初一至初三数学知识点汇总大全

合集下载

数学7-9年级知识点

数学7-9年级知识点

数学7-9年级知识点七年级知识点。

一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如: - 3是整数,属于有理数;0.5是有限小数,也是有理数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应。

例如,在数轴上表示2的点在原点右侧2个单位长度处。

3. 相反数。

- 只有符号不同的两个数叫做互为相反数。

0的相反数是0。

- 如3和 - 3互为相反数,它们到原点的距离相等。

4. 绝对值。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

- 例如, - 5 = 5,3 = 3。

二、整式的加减。

1. 整式。

- 单项式和多项式统称为整式。

- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

例如,3x, - 2,a。

- 多项式:几个单项式的和叫做多项式。

例如,x + 2y是多项式。

2. 同类项。

- 所含字母相同,并且相同字母的指数也相同的项叫做同类项。

- 例如,3x²y与 - 5x²y是同类项。

3. 整式的加减。

- 实质就是合并同类项。

合并同类项时,把同类项的系数相加,字母和字母的指数不变。

- 例如,2x+3x=(2 + 3)x = 5x。

三、一元一次方程。

1. 方程的概念。

- 含有未知数的等式叫做方程。

- 例如,2x+3 = 7是方程。

2. 一元一次方程。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。

- 一般形式是ax + b=0(a≠0),如3x - 5 = 0。

3. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

- 例如,x = 2是方程2x - 4 = 0的解。

4. 解方程。

- 移项:把方程中的某一项改变符号后,从方程的一边移到另一边。

- 例如,在方程2x+3 = 5x - 1中,把5x移到左边变为- 5x,3移到右边变为-3,得到2x - 5x=-1 - 3。

七年级到九年级知识点

七年级到九年级知识点

七年级到九年级知识点第一部分:数学知识点1. 整数:包括正整数、负整数、零以及正数与负数的加减法和乘除法运算。

2. 分数:掌握分数的基本概念,包括分子、分母、真分数和假分数的区分,以及分数的化简、比较大小和四则运算。

3. 小数:了解小数的意义和表示方法,包括小数的读法、写法以及小数与分数的相互转换。

4. 常用数学运算:掌握加减乘除、混合运算和括号运算等基本运算法则。

5. 代数表达式与方程:学习代数表达式的基本概念和运算法则,包括代数式的合并同类项和因式分解,以及简单的一元一次方程的解法。

6. 几何图形:认识各类基本几何图形的性质和特点,包括直线、线段、射线、角、三角形、四边形、圆等。

第二部分:英语知识点1. 词汇积累:扩大词汇量,掌握常见单词的拼写、读音和词义。

2. 语法结构:学习基础的语法结构,包括时态、语态、句式、名词、动词、形容词、副词、介词和连词等。

3. 阅读理解:提高阅读理解能力,理解文章中的关键信息,抓住主题和细节,进行推理和推断。

4. 写作技巧:了解常见写作类型,如叙事文、说明文和议论文,并学习合理组织材料、选用适当的语言和表达观点的能力。

5. 听力与口语:通过听音、模仿和口语练习,培养听力理解和口语表达的能力。

第三部分:科学知识点1. 物质与能量:认识物质的基本性质和状态变化规律,包括固体、液体、气体和溶液等,以及能量的传递和转化。

2. 生物与生态:了解生物的特征和分类,掌握生物的生长发育过程,了解生物在生态系统中的相互关系。

3. 地球与宇宙:认识地球的结构和地球的运动,包括地壳构造、板块运动和地球的自转和公转等,以及对太阳系、星球和宇宙的基本认识。

4. 科学实验:学习科学实验的基本原理和方法,进行简单的科学实验,培养观察、实验和总结的能力。

第四部分:历史知识点1. 中国古代史:掌握中国古代历史的大致时间线和重要事件,了解中国古代社会的政治、经济和文化等方面的发展。

2. 世界古代史:了解世界各个古代文明的起源和发展,包括埃及、希腊、罗马等文明的特点和影响。

初一到初三数学知识点

初一到初三数学知识点

初一到初三数学知识点初一到初三数学知识点总结:1. 有理数的运算:包括加法、减法、乘法、除法以及它们的混合运算。

掌握有理数的运算规则,如正负数的加减法,以及乘除法的符号变化。

