过氧化氢法制备环氧丙烷

过氧化氢法制备环氧丙烷
过氧化氢法制备环氧丙烷

过氧化氢直接氧化法从理论上讲,的氧化还原电位高于环氧丙

烷,可以用它直接氧化丙烯制环氧丙烷,而且HQ中活性氧的质量分数远远高于其他过氧化物,达47 % ,其还原产物只有水,清洁无污染,是理想的氧化剂。因此,很早就有人想用HQ氧化丙烯制取环氧丙烷,但由于催化剂的原因均未成功。当TS-1催化剂[6 ]被开发出来后,这一设想终于成为现实。HQ 直接氧化法的化学反应式如下:

H202 + HC3CH= CH=CHtCH0CH H20 (环氧丙烷)(10 )

在压力0 .4 MPa、温度接近室温的条件下,以甲醇水溶液为溶剂,丙烯与H202直接反应制得环氧丙烷,H202的转化率达98 %以上,丙烯转化为环氧丙烷的选择性在97 %以上。目前,该工艺还处于开发阶段,主要的研究集中于各种因素对催化剂性能及成本的影响方面。该方法存在H202运输问题,根据化学计量比,1t纯H202可制得17t环氧丙烷,对于1个万吨级的环氧丙烷生产厂,其运输危险和困难可想而知。意大利的Clerici 等[6]提出将丙烯环氧化过程与蕙醍法制H202过程相结合,用甲醇水溶液为萃取剂代替原有的水萃取剂,将孔02直接萃取出来后进入环氧化反应器进行反应,工艺流程如图3所示。

03丙烯环氧化与葡醍恚制观氧水集成工艺流程

I.反应器2闪蒸塔;3.精温塔4分水塔或氧化塔;。.氧化塔;7,萃取塔唾

以甲醇水溶液为萃取剂,先在萃取塔中将H02从;<醍工作液中萃取出来,与甲醇一起进入反应器中与丙烯进行环氧化反应,然后在闪蒸塔、精馆塔中将未反应的丙烯及产物环氧丙烷分离,丙烯循环使用,余下的甲醇水溶液,一部分与萃取液混合作为反应溶剂循环,另一部分经

分水塔脱除部分反应生成的水后,作为新鲜萃取剂再循环使用,BSH 法生产H202工艺中氢化塔和氧化塔保持不变。这种将1-202生产与环氧丙烷生产相结合的方法无任何废物排放,是环氧丙烷清洁生产的一个重大突破,具有很好的发展前景。

在环氧丙烷生产与H02生产两者结合的过程中,萃取是关键的一步,其平衡组成随萃取条件变化的规律以及萃取液中蕙醍工作液杂质对环氧化过程的影响,萃余液中环氧化过程杂质对蕙醍法制-202的影响等还不清楚,有待进一步研究。

蒽醌法全酸性工作体系制备双氧水生产工艺调研报告

蒽醌法全酸性工作体系制备双氧水生产工艺调 研报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

蒽醌法全酸性工作体系制备双氧水生产工艺调研报告 一、传统蒽醌法钯催化固定床氢化工艺 目前国内外双氧水生产方法绝大多数采用技术成熟的蒽醌法钯催化固定床氢化工艺。一般都是以该法以重芳烃和磷酸三辛酯为溶剂,以2-乙蒽醌为溶质,配成工作液,工作液与氢气在钯剂的作用下催化氢化,得到氢蒽醌溶液即氢化液,氢化液经空气氧化,得到H2O2和蒽醌的混合液即氧化液,氧化液经萃取分离出H2O2,再经净化处理为合格的H2O2(%)。分离出的蒽醌溶液经后(多为碱洗)处理除去其中夹带的H2O2,作为工作液返回氢化工序。稀品H2O2还可经精馏浓缩成浓品H2O2。整个工艺过程中,蒽醌、芳烃和磷酸三辛酯组成的工作液循环使用,仅有少量工艺损耗,主要物耗为该厂合成氨系统的副产品氢气,电耗全部为动力电耗,因而具,因而具有原料简便、能耗较低的优点。 二、新型蒽醌钯催化全酸性工作体系系生产双氧水法 这次调研的是蒽醌法钯催化剂固定床氢化工艺技术是由中国石化抚顺石油化工研究院、湖南兴鹏化工科技有限公司和上海宸鹏化工科技有限公司共同开发的。本固定床蒽醌法生产H2O2成套新工艺技术有以下四个创新点: 1.开发成功了全新酸性工作液循环生产体系,消除了原工艺用碱处理存在的安全隐患,为装置大型化提供安全保障。 2.开发新型复配工作液体系,即将H2O2生产中的加氢载体-蒽醌

