点B 之间的距离AB.②经过t 秒后,请问:BC+AB 的值是否随着时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.23.同学们都知道,|2-,-1,|表示2与-1的差的绝对值,实际上位可理解为在数轴上正数2对应的点与负数一1对应的点之间的距离,试探索:(1)|2-,-1,|=______;如果|x -1|=2,则x =______,(2)求|x -2|+|x -4|的最小值,并求此时x 的取值范围;(3)由以上探素已知(|x -2|+|x +4|,•,|y -1|+|y -6|,=10,求x +y 的最大值与最小值;(4)由以上探索及猜想,计算|x -1|+|x -2|+|x -3|+…+|x -2017|+|x -2018|的最小值.24.如图,相距5km 的A,B 两地间有一条笔直的马路,C 地位于AB 两地之间且距A 地2km ,小明同学骑自行车从A 地出发沿马路以每小时5km 的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回。
人教版七年级数学第六章第3节《实数》单元训练题 (1)(含答案解析)
(1) ;(2) .
11.计算:
12.计算:
(1)
(2)计算:﹣12017+ ÷ ﹣ ×(﹣6)
(3)计算:[3﹣4× ]÷(﹣4)
(4)对于任意有理数a、b,定义一种新运算“⊕”,规则如下:a⊕b=ab+(a﹣b),例如:3⊕2=3×2+(3﹣2)=7,求(﹣4)⊕5=?
13.阅读理解:
∴4.5< <4.6,
∴3.5< ﹣1<3.6,
故选:C.
本题考查无理数的估算,解答的关键是先确定无理数的整数部分,再确定小数部分.
6.B
【解析】
先用夹逼法估算 的值,进而得出 , 的值,再代入所求式子计算即可.
解: ,
,
的整数部分为 ,小数部分为 ,
, ,
.
故选: .
本题主要考查估算无理数的大小,应用夹逼法估算 的值是解题的关键.
故选:B.
本题考查了估算无理数的大小,熟知估算无理数的大小要用逼近法是解答此题的关键.
4.A
【解析】
根据相关知识逐项判断即可求解.
解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题.
2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(解析版)
专题05 《有理数》中的规律题(满分120分时间:60分钟)班级姓名得分一、解答题:1.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则2+22+23+24+25+⋯+22022的末位数字是()A. 8B. 6C. 4D. 0【答案】B【解析】解:因为2n的个位数字是2,4,8,6,每4个一循环,而2022÷4=505……2,所以22022的个位数字与22的个位数字相同,是4.因此2+22+23+24+25+⋯+22022的末位数字是2+4+8+6+⋯+2+4的末位数字.因为2+4+8+6=20,所以2+22+23+24+25+⋯+22022的末位数字是2+4=6.2.定义一种对正整数n的“F”运算: ①当n为奇数时,F(n)=3n+1; ②当n为偶数(其中k是使F(n)为奇数的正整数),两种运算交替重复进行,例如,取时,F(n)=n2kn=24,则若n=13,则第2018次“F”运算的结果是()A. 1B. 4C. 2018D. 42018【答案】A【解析】若n=13,第1次运算的结果为3n+1=40,=5,第2次运算的结果为4023第3次运算的结果为3n+1=16,=1,第4次运算的结果为1624第5次运算的结果为4,第6次运算的结果为1,⋯⋯由此可以看出,从第4次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;当次数是奇数时,结果是4,而2018是偶数,因此第2018次运算的结果是1.故选A.3.把所有正奇数从小到大排列,并按如下规律分组,(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31)…,若A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),若A7=(2,3),则A2019=()A. (32,26)B. (32,49)C. (45,42)D. (45,80)【答案】B【解析】解:由已知可知,第一组1个奇数,第二组3个奇数,第三组5个奇数,…2019是第1010个数,设2019在第n组,则1+3+5+7+⋯+2n−1≥1010,∴n>31,当n=31时,1+3+5+7+⋯+61=961,当n=32时,1+3+5+8+⋯+63=1024,∴1010个数在第32组,第1024个数是1024×2−1=2047,第32组的第一数是2×962−1=1923,+1=49个数,则2019是第2019−19232∴2019是第32组第49个数.故选:B.由题意可知2019是第1010个数,由1+3+5+7+⋯+2n−1≥1010,确定1010在第32组,第1024个数是1024×2−1=2047,第32组的第一数是2×962−1=1923,则2019 +1=49个数,即可求解.