高考物理专题_动能定理

合集下载

第六章 第2讲 动能定理-2025高三总复习 物理(新高考)

第六章 第2讲 动能定理-2025高三总复习 物理(新高考)

第2讲动能定理[课标要求]1.理解动能和动能定理。

2.能用动能定理解释生产生活中的现象。

考点一动能定理的理解1.动能(1)定义:物体由于运动而具有的能量叫作动能。

(2)公式:E k=12m v2,国际制单位:焦耳(J)。

1J=1N·m=1kg·m2/s2。

(3)动能是标量、状态量。

2.动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。

(2)表达式:W=E k2-E k1=12m v22-12m v21=ΔE k。

(3)物理意义:合力做的功是物体动能变化的量度。

自主训练1动能的理解高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。

在启动阶段,列车的动能()A.与它所经历的时间成正比B.与它的位移成正比C.与它的速度成正比D.与它的动量成正比答案:B解析:动能E k=12m v2,与速度的平方成正比,C错误;速度v=at,可得E k=12ma2t2,与经历的时间的平方成正比,A错误;根据v2=2ax,可得E k=max,与位移成正比,B正确;动量p=m v,可得E k=p22m,与动量的平方成正比,D错误。

自主训练2动能定理的理解(多选)(2023·陕西宝鸡二模)下列说法正确的有()A.若运动物体所受的合外力为零,则物体的动能一定保持不变B.若运动物体所受的合外力不为零,则物体的动能一定发生变化C.若运动物体的动能保持不变,则该物体所受合外力一定为零D.若运动物体的动能发生变化,则该物体所受合外力一定不为零答案:AD解析:运动物体所受合外力为零,合外力对物体不做功,由动能定理可知,物体动能不变,故A正确;运动物体所受合外力不为零,物体运动状态一定变化,则该物体一定做变速运动,如果合外力方向与物体速度方向垂直,则合外力对物体不做功,物体动能不变,故B错误;如果运动物体所受合外力与物体的速度方向垂直,则合外力对物体不做功,物体动能不变,如匀速圆周运动,故C错误;若运动物体的动能发生变化,根据动能定理可知,合外力一定做功,即合外力一定不为零,故D正确。

第五章第2讲动能定理及其应用-2025年高考物理一轮复习PPT课件

第五章第2讲动能定理及其应用-2025年高考物理一轮复习PPT课件

高考一轮总复习•物理
第7页
3.物理意义: 合力 的功是物体动能变化的量度. 4.适用条件 (1)既适用于直线运动,也适用于曲线运动 . (2)既适用于恒力做功,也适用于 变力 做功. (3)力可以是各种性质的力,既可以同时作用,也可以 分阶段
作用.
高考一轮总复习•物理
第8页
1.思维辨析 (1) 一 定 质 量 的 物 体 动 能 变 化 时 , 速 度 一 定 变 化 , 但 速 度 变 化 时 , 动 能 不 一 定 变 化.( √ ) (2)处于平衡状态的物体动能一定保持不变.( √ ) (3)做自由落体运动的物体,动能与下落时间的二次方成正比.( √ ) (4)物体在合外力作用下做变速运动,动能一定变化.( ) (5)物体的动能不变,所受的合外力必定为零.( )
答案
高考一轮总复习•物理
第19页
解析:因为频闪照片时间间隔相同,对比图甲和乙可知图甲中滑块加速度大,是上滑阶 段;根据牛顿第二定律可知图甲中滑块受到的合力较大,故 A 错误.从图甲中的 A 点到图乙 中的 A 点,先上升后下降,重力做功为 0,摩擦力做负功;根据动能定理可知图甲经过 A 点 的动能较大,故 B 错误.对比图甲、乙可知,图甲中在 A、B 之间的运动时间较短,故 C 正 确.由于无论上滑还是下滑,受到的滑动摩擦力大小相等,故图甲和图乙在 A、B 之间克服 摩擦力做的功相等,故 D 错误.
高考一轮总复习•物理
第9页
2.运动员把质量是 500 g 的足球踢出后,某人观察它在空中的飞行情况,估计上升的
最大高度是 10 m,在最高点的速度为 20 m/s.估算出运动员踢球时对足球做的功为( )
A.50 J
B.100 J
C.150 J