溶解于重芳烃、磷酸三辛酯(TOP)和2-甲基环己基醋酸酯(2-MCHA)中组成的工作液,改变并优化工作液组成,提高工作液中有效蒽醌的含量,提高氢效和装置的产能,为装置大型化提供产能保证; 3.创新点之四是开发成功了新型高效关键塔设备及构件技术包括先进的氢化塔结构,可使加氢反应在温和适宜的条件下进行,减少副反应的发生,特殊的氧化反应与分离一体化氧化塔结构,大大提高了工作液和氧化尾气的分离效率、氧化塔的操作弹性和安全性,高效气液传质填料,提高氧化收率至95%以上,高效复合型萃取塔结构设计,提高筛板效率30%以上。 这种本双氧水生产工艺为全酸性工作液工艺,与传统工艺不同,不再将分离出的萃余液(主要成分蒽醌、芳烃和磷酸三辛酯含有少量游离水和双氧水)经过碱洗除去游离的双氧水。 三、新型蒽醌法与传统蒽醌法生产双氧水的对比 该成套新工艺技术,与国内现有装置的工艺相比:在同样工作液流量下,装置产能可提高30%;一次产品浓度比原来高7%;催化剂用量是原工艺的1/3,减少催化剂投资1/2;工作液反应载体溶解度增加,同等氢化度下,氢效可达10克/升,单位体积工作液生产效率提高35%;同规模主生产装置设备管路投资减少20%,投资可降低20%;氧化反应时间缩短、萃取效率提高,可产>40%浓度产品;产品能耗降低15%。 四、完成案例

氯醇法制环氧丙烷可行性研究报告

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 氯醇法制环氧丙烷可行性研究报告 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

第一章项目申报单位概况 (3) 概述 (3) 第二章市场分析 (3) 第一节国际市场的产能和消费结构 (4) 第二节我国环氧丙烷市场情况 (6) 第三节市场分析结论 (8) 第四章产品方案及拟定生产规模 (9) 第一节产品方案 (9) 第二节拟建生产规模 (9) 第五章工艺技术方案 (9) 第一节工艺方案 (9) 第二节设备选择及主要设备清单 (11) 第六章主要原辅材料 (12) 第一节主要原辅材料 (12) 第二节能耗 (12) 第七章工程技术方案 (13) 第一节厂址位置 (13) 第三节土建工程 (14) 第四节公用工程 (17) 第九章环境保护 (20) 第一节环境保护 (20) 第二节污染源 (21) 第三节环保措施 (21) 第十章安全卫生、劳动保护和消防 (23) 第一节安全生产 (23) 第十一章企业组织、劳动定员和人员培训 (26) 第一节企业组织 (26) 第二节劳动定员 (26) 第三节人员培训 (27) 第十二章经济影响分析 (27) 第一节投资估算 (27) 第二节经济分析 (28)

第十三章社会影响分析 (34) 第一节社会影响效果分析 (34) 第二节社会适应性分析 (34) 第三节社会风险及对策分析 (35)