2. 代数初步:学习代数式的基本运算,包括合并同类项、去括号、分配律等。

理解变量和常数的概念,以及如何表示简单的代数表达式。

3. 一元一次方程:学习解一元一次方程的方法,如移项、合并同类项、系数化为1等。

理解方程的解和解方程的概念。

4. 二元一次方程组:掌握二元一次方程组的解法,如代入法和加减消元法。

理解方程组的解和解方程组的概念。

5. 不等式:学习不等式的基本概念,包括不等号的含义、不等式的解集和解不等式的方法。

6. 函数的初步:了解函数的概念,包括自变量、因变量、函数的表达式和函数图像。

学习简单的线性函数和它们的图像。

7. 几何初步:学习点、线、面的基本性质,以及平面几何的基本概念,如角度、线段、平行线、垂线等。

8. 三角形:掌握三角形的分类,如等边、等腰、直角三角形等。

学习三角形的内角和定理、外角定理以及三角形的面积计算。

9. 四边形:了解四边形的基本性质,包括平行四边形、矩形、菱形、正方形等。

学习四边形的性质和面积计算。

10. 圆:学习圆的基本性质,包括圆心、半径、直径、圆周角、弦、弧等。

掌握圆的面积和周长的计算方法。

11. 立体几何:了解立体图形的基本性质,如长方体、正方体、圆柱、圆锥、球等。

学习立体图形的表面积和体积的计算。

12. 概率初步:学习概率的基本概念,包括随机事件、概率的计算方法和简单的概率问题。

13. 统计初步:了解数据的收集、整理和描述方法,包括数据的分类、图表的绘制和基本的统计量计算。

14. 数列:学习数列的基本概念,包括等差数列和等比数列的定义、通项公式和求和公式。

15. 代数方程:学习一元二次方程的解法,如配方法、公式法、因式分解法等。

了解高次方程和方程组的解法。

16. 函数和图象:进一步学习函数的性质,包括函数的单调性、奇偶性、极值和最值。

初中数学7-9年级重点知识点汇总

初中数学7-9年级重点知识点汇总

初中重点知识点0 1 数与代数A、数与式:1.有理数■有理数:①整数→正整数/0/负整数②分数→正分数/负分数■数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

■绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

■有理数的运算:●加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

●减法:减去一个数,等于加上这个数的相反数。

●乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

●除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

●乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

●混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2.实数■无理数:无限不循环小数叫无理数■平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

■立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

初一 初三数学知识点总结

初一 初三数学知识点总结

初一初三数学知识点总结1. 整数- 整数的概念:正整数、负整数、零- 整数的加法、减法、乘法、除法规则- 整数的绝对值和相反数- 整数的大小比较- 整数的混合运算2. 分数- 分数的概念- 分数的加法、减法、乘法、除法- 分数的约分和通分- 分数的化简- 分数的大小比较- 分数与整数的关系3. 小数- 小数的概念- 小数与分数的转化- 小数的加法、减法、乘法、除法- 小数的大小比较- 小数的整数位、小数位、循环小数和有限小数4. 代数- 代数的概念- 代数表达式的运算- 一元一次方程- 一元一次方程的解法- 一元一次方程的应用- 一元二次方程的概念和解法- 代数式及其化简5. 几何- 角的概念- 直线与线段- 三角形的分类及性质- 四边形的分类及性质- 圆的性质- 相似形的性质- 几何证明6. 图形- 图形的基本性质- 平行线与垂直线- 利用平行线和三角形的运用解题- 等腰三角形、等边三角形和直角三角形的性质 - 多边形的性质- 圆的面积和周长7. 函数- 函数的概念- 基本初等函数- 函数的图像与性质- 函数的应用8. 统计与概率- 数据的收集和整理- 数据的图表示法- 平均数、中位数、众数的概念和计算- 概率的概念及计算- 概率实际问题的应用随着学习的深入,学生还会涉及到二次根式、多项式、立体几何、三角函数等更为复杂的数学知识。