是第2019−19232本题考查数字的变化规律;理解题意,利用奇数和给出的分组特点,逐步确定具体位置是解题的关键.4.某一电子昆虫落在数轴上的某点K0,从K0点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4……依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K100表示的数恰好是2015,则电子昆虫的初始位置K0所表示的数是()A. 2065B. −1965C. 1965D. −2065【答案】C【解析】【分析】本题考查数轴和规律问题,解题的关键是明确题意,找出所求问题需要的条件.根据题意,可以发现题目中各个数的变化规律,从而可以求得K0所表示的数.【解答】解:设K0对应的数为x,则K1=x−1,K2=x+1,K3=x−2,K4=x+2,......∴K100=x+50,∵K100表示的数恰好是2015,∴x+50=2015,可知,x=1965,故选C.5.已知整数a1,a2,a3,a4,⋯满足下列条件:a1=0,a2=−|a1+1|,a3=−|a2+2|,a4=−|a3+3|,⋯⋯依此类推,则a2021的值为()A. 2020B. −2020C. −1010D. 1010【答案】C【解析】因为a1=0,a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,所以n是奇数时,a n=−12(n−1),n是偶数时,a n=−n2,所以a2021=−12×(2021−1)=−1010.故选C.6.如图,圆的周长为4个单位长度,在该圆的四等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数−1的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示数−2019的点与圆周上重合的点表示的数字为()A. 0B. 1C. 2D. 3【答案】C【解析】解:因为−1与−2019之间的距离是2018个单位长度,而2018÷4=504⋯⋯2,所以数轴上表示数−2019的点与圆周上表示数字2的点重合,故选C.7.计算12+16+112+120+130+⋯+19900的结果为()A. 1100B. 99100C. 199D. 10099【答案】B【解析】原式=11×2+12×3+13×4+14×5+15×6+⋯+199×100=1−12+12−13+13−14+14−15+15−16+⋯+199−1100=1−1100=99100.故选B.8.图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A. 15B. 25C. 36D. 49【答案】C【解析】【分析】此题考查了新定义问题,图形的变化规律以及有理数的加法运算,找出图形之间的联系,利用数字之间的运算规律,解决问题.由题意可知:三角形数的第n个为1+2+3+4+···+n,正方形数的第n个为n2,由此逐一验证得出答案即可.【解答】解:由于三角形数的第n个为1+2+3+4+⋯+n,正方形数的第n个为n2,A、15不是平方数,因此15不是正方形数,故A选项不合题意;B、1+2+3+4+5+6<25<1+2+3+4+5+6+7,因此25不是三角形数,故B 选项不合题意;C、1+2+3+4+···+8=36,且62=36,因此36既是三角形数又是正方形数,故C选项符合题意;D、1+2+3+4+···+9<49<1+2+3+4+···+10,因此49不是三角形数,故D选项不合题意.故选C.9.下面是按一定规律排列的一列数:第1个数:12−(1+−12);第2个数:13−(1+−12)(1+(−1)23)(1+(−1)34);…第n个数:1n+1−(1+−12)(1+(−1)23)(1+(−1)34)⋯(1+(−1)2n−12n)在第10个数、第11个数、第12个数、第13个数中,最大的数是()A. 第10个数B. 第11个数C. 第12个数D. 第13个数【答案】A 【解析】 【分析】本题考查的是数字的变化类,有理数的混合运算,有理数大小的比较,根据题意找出规律是解答此题的关键.通过计算可以发现,第一个数12−12,第二个数为13−12,第三个数为14−12,…第n 个数为1n+1−12,由此求第10个数、第11个数、第12个数、第13个数的得数,通过比较得出答案. 【解答】解:第1个数=12−12=0;第2个数=13−12×43×34=13−12=−16; 第3个数=14−12×43×34×65×56=14−12=−14; …由此得出第n 个数的计算结果1n+1−12;∴第10个数、第11个数、第12个数、第13个数分别为−922,−512,−1126,−37,其中最大的数为−922,即第10个数最大. 故选:A .10. 如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2 020次.