过氧化氢溶液制取氧气的实验探究

课本中对这部分内容是这样安排的:在试管中加入 5 mL 10%的过氧化氢溶液,把带火星的木条伸入试管,木条不复燃,但说明了“过氧化氢溶液在常温下能生成氧气”结论。显然这样的结论会使学生感到矛盾。将5 mL 10%的过氧化氢溶液放置一天(用橡皮塞塞紧),再把带火星的木条伸入试管,木条就会复燃,建立在实验基础上,学生对“过氧化氢溶液在常温下能生成氧气”就会变得清晰。 (二)、催化剂概念的理解 因过滤操作安排在第三单元课题3水的净化中,在本课题的学习中较难安排将催化剂二

液制取氧气的实验条件为常温,反应物的状态为固体和液体,所选装置如图1所示。 图1 缺点: 1. 在实验操作中,很难做到使反应随时发生随时停止(即很难做到使过氧化氢溶液 粉末分离而使反应停止)。 与MnO 2 2. 无法控制液体药品的用量,浪费药品。 因此做了适当的改进: 改进一 1. 改进所需器材 铁架台(带铁夹)、大试管、分液漏斗、带导管的双孔橡皮塞。 2. 改进后的发生装置如下图2所示: 3. 操作方法 ①先将少量的二氧化锰粉末放入大使管的底部。 ②然后将过氧化氢溶液放入分液漏斗中,打开活塞,逐滴加入过氧化氢溶液,使 反应停止。 ③不需产生气体时将活塞关闭,使反应停止。 4. 改进后发生装置的优点 ①通过分液漏斗逐滴向试管加入过氧化氢溶液来控制反应的速度,可以得到 平稳的氧气流,同时也便于收集。 ②可以控制所加过氧化氢溶液的用量,节约药品。 ③操作简便。 改进二 1. 1. 改进所需器材 吸滤瓶、分液漏斗、带导管的双孔橡皮塞铜丝(一端系上装有二氧化锰粉末的小砂袋) 2.改进后的发生装置如图3 1. 操作方法 ①按上图将一根铜丝(一端系上装有二氧化锰粉末的小砂袋),伸入到吸滤 瓶底部。 ②将过氧化氢溶液放入分液漏斗中,通过分液漏斗逐滴加入5℅过氧化氢溶 液,使反应发生,产生气体。 ③不需产生气体时将铜丝向上拉起,将小砂袋脱离液面,使反应停止。

过氧化氢(双氧水)生产工艺

过氧化氢(双氧水)工艺 过氧化氢(双氧水)的生产方法1.1蒽醌法蒽醌法生产双氧水是目前世界上该行业最为成熟的生产方法之一,国外大型的生产厂家都采用蒽醌法生产双氧水,在国内目前双氧水的制备也几乎都是蒽醌法。20世纪初,人们发明以2-烷基蒽醌作为氢的载体循环使用生产双氧水的方法,后经多次改进,使该技术日趋成熟。其工艺为2-烷基蒽醌与有机溶剂配制成工作溶液,在压力为0.30MPa、温度55℃~65℃、有催化剂存在的条件下,通入H2进行氢化,再在40℃~44℃下与空气进行逆流氧化,经萃取、再生、精制与浓缩制得到H2O2水溶液成品,目前我国市场上有质量分数分别为27.5%、35.0%和50.0%三种规格的产品。国内20世纪80年代中期以前,过氧化氢的生产主要以镍催化剂搅拌釜氢化蒽醌法工艺为主,随着生产能力的不断扩大,与搅拌釜工艺相比,以钯为催化剂的固定床工艺逐渐显示出其优越性:氢化设备结构简单、装置生产能力大、生产过程中不需经常补加催化剂、安全性能好和操作方便等优点,借助于计算机集散控制技术,可大大提高装置的安全性能,该工艺已成为过氧化氢生产发展的方向;近期新建装置及老厂的工艺改造几乎都采用蒽醌法,多采用钯催化固定床,镍钯混合床。目前在国内还没有出现氢化流化床的文献报道,只有上海阿