总结:初一到初三的数学学习内容虽然广泛且复杂,但基本的概念和运算能力对日常生活和进一步学习都有着重要的影响。

只有通过扎实的数学基础,学生才能更好地应对未来更加复杂的数学知识。

因此,学生在学习这些数学知识点时要认真对待,多做习题巩固,及时解决学习中的疑惑,积极向老师请教,才能更好地掌握这些知识点。

数学七到九年级全知识点

数学七到九年级全知识点

数学七到九年级全知识点【数学七到九年级全知识点】一、数与式1. 自然数、整数、有理数、实数、复数的概念及其运算性质。

2. 分数与小数的相互转化,百分数。

3. 幂与指数的概念与运算,整数幂的公式与性质。

二、代数式与方程式1. 代数式的概念与性质,字母与数字的混合运算。

2. 方程式的概念与解法,一元一次方程、一元二次方程的解法。

3. 不等式的概念与解法,一元一次不等式、一元二次不等式的解法。

三、函数1. 函数的概念与性质,函数的表示法与运算。

2. 一次函数、二次函数、指数函数、对数函数的图像、性质与应用。

3. 常用函数的定义域、值域、奇偶性及其图像特征。

四、图形与几何1. 点、线、面、角的概念与性质。

2. 二维几何图形的基本性质,平行线与垂直线的判定与性质。

3. 三角形、四边形、圆形的性质,计算周长与面积的方法。

4. 三维几何图形的基本性质,体积与表面积的计算方法。

五、统计与概率1. 统计的基本概念,调查与抽样的方法。

2. 数据的整理与分析,频数表、条形图、折线图、饼图的绘制与解读。

3. 概率的基本概念与计算方法,事件与样本空间的关系。

六、数列与数学推理1. 等差数列与等差数列的求和公式。

2. 等比数列与等比数列的求和公式。

3. 数学归纳法与简单的数学推理题目。

七、解决实际问题1. 将数学知识应用于实际问题的解决过程。

2. 实际问题中的应用题解答与解释。

总结:本文涵盖了数学七到九年级的全知识点,内容主要涉及数与式、代数式与方程式、函数、图形与几何、统计与概率、数列与数学推理以及解决实际问题等方面。

通过对每个知识点进行简洁明了的介绍,旨在帮助读者全面掌握相关数学概念、运算方法和解题技巧。

期望本文能对学生的数学学习起到积极的指导作用。

初一到初三数学所有知识点

初一到初三数学所有知识点初一数学:1.数的概念:自然数、整数、有理数、实数2.数的运算:加减法、乘除法,混合运算,分数的加减乘除3.算术基本定理:素数与合数,质因数分解,最大公因数与最小公倍数4.约分与通分:分数的约分与通分,化简真分数与带分数5.小数的概念与运算:小数的加减乘除,小数、分数、百分数的相互转化6.数轴与坐标系:数轴的表示法,坐标系的概念,平面直角坐标系的表示法7.基本图形的认识:点、线、面的认识,正方形、长方形、圆、三角形的概念8.数学语言的运用:数学语言与符号的运用,数学问题的表述和解决初二数学:1.整式的知识:整式的定义,同类项的概念,整式的加减乘除,公式的应用2.分式的知识:分式的定义,基本性质,分式的约分、通分、加减、乘除法3.二次根式的知识:二次根式的化简、加减、乘除法,含有二次根式的方程4.平面图形的认识:多边形的概念、性质及全等条件,相似图形的概念及应用5.圆的知识:圆的概念、性质及判定方法,圆上的重要点、弧和角6.