移动规则:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2 020次移动中,跳棋不可能停留的顶点是( )A. C ,EB. E ,FC. G ,C ,ED. E ,C ,F【答案】D【解析】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+⋯+k =12k(k +1),应停在第12k(k +1)−7p 格,这时p 是整数,且使0≤12k(k +1)−7p ≤6,分别取k =1,2,3,4,5,6,7时,12k(k +1)−7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t(t =1,2,3)代入可得,12k(k +1)−7p =7m +12t(t +1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+⋯+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.本题考查规律型:图形的变化类,理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.二、填空题11.看一看:1 2=12;1 3+23=1;1 4+24+34=32;1 5+25+35+45=2;⋯⋯猜一猜:(1)19+29+39+⋯+89=;(2)160+260+360+⋯+5960=.【答案】4592【解析】当分母为偶数时,结果的分母为2,分子比等号左边最后一个分数的分母小1;当分母为奇数时,结果为等号左边最后一个分数的分子除以2.(1)19+29+39+⋯+89=4.(2)160+260+360+⋯+5960=592.12.下面是一组有规律的算式,根据其中规律,第n个算式为:12+22+32+⋯+n2=______ .12=1×2×36;第1个算式12+22=2×3×56;第2个算式12+22+32=3×4×76;第3个算式12+22+32+42=4×5×96;第4个算式… 【答案】n(n+1)(2n+1)6【解析】解:12=1×(1+1)×(2×1+1)6,第一个算式,12+22=2×(2+1)×(2×2+1)6,第二个算式,12+22+32=3×(3+1)×(2×3+1)6,第三个算式,⋅⋅⋅12+22+32+⋯+n 2=n(n+1)(2n+1)6,第n 个算式.故答案为:n(n+1)(2n+1)6.根据所给算式分母为6,分子为n(n +1)(2n +1)求解.本题考查数字变化的规律,解题关键是通过前三个算式找出数字变化规律.13. 观察下列各式:−1+2=1;−1+2−3+4=2;−1+2−3+4−5+6=3;⋯⋯,那么−5+6−7+8−9+10−⋯−2015+2016−2017+2018= . 【答案】1007【解析】解:原式=(−5+6)+(−7+8)+(−9+10)+⋯+(−2017+2018)=1+1+⋯+1(1007个1相加)=1007.14. 有两个多位数124862486⋯⋯,624862486⋯⋯,都是按照如下方法得到的:从左边开始,将第一位数字乘2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位上.对第2位数字再进行如上操作得到第3位数字,⋯⋯,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按以上操作得到一个多位数,则这个多位数前100位的所有数字之和是 . 【答案】495【解析】由题意,可得这个多位数是362486248⋯⋯,可以看出,从第2位起,每4个数字一循环,100=1+4×24+3,所以这个多位数前100位的所有数字之和为3+24×(6+2+4+8)+(6+2+4)=495.15. 若x 是不等于1的实数,我们把11−x 称为x 的差倒数,如2的差倒数是11−2=−1,−1的差倒数为11−(−1)=12,现已知,x 1=−13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,⋯⋯,依次类推,则x 2020= . 【答案】−13【解析】解:∵x 1=−13,∴根据差倒数定义可得x 2=11−(−13)=34,x 3=11−34=4,x 4=11−4=−13,显然,计算结果以三个数为一组循环出现, ∵2020÷3=673⋯⋯1, ∴x 2020=x 1=−13.16. 1+7+72+73+74+⋯+72019的个位数字是 .【答案】7【解析】解:1=70的个位数字是1,71的个位数字是7,72的个位数字是9,73的个位数字是3,74的个位数字是1,⋯⋯,和的个位数字规律为1、8、7、0四个数循环, 所以2019÷4=504⋯⋯3,所以原式的个位数字是7.三、解答题17. 先阅读,再解题:因为1−12=11×2,12−13=12×3,13−14=13×4,…所以11×2+12×3+13×4+⋯+149×50=(1−12)+(12−13)+(13−14)+⋯+(149−150)=1−12+12−13+13−14+⋯+149−150=1−150=4950 参照上述解法计算:11×3+13×5+15×7+⋯+149×51. 【答案】解:原式=12(1−13+13−15+15−17+⋯+149−151) =12(1−151) =12×5051 =2551.【解析】本题主要考查了有理数的混合运算和观察数字规律问题,读懂解法是解题的关键,找准式子的变化是解题的突破口,1−13=23,11×3=13,两者不再相等,而是倍半关系。