托菲纳双氧水公司和福建第一化工厂引进国外技术采用钯催化氢化流化床的专利工艺。双氧水用途及概况1.1.1.1物理性质:双氧水(学名过氧化氢),分子式:H2O2,分子量:34,无色、无味透明无毒,但对皮肤有漂白及烧灼作用。皮肤受其侵蚀可引起皮炎、起泡或针刺般疼痛,重者长期不痊愈。它能强烈刺激眼睛,危害眼粘膜,长期接触,可使毛发变黄。双氧水蒸汽可引起眼睛流泪,刺激眼、鼻、喉的粘膜。双氧水蒸气在空气中的最大浓度不应高于0.03mg/L1.1.2化学性质:双氧水是一种强氧化性物质,但遇到比它更强的氧化剂,比如高锰酸钾、氯气等,则呈还原性质。它的化学性质比较活泼,可以参加分解、分子加成、取代、氧化还原等反应。双氧水具有较弱的二元酸性质,与某些碱反应可能生成盐,由于它的内在结构关系及杂质的存在,呈现出一定的不稳定性。当双氧水接触到光、热、粗糙表面或混入重金属及其盐类、酵母菌、有机物、碱性物质、灰尘等杂质会引起分解。分解成为氧和水,并放出大量热量,剧烈分解时可引起爆炸。相反,磷酸及其盐类、硼酸盐、锡酸盐能使其分解缓慢,故双氧水产品中需加入一定数量的磷酸或其盐类等作为稳定剂。为防止阳光直射和落入污物引起分解,盛装双氧水的容器必须具有排气孔。用双氧水浸渍过的纸张,织物容易引起自燃1.1.3用途:用于各种织物、纸张、木材、草制品的漂白。1.1.4用于有机物合成、做氧

丙烯双氧水法制备环氧丙烷研究

·110·中国无机盐协会过氧化物分会2010年会论文集丙烯双氧水法制备环氧丙烷研究*林民1,李华2,王伟2,朱斌1,何驰剑2,高计皂2,舒兴田1,汪燮卿1(1.中国石化石油化工科学研究院;2.中国石化长岭分公司)摘要:应用合成的催化氧化组元钛硅分子筛,制备丙烯环氧化催化剂,进行合成环氧丙烷(PO)实验室工艺研究,开发了固定床反应工艺,考察了催化剂的稳定性,双氧水转化率大于95%,环氧丙烷选择性大于95%,完成1650h实验室寿命试验研究。关键词:钛硅分子筛;丙烯;双氧水;环氧化;环氧丙烷环氧丙烷(propyleneoxide,简称PO)是一种重要的有机化工原料,是石油化工生产中重要的大宗有机化工产品,是精细化工最重要的中间产品之一。在丙烯衍生物中是仅次于聚丙烯、聚丙烯腈的第三大衍生物。其最大用途是用于生产聚醚多元醇,以进一步制造聚氨酯,也可用于生产用途广泛的丙二醇,环氧丙烷还可以用于生产非离子表面活性剂、油田破乳剂、农药乳化剂以及润湿剂等。除此之外,其在丙二醇醚、羟丙基甲基纤维素(HPMC)、改性淀粉、丙烯酸羟丙酯以及其他方面也有应用。环氧丙烷的衍生物产品有近百种,是精细化工产品的重要原料,广泛用于汽车、建筑、食品、烟草、医药及化妆品等行业。从它的消耗量可以推测一个国家的精细化工水平,每年我国都要进口几十万