高考物理复习-动能定理及其应用

高考物理复习-动能定理及其应用

长度为πR、不可伸长的轻细绳,一端固定在圆柱体最高点P处,另一端
系一个小球,小球位于P点右侧同一水平高度的Q点时,绳刚好拉直,将
小球从Q点由静止释放,当与圆柱体未接触部分的细绳竖直时,小球的
速度大小为(重力加速度为g,不计空气阻力)
√A. 2ห้องสมุดไป่ตู้πgR
B. 2πgR
C. 21+πgR
D.2 gR
小球下落的高度为 h=πR-π2R+R=π+2 2R,小球下落过程中,根据 动能定理有 mgh=12mv2,综上有 v= π+2gR,故选 A.
从A到B过程,据动能定理可得 (F-μmg)xAB=12mvB2 解得小物块到达B点时速度的大小为 vB=4 5 m/s
(2)小物块运动到D点时,轨道对小物块作用力的 大小. 答案 150 N
从B到D过程,据动能定理可得 -mg·2R=12mvD2-12mvB2 在D点由牛顿第二定律可得 FN+mg=mvRD2 联立解得小物块运动到D点时,轨道对小物块作用力的大小为FN= 150 N.
好为0.已知π取3.14,重力加速度g取10 m/s2,在这一过程中摩擦力做功为
A.66.6 J C.210.6 J
√B.-66.6 J
D.-210.6 J
1 2 3 4 5 6 7 8 9 10 11
小圆环到达 B 点时对细杆的压力恰好为 0,则 mg=mvr2,拉力 F 沿 圆的切线方向,圆环由 A 到 B 的过程根据动能定理有 F·24πr-mgr+ Wf=12mv2,代入数据得摩擦力做功为 Wf=-66.6 J,故选 B.
D.物体运动的时间
物体做匀速直线运动时,受力平衡,拉力 F0 与 滑动摩擦力 Ff 大小相等,物体与水平面间的动 摩擦因数为 μ=mFg0 =0.35,A 正确; 减速过程由动能定理得 WF+Wf=0-12mv2,根据 F-x 图像中图线与 x 轴围成的面积可以估算力 F 对物体做的功 WF,而 Wf=-μmgx,由 此可求得合力对物体所做的功及物体做匀速运动时的速度 v,B、C 正确; 因为物体做变加速运动,所以运动时间无法求出,D错误.

高考物理科普动能与动能定理

高考物理科普动能与动能定理

高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。

在高考物理中,学生需要对动能与动能定理有一定的了解。

本文将介绍什么是动能以及动能定理的含义和应用。

一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。

简单来说,物体的动能与物体的质量和速度有关。

动能的单位是焦耳(J)。

动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。

例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。

二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。

它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。

净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。

根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。

当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。

三、动能定理的应用动能定理在物理学中具有很多应用。

以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。

例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。

2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。

例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。

3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。

例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。

四、总结动能与动能定理是高考物理中的重要知识点。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。

某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。

已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。

小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。

只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。

已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '= 12BQEL v m='5QEL (3) 222B mL Q E t QE =⎛⎫- ⎪⎝⎭223mL mLt QE QE<≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213tt == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。