三角形和四边形的知识:三角形的角度和边长关系、中线、中位线、高,四边形的性质、面积公式7.比例和增减比:比例的定义、性质及应用,增减比的概念及应用8.百分数和利率:百分数的概念、性质及应用,利率的概念、计算方法及应用初三数学:1.函数与方程:函数的概念、性质及图像,方程及方程组的解法和应用2.数列与指数函数:等差数列、等比数列的概念、性质及求和公式,指数函数的概念、性质及图像3.立体图形的认识:正方体、长方体、正棱柱、正棱锥的概念及性质,体积及表面积的计算公式4.三角函数和解三角形:三角函数的概念、性质及图像,解三角形(利用正弦、余弦、正切函数及海伦公式)5.平面向量的概念及运算:向量的概念和运算、向量的加减、数量积及其应用6.概率与统计:随机事件的概念、基本概率公式,频率、概率密度、方差和标准差的概念及计算7.解析几何:点、直线、平面的坐标表示,直线的斜率及方程,平面上的圆的方程8.数学思维的拓展:数学论证、数学建模、数学思维方法与技巧的培养。

数学七年级至九年级知识点

数学七年级至九年级知识点
一、整数与有理数
1. 整数及加减运算
2. 乘法与除法运算
3. 整数的应用问题
4. 正数、负数与零
5. 有理数的概念与性质
6. 有理数的比较与大小
7. 有理数的加减运算
8. 有理数的乘法与除法
9. 有理数的应用问题
二、代数与方程式
1. 代数式与代数计算
2. 平方与平方根
3. 简单方程式的解法
4. 一次方程与一次方程组
5. 二元一次方程组
6. 代数式与图形
7. 不等式与不等式组
三、几何
1. 平面与平面图形
2. 角的概念与性质
3. 直线与直线间的关系
4. 三角形与三角形的特性
5. 四边形与四边形的特性
6. 圆与圆的性质
7. 空间与空间图形
8. 平面与空间图形的投影
9. 直线与平面的位置关系
四、测量与数据
1. 长度、面积与体积的测量
2. 单位换算与应用
3. 数据的收集与整理
4. 数据的表示与分析
5. 概率的基本概念与计算
以上是数学七年级至九年级的知识点概述,涵盖了整数与有理数、代数与方程式、几何以及测量与数据等方面的内容。

通过学习这些知识点,学生们可以逐步掌握数学的基本概念、运算技巧以及解题方法,为进一步深入学习和应用数学打下坚实基础。

希望同学们在学习数学的过程中能够勤于思考、勇于探索,善于运用所学知识解决实际问题,培养对数学的兴趣与自信,不断提高自己的数学素养。

初一到初三数学必记重要知识点汇总

初一到初三数学必记重要知识点汇总
一、初一:
1、数与式:绝对值、有理数、分数和小数、根号、百分数和分数的转换、简单的分
式和带分数的因式、无理数的表示与应用;
2、一元一次方程:一元一次方程的解法:利用公式法和简图法解一元一次方程及应用;
3、比:比的定义、可比性和不可比性、等比数列、比的简化、简化等比数的应用;
4、分数的加减法:分数的意义、分数加减法的等幂性、分数大小的比较;
5、角:角的单位、角的规范弧和极弧、正、任意角、三角形内角和外角和外心角、
三角函数。

二、初二:
1、线性一次函数:定义及特征、函数关系、一元一次函数图象和抛物线图象、函数
的性质;
3、几何:直线的性质及其几何性质、圆的定义及其圆的性质、图形面积与周长;
4、三角函数:正弦、余弦函数、三角函数的综合应用;
5、不等式:一元不等式的性质、一元不等式的解法、一元不等式的解集及应用。