吨的环氧丙烷以满足市场需求,年需求增长速度超过lo%,价格也持续上涨,是我国目前和将来均有重大需求的重要产品之一。目前世界各国工业生产环氧丙烷的方法主要有氯醇法和共氧化法,大约48%是采用氯醇法,50%是采用共氧化法。氯醇法转化率低,耗氯量大,污染严重,每生产1吨环氧丙烷需要消耗1.35~1.85t氯气,副产50---150kg的二氯丙烷,并产生40---50t含氯化物的皂化废水和2t以上的废渣,且废水具有温度高、pH值高、氯根含量高、COD含量高和悬浮物含量高的“五高”特点,废水处理极为困难,环境污染严重,而且设备腐蚀严重。国内环氧丙烷的生产目前除中海油与壳牌公司合作以及中国石化与利安德合作采用共氧化生 产外,基本全是采用此法生产。而共氧化法工艺流程长,原料品种多,丙烯纯度要求高,工艺操作压力高,设备材质多采用合金钢,设备造价高,投资大,联产问题突出,每吨环氧丙烷要联产2.2~2.5t苯乙烯或2.3t叔丁醇,原料来源和产品销售相互制约因素大,只有环氧丙烷和联产品市场需求匹配时才能采用该工艺生产,目前世界苯乙烯和叔丁醇均出现产能过剩,西方发达国家已不再建此类共氧化法生产环氧丙烷工业装置。此外,共氧化法产生的污水COD也比较高,处理费用约占总投资的10%,这也增大了生产成本,降低了产品的竞争力。由于现有这2种环氧丙烷生

1蒽醌法生产过氧化氢的原理

蒽醌法生产过氧化氢的 安全事故分析及防范措施 1 蒽醌法生产过氧化氢的原理 本方法制取过氧化氢是以2- 乙基蒽醌( EAQ)为载体, 重芳烃(AR) 及磷酸三辛酯( TOP) 为混合溶剂, 配制成具有一定组成的工作液, 将其与氢气一起通入一装有催化剂的氢化床内, EAQ 于一定压力和温度下与氢进行氢化反应, 生成相应的氢蒽醌(HEAQ) , 所得溶液称氢化液。氢化液再被空气中的氧氧化, 其中的氢蒽醌恢复成原来的蒽醌, 同时生成过氧化氢, 所得溶液称为氧化液。利用过氧化氢在水和工作液中溶解度的不同及工作液与水的密度差,用纯水萃取氧化液中的过氧化氢, 得到过氧化氢水溶液( 俗称双氧水) 。此水溶液经净化处理即可得到过氧化氢产品。经水萃取后的工作液( 称萃余液) , 经过后处理工序K2CO3 溶液干燥脱水分解H2O2 和沉降分离碱, 再经白土床内的活性氧化铝吸附除碱和再生降解物后得到工作液, 然后再循环使用。 2 过氧化氢产品及原料的危险性 2.1 过氧化氢 纯净的过氧化氢, 在任何浓度下都很稳定, 工业生产的过氧化氢的正常分解速度极慢, 每年损失低于1%, 但与重金属及其盐类、灰尘、碱性物质及粗糙的容器表面接触, 或受光、热作用时, 可加速分解,并放出大量的氧气和热量。分解反应速度与温度、pH 值及杂质含量有密切关系, 随着温度、pH 值的提高及杂质含量的增加, 分解反应速度加快。 温度每升高10 ℃, 分解速度约提高 1.3 倍, 分解时进一步促使温度升高和分解速度加快, 对生产安全构成威胁。 过氧化氢稳定性受pH 值的影响很大, 中性溶液最稳定, 当pH 值低( 呈酸性) 时, 对稳定性影响不大, 但当pH 值高(呈碱性)时, 稳定性急剧恶化, 分解速度明显加快。 当和含碱( 如K2CO3、NaOH 等) 成分的物质及重金属接触时, 则迅速分解。虽然通常在过氧化氢产品中, 都加有稳定剂, 但当污染严重时, 对上述的分解也无济于事。 当H2O2 与可燃性液体、蒸气或气体接触时, 如果此时的H2O2 浓度过高, 可导致燃烧, 甚至爆炸。因此, H2O2 贮槽的上部空间存在一定的危险性, 因为H2O2 上部漂浮的芳烃是可燃性液体和气体的混合,一旦H2O2 分解或有明火, 就会引起爆炸。 随着过氧化氢水溶液浓度的提高, 爆炸的危险性也随着增加。在常压下, 气相中过氧化氢爆炸极限质量分数为40%, 与之对应的溶液中的质量分数为74%, 压力降低时, 爆炸极限值提高, 因此负压操作和贮存是比较安全的。 过氧化氢是一种强氧化剂, 可氧化许多有机物和无机物, 容易引起易燃物质如棉花、木屑、羊毛、纸片等燃烧。 2.2 原料 2.2.1 重芳烃 重芳烃来自石油工业铂重整装置, 主要为C9 或C10 馏分, 即三甲苯、四甲苯异构体混合物, 另外还含有少量二甲苯、萘及胶质物。重芳烃为可燃性液体,当周围环境达到燃烧条件( 如有火源、助燃剂等) 时即可燃烧。其蒸气与氧或空气混合后, 可形成爆炸性混合物, 达到爆炸极限后, 在明火、静电等作用下, 可发生爆炸、燃烧。 2.2.2 氢气 氢气是易燃易爆的气体, 当它和空气、氧气等混合时, 易形成爆炸性混合气体, 氢气在空气中的爆炸极限为4%~74%( 体积) ; 在氧气中的爆炸极限为4.7%~94.0%( 按体积计) , 但爆炸极限不是一个固定的数值, 它受诸多因素的影响, 如温度、压力、惰性介质、容器材质及