2024高考物理二轮复习专题三动量和能量1_3_5功功率动能定理训练

2024高考物理二轮复习专题三动量和能量1_3_5功功率动能定理训练

1-3-5 功功率动能定理课时强化训练1.(2024·山西太原一模)如图所示,两个人利用机械装置提升相同的重物。

已知重物匀速上升,相同的时间内两重物提升的高度相同。

不考虑绳、滑轮的质量及摩擦,在重物上升的过程中人拉力的作用点保持不变(θ始终小于30°),则( )A.站在地面的人比站在二楼的人省力B.站在地面的人对绳的拉力越来越大C.站在二楼的人对绳的拉力越来越大D.同一时刻,二楼的人对绳拉力的功率小于地面的人对绳拉力的功率[解析] 设重物的质量为m,地面上的人对绳的拉力F T=mg恒定不变;站在二楼的人对绳的拉力F T′=mg2 cos θ,重物匀速上升过程中θ越来越大,cos θ越来越小,则F T′越来越大,B项错误,C项正确。

因θ始终小于30°,则1>cos θ>32,则33mg>F T′>12mg,而F T=mg,则站在地面的人比站在二楼的人费劲,所以A项错误。

人对绳拉力做的功等于克服重物重力做的功,两重物质量相同,上上升度相同,所用时间相同,克服重力做功的功率相同,故D错误。

[答案] C2.(2024·湖北八校二联)如图,小球甲从A点水平抛出,同时将小球乙从B点自由释放,两小球先后经过C点时速度大小相等,方向夹角为30°,已知B、C高度差为h,两小球质量相等,不计空气阻力,由以上条件可知( )A.小球甲做平抛运动的初速度大小为2gh 3B .甲、乙两小球到达C 点所用时间之比为1∶ 3 C .A 、B 两点高度差为h4D .两小球在C 点时重力的瞬时功率大小相等[解析] 甲、乙两球经过C 点的速度v 甲=v 乙=2gh ,甲球平抛的初速度v 甲x =v 甲 sin 30°=2gh2,故A 错误;甲球经过C 点时竖直方向的速度v 甲y =v 甲 cos 30°=6gh 2,运动时间t 甲=v 甲yg=3h2g,乙球运动时间t 乙=2h g ,则t 甲∶t 乙=3∶2,故B 项错误;A 、B 两点的高度差Δh =12gt 2乙-12gt 2甲=h4,故C 项正确;甲和乙两球在C 点时重力的瞬时功率分别为P 甲=mgv 甲y=mg6gh2,P 乙=mgv 乙=mg 2gh ,故D 项错误。

专题12动能定理和机械能守恒定律-【好题汇编】三年(2022-2024)高考物理真题分类汇编(解析)

专题12动能定理和机械能守恒定律考点三年考情(2022-2024)命题趋势考点1动能定理(5年4考)2024年高考福建卷:先后两次从高处斜向上抛出同一物体;2022年1月浙江选考:滑块在几段不同的轨道上运动;2022年福建高考:一物块以初速度0v自固定斜面底端沿斜面向上运动,一段时间后回到斜面底端。

1.动能定理是物理学中重要规律,也是高考考查频率较高的知识;考查的方式主要表现在:结合实际情景;结合图像等。

2.重力势能和机械能守恒定律的考查主要集中在结合体育运动、结合图像等。

3.能量转化和守恒定律贯穿于各个领域和各个方面。

高考对能量转化和守恒定律的考查在力学中主要有:计算损失的机械能,摩擦生热等。

考点2重力势能和机械能守恒定律(5年4考)2022年全国理综甲卷第14题:北京2022年冬奥会首钢滑雪大跳台;2022年全国理综乙卷第16题:固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑;2022新高考江苏卷:滑雪运动员从静止开始沿斜面下滑,经圆弧滑道起跳,选择正确的图像。

考点3能量转化和守恒定律(5年4考)2023年高考全国乙卷:一质量为M、长为l的木板静止在光滑水平桌面上,另一质量为m的小物块(可视为质点)从木板上的左端以速度v0开始运动。