三、初三:
1、三角形:三角形的性质与三角函数、相似三角形的性质与结论、余弦定理的应用、海伦公式的应用;
2、统计:分类数据的描述性统计量,频率分布表、算术平均数、几何平均数、各种
概率和几何平均数的比较等;
3、概率与组合:定义和特征、概率的计算、条件概率、独立事件、互斥事件、组合
中的顺序;
4、函数:函数的性质、函数的值域、函数图象、曲线在函数图象中的位置;
5、几何图形:圆柱体、立体结构、图形中的折线、体积、表面积、体积体积系数等。

初一到初三知识点总结

初一到初三知识点总结1.有理数:(1)凡能写成形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数。

4.绝对值:(1)正数的绝对值就是其本身,0的绝对值就是0,负数的绝对值就是它的相反数;特别注意:绝对值的意义就是数轴上则表示某数的点返回原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0小,负数永远比0大;(3)正数大于一切负数;(4)两个负数比大小,绝对值小的反而大;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

7.有理数乘法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相乘,挑绝对值很大的符号,用很大的绝对值乘以较小的绝对值;(3)一个数与0相加,仍得这个数。

8.有理数乘法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。

9.有理数加法法则:乘以一个数,等同于加之这个数的相反数;即a—b=a+(—b)。

10.有理数乘法法则:(1)两数相加,同号为也已,异号为负,并把绝对值相加;(2)任何数同零相乘都得零;(3)几个数相加,存有一个因式为零,四维零;各个因式都不为零,内积的符号由负因式的个数同意。

11.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一至初三数学知识点汇总大全七年级上册知识点汇总目录1第一章丰富的图形世界 1 第二章有理数及其运算 2 第三章字母表示数 4 第四章平面图形及位置关系 6 第五章一元一次方程8 第六章生活中的数据8七年级下册知识点总结第一章整式的运算9 第二章平行线与相交线13 第三章生活中的数据14 第四章概率15 第五章三角形15 第六章变量之间的关系18 第七章生活中的轴对称20八年级上册知识点汇总22第一章勾股定理22第二章实数22 第三章图形的平移与旋转23第四章四平边形性质探索23 第五章位置的确定25 第六章一次函数26 第七章二元一次方程组27 第八章数据的代表27八年级下册知识点汇总21第一章一元一次不等式和一元一次不等式组29 第二章分解因式31 第三章分式34 第四章相似图形36 第五章数据的收集与处理38 第六章证明(一)38九年级上册知识点汇总40第一章证明(二)40 第二章一元二次方程41 第三章证明(三)42 第四章视图与投影44 第五章反比例函数45 第六章频率与概率46九年级下册知识点汇总48第一章直角三角形边的关系48 第二章二次函数51第三章圆54第四章统计与概率63⎨ ⎨ 七年级上册知识点汇总(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)第一章 丰富的图形世界柱体⎧圆柱: 底面是圆面、 侧面是曲面¤1. ⎩棱体: 底面是多边形、 侧面是正方形或长方形锥体⎧圆锥: 底面是圆面、 侧面是曲面¤2. ⎩棱锥: 底面是多边形、 侧面都是三角形¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。

※6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形…… ¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为 n(n≥3,且 n 为整数),从一个顶点出发的对角线有(n-n (n - 3)3)条;可以把 n 边形成(n-2)个三角形;这个 n 边形共有 条对角线。

2 ◎13. 圆上两点之间的部分叫做弧,弧是一条曲线。

⎨ ⎩ ⎩ ⎩ ◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算⎧正整数(如:1, 整数⎪零(0)⎪负整数(如:1, 2, 3)2, 3 )⎧正分数(如: 1 , 1 , 5.3, 3.8 )※ 分数⎪ 21 3 1⎨负分数(如: - ,⎩ 2 - , - 2.3, 3 - 4.8 )※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

※任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0 的相反数是 0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