环氧丙烷氯化法、共氧化法和直接氧化法技术路线解析

环氧丙烷生产工艺 氯醇化法、共氧化法和直接氧化法技术解析 万华化学集团股份有限公司(以下简称万华化学)又一具有自主知识产权的高端技术打破国外公司技术垄断,“乙苯共氧化法高效绿色制备环氧丙烷成套技术”项目通过中国石油和化学工业联合会成果鉴定,继百万吨乙烯项目选择丙烷路线之后,将投资32.5亿元,在山东烟台实施该技术成果转化,建设一套年产30万吨环氧丙烷并联产65万吨苯乙烯的世界级规模工业化装置,该装置预计2021年建成投产。该技术跟其他工艺路线有何不同呢? 乙苯共氧化法高效绿色制备环氧丙烷成套技术”项目通过由中国工程院陈建峰院士、蹇锡高院士以及中国科学院李亚栋院士等行业知名专家组成的鉴定,专家委员会认为,该项目成果整体技术进入国际领先行列。 据悉,环氧丙烷是国家重点鼓励发展的高端石化产品,是支撑聚氨酯新材料、精细化工等产业发展非常重要的基础有机化工原料,其生产工艺主要有氯醇化法、共氧化法和直接氧化法。随着我国精细化工和聚氨酯工业的发展,环氧丙烷产品市场前景日益广阔,但是目前我国环氧丙烷生产主要采用的是氯醇法生产工艺,该工艺存在对设备腐蚀严重、产生的含氯化钙废水严重污染环境等缺点。乙苯共氧化法环氧丙烷生产技术具有三废少、联产物附加值高、能耗低、经济性好等综合优点,但技术长期被国外公司垄断。 为促进国内环氧丙烷产业技术升级,万华化学数年前就组建团队开始乙苯共氧化法环氧丙烷制造技术自主研究开发,并与浙江大学产学研合作开展小试