2024年1月浙江选考:如图所示,质量为m的足球从水平地面上位置1被踢出,足球运动过程受到空气阻力。

考点01动能和动能定理1..(2024年高考福建卷)先后两次从高为 1.4m OH =高处斜向上抛出质量为0.2kg m =同一物体落于12Q Q 、,测得128.4m,9.8m OQ OQ ==,两轨迹交于P 点,两条轨迹最高点等高且距水平地面高为3.2m ,下列说法正确的是()A.74B.第一次过P 点比第二次机械能少1.3JC.落地瞬间,第一次,第二次动能之比为72:85D.第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大【参考答案】B【名师解析】第一次斜抛出物体上升的高度为h 1=3.2m-1.4m=1.8m 逆向思维为平抛运动,可得h 1=2112gt 上,解得上升时间t 1上=0.6s 最高点距离水平地面高度为h 0=3.2m,由平抛运动规律,h 0=2112gt 下,解得下落时间t 1下=0.8s 第一次抛出上升时间,下降时间比值为t 1上׃t 1下=0.6׃0.8=3׃4,A 错误。

2024全国高考真题物理汇编:动能和动能定理

2024全国高考真题物理汇编动能和动能定理一、单选题 1.(2024江西高考真题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为1r 、2r ,则动能和周期的比值为( )A.k121k212,E r T E r T ==B.k111k222,E r T E r T ==C.k121k212,E r T E r T ==D.k111k222E r T E r T ==,2.(2024北京高考真题)水平传送带匀速运动,将一物体无初速度地放置在传送带上,最终物体随传送带一起匀速运动。

下列说法正确的是( ) A .刚开始物体相对传送带向前运动 B .物体匀速运动过程中,受到静摩擦力 C .物体加速运动过程中,摩擦力对物体做负功 D .传送带运动速度越大,物体加速运动的时间越长3.(2024安徽高考真题)某同学参加户外拓展活动,遵照安全规范,坐在滑板上,从高为h 的粗糙斜坡顶端由静止下滑,至底端时速度为v .已知人与滑板的总质量为m ,可视为质点.重力加速度大小为g ,不计空气阻力.则此过程中人与滑板克服摩擦力做的功为( ) A .mghB .212mvC .212mgh mv +D .212mgh mv -4.(2024测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上。

调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍。

忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的( ) A .0.25倍B .0.5倍C .2倍D .4倍5.(2024福建高考真题)先后两次从高为 1.4m OH =高处斜向上抛出质量为0.2kg m =同一物体落于12Q Q 、,测得128.4m,9.8m OQ OQ ==,两轨迹交于P 点,两条轨迹最高点等高且距水平地面高为3.2m ,下列说法正确的是( )A4 B .第一次过P 点比第二次机械能少1.3J C .落地瞬间,第一次,第二次动能之比为72:85D .第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大二、解答题 6.(2024全国高考真题)将重物从高层楼房的窗外运到地面时,为安全起见,要求下降过程中重物与楼墙保持一定的距离。

2025版高考物理大一轮复习课件专题突破课7动能定理在多过程中的应用

2.全过程列式时,涉及重力、弹簧弹力,大小恒定的阻力或摩擦力做 功时,要注意运用它们的功能特点。
(1)重力做的功取决于物体的初、末位置,与路径无关。 (2)大小恒定的阻力或摩擦力做的功等于力的大小与路程的乘积。 (3)弹簧弹力做功与路径无关。
5
考点一 考点二 限时规范训练
例 1 学校科技小组成员参加了过山车游戏项目后,为了研究过山 车运动中所遵循的物理规律,设计出了如图所示的装置,图中P为弹性发 射装置,AB为倾角θ=37°的倾斜轨道,BC为水平轨道,C′、C等高但略 有错开,可认为CDC′为竖直圆轨道。CE为足够长倾斜轨道,各段轨道均 平滑连接。以A点为坐标原点,水平向右为x轴正方向,竖直向上为y轴正 方向建立平面直角坐标系,弹射装置P的位置可在坐标平面内任意调节, 使水平弹出的小滑块(视为质点)总能无碰撞的从A点进入轨道。已知滑块 质量为m=20 g,圆轨道半径R=0.2 m,轨道AB长xAB=1 m,BC长xBC= 0.4 m,AB、BC段动摩擦因数μ=0.5,其余各段轨道均光滑,sin 37°= 0.6,cos 37°=0.8,g取10 m/s2。
(1)由平抛规律 vAsin 37°=gt x1=vAcos 37°·t y1=12gt2 解得 x1=1.2 m ,y1=0.45 m 可见坐标为(1.2 m,0.45 m)。
考点一 考点二 限时规范训练
9
考点一 考点二 限时规范训练
(2)滑块在 A 点时 vA=cosv307°=5 m/s 从 A 到 C,由动能定理得 (mgsin 37°-μmgcos 37°)xAB-μmgxBC=12mvC2-12mvA2 在 C 点 FNC-mg=mvRC2 联立解得 FNC=2.7 N 由牛顿第三定律可知,压力大小为 2.7 N。