¤数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

※绝对值的定义:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。

数 a 的绝对值记作|a|。

※正数的绝对值是它本身;负数的绝对值是它的数;0 的绝对值是 0。

⎧ a (a > 0) ⎪ ⎧ a (a ≥ 0)越来越大| a | ⎨ 0(a = 0) ⎪- a (a < 0) 或 | a | ⎨- a (a < 0) -3 -2-1 0 1 2 3※绝对值的性质:除 0 外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0 外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。

※绝对值的性质:①对任何有理数 a,都有|a|≥0.②若|a|=0,则|a|=0,反之亦然.③若|a|=b,则a=±b.④对任何有理数 a,都有|a|=|-a|※有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为 0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同 0 相加,仍得这个数。

※加法的交换律、结合律在有理数运算中同样适用。

¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。

※有理数减法法则:减去一个数,等于加上这个数的相反数。

¤有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。

¤有理数的加减法混合运算的步骤:①写成省略加号的代数和。

在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。

)※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与 0 相乘,积仍为 0。

※如果两个数互为倒数,则它们的乘积为 1。

(如:-2 与 1 、 3 与5 …等)2 5 3※乘法的交换律、结合律、分配律在有理数运算中同样适用。

¤有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。

¤乘积为 1 的两个有理数互为倒数。

注意:①零没有倒数。

②求分数的倒数,就是把分数的分子分母颠倒位置。

一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②0 除以任何非 0 的数都得 0。

0 不可作为除数,否则无意义。

※有理数的乘方 n 个aa ⨯ a ⨯ a ⨯ ⨯ a =※注意:①一个数可以看作是本身的一次方,如 5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;④1 的任何次幂都得 1,0 的任何次幂都得 0; ⑤-1 的偶次幂得 1;-1 的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

※有理数混合运算法则:①先算乘方,再算乘除,最后算加减②如果有括号,先算括号里 面的.第三章 字母表示数※代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。

等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:①代数式中出现乘号,通常省略不写,如 vt;②数字与字母相乘时,数字应写在字母前面,如 4a;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如2 1⨯a 应写3作7a ;3④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作4a -4;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如(a 2 -b2 ) 平方米※代数式的系数:代数式中的数字中的数字因数叫做代数式的系数。

如 3x,4y 的系数分别为 3,4。

注意:①单个字母的系数是 1,如 a 的系数是 1;②只含字母因数的代数式的系数是 1 或-1,如-ab 的系数是-1。

a3b 的系数是 1※代数式的项:代数式6x2 - 2x - 7 表示 6x2、-2x、-7 的和,6x2、-2x、-7 是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。

※同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。

※合差同类项:把代数式中的同类项合并成一项,叫做合并同类项。

①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

注意:①如果两个同类项的系数互为相反数,合并同类项后结果为 0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式。

※根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。

※根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1 或-1 去乘括号里的每一项以达到去括号的目的。

※注意:①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;③改变符号时,各项都变号;不改变符号时,各项都不变号。

第四章平面图形及位置关系一. 线段、射线、直线b1β ※1. 正确理解直线、射线、线段的概念以及它们的区别: 名称 图形 表示方法 端点 长度直线 lA B 直线 AB (或 BA ) 直线l无端点无法度量射线O M 射线 OM 1 个 无法度量 线段lA B 线段 AB (或 BA ) 线段 l2 个可度量长度※2. 直线公理:经过两点有且只有一条直线.二.比较线段的长短※1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. ※2. 比较线段长短的两种方法:①圆规截取比较法;②刻度尺度量比较法.※3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分;用圆规可以画出线段的和、差、倍.三.角的度量与表示※1. 角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.A ※2. 角的表示法:角的符号为“∠” O ①用三个字母表示,如图 1 所示∠AOB 图 1 图 2 ②用一个字母表示,如图 2 所示∠b③用一个数字表示,如图 3 所示∠1④用希腊字母表示,如图 4 所示∠β 图 4※经过两点有且只有一条直线。

相关文档
最新文档