工艺技术研究。为突破技术封锁,万华化学的近百名科技人员参与了该项目的研发,并在核心催化剂、反应器关键装备及相关工艺上申请国内外发明专利18件,形成了自主知识产权保护。 同时,万华化学自主设计建成的年产500吨环氧丙烷并联产1100吨苯乙烯工业化试验装置,也一次投料试车成功,并累计实现稳定运行超过90天。 未来,万华化学将投资32.5亿元,在山东烟台实施该技术成果转化,建设一套年产30万吨环氧丙烷并联产65万吨苯乙烯的世界级规模工业化装置,该装置预计2021年建成投产。 环氧丙烷:Propylene oxide 简称PO CAS:75-56-9 又名氧化丙烯、甲基环氧乙烷 是除聚丙烯和丙烯腈以外的第三大丙烯衍生物; 重要的基础有机化工原料,主要用于聚醚多元醇的生产,其次用于丙二醇的生产; PO的衍生物产品有近百种,是精细化工产品的重要原料,广泛应用于汽车、建筑及化妆品等行业。

环氧丙烷工业应用和生产工艺(更新至2017年)(可编辑修改word版)

环氧丙烷应用和生产主要工艺路线 一、环氧丙烷基础性质 中文别称:氧化丙烯 英文名称:Propylene Oxide(简称PO) 分子式:C3H6O 分子量:58.08 相对密度:0.859 g/cm3(20℃) 熔点:-112℃ 沸点:34℃ 环氧丙烷易溶于水,是无色透明的低沸易燃液体,具有类似醚类气味。 环氧丙烷在铁、锌等碱金属存在下易引起自聚反应,所以必须用干氮或者其他惰性气体贮存在容器内加以保护,使用不锈钢洁净容器进行贮存,不适宜长距离运输。二、环氧丙烷的应用领域 环氧丙烷(PO)是一种重要的有机化工原料,是除了聚丙烯和丙烯腈之外的第三大丙烯衍生物。环氧丙烷主要用于聚醚多元醇以及丙二醇及丙二醇醚等的生产。 聚醚多元醇(PPG)主要用于生产聚氨酯塑料,其次用作表面活性剂(如泡沫稳定性、造纸工业消泡剂和原油破乳剂等),也可用作润滑剂和专用溶剂等。 丙二醇(PG)主要用作抗冻剂、有机溶剂等,也用于生产环氧树脂、不饱和聚酯树脂等,还用于生产医药等的重要中间体。 丙二醇醚是用途广泛的低毒性有机溶剂。 全球环氧市场主要是生产聚醚多元醇,约占70%;其次是生产丙二醇。 在我国约85%的环氧丙烷用于生产聚醚多元醇,约8%用于生产丙二醇,其次是生产丙烯酸酯(2%)和醚类(2%)。 因国内聚醚多元醇的厂家主要集中在ft东、上海、江苏等地区,所以这些地区也是环氧丙烷最大的消费地。

二、环氧丙烷主要生产工艺 1、氯醇法,(1931 实现工业化) 主要反应式: ?氯醇化反应 ?皂化反应 皂化是氯醇与碱反应制取环氧化物的过程。 氯醇法制环氧丙烷的原料消耗 原料规格消耗氯气(吨/吨 PO)100% 1.35-1.65 丙烯(吨/吨 PO)100% 0.82-0.86 石灰(吨/吨 PO)95% 1.0-2.1 电(kwh/t)200-300 冷却水(吨/吨 PO)250-320