高考物理动能与动能定理题20套(带答案)


【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛
顿定律、动能定理及几何关系求解。
2.如图所示,竖直平面内有一固定的光滑轨道 ABCD,其中 AB 是足够长的水平轨道,B 端 与半径为 R 的光滑半圆轨道 BCD 平滑相切连接,半圆的直径 BD 竖直,C 点与圆心 O 等 高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速 运动并与 Q 发生对心碰撞,碰撞后瞬间小球 Q 对半圆轨道 B 点的压力大小为自身重力的 7 倍,碰撞后小球 P 恰好到达 C 点.重力加速度为 g.
5.如图所示,一长度 LAB=4.98m,倾角 θ=30°的光滑斜面 AB 和一固定粗糙水平台 BC 平 滑连接,水平台长度 LBC=0.4m,离地面高度 H=1.4m,在 C 处有一挡板,小物块与挡板 碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶 端 A 处静止释放质量为 m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与 BC 间的动摩擦因素 μ=0.1,g 取 10m/s2。问:
m( g h R R cos37 Lsin)对滑块从 P 到第二次经过 B 点的运动过程应用动能定理可得
1 2
mvB 2
mg
h
R
2mgL
cos 37
0.54mg
mgR
所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出 A 点。
mv2- mv02=2
Lbcn
n=25 次 考点:动能定理、平抛运动 【名师点睛】解决本题的关键一是要会根据平抛运动的规律求出落到 D 时平抛运动的初速 度;再一个容易出现错误的是在 BC 段运动的路程与经过 B 点次数的关系,需要认真确 定。根据功能关系求出在 BC 段运动的路程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理专题_动能定理第3课时动能及动能定理基础知识1、动能的概念(1)物体由于运动而具有的能叫动能,动能的大小E k =21mv 2,动能是标量,与速度的方向无关. (2)动能是状态量,也是相对量,应为公式中的v 为瞬时速度,且与参照系的选择有关.2、动能定理(1)动能定理的内容及表达式合外力对物体所做的功等于物体动能的变化. 即12K K K E E E W -=?=(2)物理意义动能定理给出了力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的多少由做功的多来量度.3、求功的三种方法(1)根据功的公式W = Fscosα(只能求恒力的功). (2)根据功率求功W =Pt (P 应是恒定功率或平均功率).(3)根据动能定理求功:21222121mv mv W -= (W 为合外力总功).重点难点例析一、动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.拓展从离地面H 高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k (k <1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求:(1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少?(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?二、动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功.(3)选择初、末状态及参照系.(4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A 点从静止起下滑到C点刚好停止.求物体在轨道AB段所受的阻力对物体做的功.●拓展电动机通过一条绳子吊起质量为8kg的物体.绳的拉力不能超过120N,电动机的功率不能超过1 200W,要将此物体由静止起,用最快的方式将物体吊高90m(已知物体在被吊高90m以前已开始以最大速度匀速上升),所需时间为多少?(g取10 m/s2)三、多物体多过程动能定理的应用技巧如果一个系统有两个或两个以上的物体,我们称为多物体系统.一个物体同时参与两个或两个以上的运动过程,我们称为多过程问题.对于多物体多过程问题,我们可以有动能定理解决.解题时要注意:多过程能整体考虑最好对全过程列动能定理方程,不能整体考虑,则要分开对每个过程列方程.多个物体能看作一个整体最好对整体列动能定理方程,不能看作整体,则要分开对每个物体列动能定理方程.☆易错门诊【例3】质量为M的木块放在水平台面上,台面比水平地面高出h=0.20m,木块离台的右端L=1.7m.质量为m=0.10M的子弹以v0=180m/s的速度水平射向木块,并以v=90m/s的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s=1.6m,求木块与台面间的动摩擦因数为μ.●拓展总质量为M的列车,沿平直轨道匀速前进.末节车厢质量为m,在行驶中途脱钩,司机发现后关闭发动机时,机车已经驶了L,设运动阻力与质量成正比,机车发动机关闭前牵引力是恒定的,则两部分停止运动时,它们之间的距离是多少?图5-3-2图5-3-6图5-3-7课堂自主训练1.下列说法正确的是()A 做直线运动的物体动能不变,做曲线运动的物体动能变化B 物体的速度变化越大,物体的动能变化也越大C 物体的速度变化越快,物体的动能变化也越快D 物体的速率变化越大,物体的动能变化也越大2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)课后创新演练1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )A .0B .8JC .16JD .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )A .1:3B .3:1C .1:9D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )A .4LB .L )12(C .2LD .2L4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2B .f s =21mv 2C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 25.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的边缘开始向右行至绳和水平方向成30°角处,在此过程中人所做的功为( D )A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/86.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C )A.v 2>v 2'B.v 2<="" bdsfid="193" p="">C.v 2=v 2’D .沿水平面到B 点时间与沿斜面到达B 点时间相等.7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩图5-3-5图5-3-4 图5-3-8擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα 得αμαcos 21sin mgS 200mg mv L +=8.如图5-3-10所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处.已知工件与传送带间的动摩擦因数23=μ,g 取10m/s 2.(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?【解析】 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 得:)30sin 30cos 23(10)sin cos (sin 00-?=-=-=θθμθg g mFa =2.5m/s 2设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得5.2222220?==a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。

(2) 在工件从传送带底端运动至h =2m 高处的过程中,设摩擦力对工件做功W f ,由动能定理2021mv mgh W f =- 可得:2021mv mgh W f +==220J 【点拨】本题第(2)问也可直接用功的计算式来求:设工件在前0.8m 内滑动摩擦力做功为W f 1,此后静摩擦力做功为W f 2,则有W f 1=μmgco s θ ·x=8.030cos 1010230J =60J ,W f 2=mg sin θ (s -x )=)8.04(30sin 10100-J=160J.所以,摩擦力对工件做的功一共是W f = W f 1+ W f 2=60J+160J=220J.当然,采用动能定理求解要更为简捷些.图5-3-10第4课时势能机械能守恒定律基础知识回顾1、重力势能(1)定义:由物体与地球之间的相对位置所决定的能叫重力势能.(2)公式:E P=mgh(3)说明:①重力势能是标量.②重力势能是相对的,是相对零势面而言的,只有选定零势面以后,才能具体确定重力势能的量值,故E P=mgh中的h是物体相对零势面的距离.一般我们取地面为零势面.③重力势能可正,可负,可为零.若物体在零势面上方,重力势能为正;物体在零势面下方,重力势能为负;物体处在零势面上,重力势能为零.④重力势能属于物体和地球共有.通常所说“物体的重力势能”实际上是一种不严谨的习惯说法.⑤重力势能是相对的,但重力势能的变化却是绝对的,即与零势能面的选择无关.2、重力做功(1)公式:W G=mgh h为初、末位置间的高度差.(2)特点:重力做功与路径无关,只与初、末位置有关(即由初末位置间的高度差决定).3、重力做功与重力势能变化间的关系重力做正功,重力势能减少;重力做负功,重力势能增加。

相关文档
最新文档