过氧化氢凝胶的制备与性能

关于“刺激响应型过氧化氢凝胶的制备与性能”的学习 物理凝胶不同于化学凝胶, 其胶凝剂分子依靠自身之间的超分子弱相互作用形成三维 网络结构, 使溶剂固定化形成凝胶。这类凝胶可因外部刺激(如加热、降温、机械搅拌等) 而破坏, 破坏后的凝胶也可能因外部刺激的取消而重新形成, 此类凝胶被称为刺激响应型凝胶。刺激响应型凝胶的可逆相变性质使其在温和吸附分离、药物输送、智能微机器、新形态推进剂制备等领域具有潜在的应用前景并引起了人们的关注. 按胶凝剂分类, 物理凝胶主 要包括高分子凝胶、小分子凝胶和无机颗粒凝胶等。其中, 在高分子凝胶中, 作为胶凝剂的高分子靠自身以及与助剂(一般为表面活性剂) 之间的反溶剂弱相互作用形成三维网络结构, 也可以通过高分子间氢键或库仑力等作用相互交联形成凝胶态。而在小分子凝胶中, 胶凝剂分子也是依靠自身之间的弱相互作用形成线性、纤维状或带状一维结构, 这些一维结构通过缠绕形成三维网络, 使溶剂胶凝化。无机颗粒凝胶主要依靠微米和纳米颗粒的聚集作用形成三维网络。一般来讲, 无机颗粒类凝胶易于获得刺激响应性。在刺激响应型物理凝胶研究中, 人们针对小分子量有机凝胶开展了大量的工作, 主要研究光、化学等刺激下溶胶2凝胶的可逆相变过程, 而对剪切作用研究相对较少。与其它刺激作用相比, 剪切作用易于实现, 已经成为火箭发动机系统内推进剂泵送及其相变控制的主要方式。凝胶推进剂具有压力或剪切触变性, 兼顾了固体推进剂与液体推进剂的优点, 克服了膏状推进剂流变特性不稳定的不足, 成为新一代“灵巧推进剂”。美国开发的凝胶推进剂已经进行了多次飞行试验, 日本、英国、德国、印度等国家对凝胶推进剂也进行了深入细致的研究。我国在这方面的研究起步较晚, 研究工作比较薄弱。双组元推进剂用氧化剂主要包括四氧化二氮、发烟硝酸、硝基化合物、三氟化氯、过氧化氢、液氟、液氧等。其中过氧化氢还可以单独使用, 分解不产生环境有害物质, 是一种典型的环境友好推进剂。 1实验部分 1. 1原料与仪器 二氧化硅A (纳米级) , 二氧化硅C (表面修饰); 二氧化硅B (微米级); 质量分数为30%与90% 的过氧化氢溶液;上述试剂均未经处理, 直接使用。R?S SST 2000 软固体测试仪; 傅立叶变换红外光谱仪; JY282 接触角测定仪。 1. 2胶凝剂的选择 过氧化氢是很强的氧化剂, 也可以被其他强氧化剂氧化。此外, 在某些杂质存在时, 过氧化氢也很容易分解。为此, 在对常用胶凝剂分析比较和初步实验的基础上, 重点考察了3 种不同规格二氧化硅对过氧化氢的胶凝行为和所形成凝胶的基本性质。 1. 3凝胶的制备 将20mL 比色管置于冰水浴中, 加入一定量的过氧化氢, 再慢慢加入一定量的二氧化硅, 振荡1min, 静置, 直至凝胶形成。 1. 4实验 将干燥颗粒状二氧化硅压片(压力9M Pa) 后进行接触角测定, 连续测量3 次, 取平均值。以KBr 压片法进行干燥二氧化硅的红外光谱测定。凝胶的刺激响应性测定。将盛有凝胶样品的具塞比色管交替置于- 20℃与25℃的环境中, 考察凝胶的冷热相变行为。常温下剧烈振荡凝胶体系, 然后再静置数分钟, 以初步考察凝胶体系的剪切触变行为。利用软固体测定仪定量测定凝胶样品的剪切触变性, 实验所用仪器转子型号V ane280?40, 剪切速率分别为0~ 100 s- 1和100~ 0 s- 1 , 检测时间200 s, 测定温度25 ℃。 2结果与讨论 2. 1二氧化硅对凝胶形成的影响

双氧水生产工艺流程与工艺指标

双氧水生产工艺流程与工艺指标 第一节工艺流程 来自循环工作液泵(P1401AB)的工作液,经循环工作液袋式过滤器(X1402D)、循环工作液过滤器(X1402ABC)滤除可能夹带的固体杂质后,流经工作液热交换器(E1105)、工作液预热器(E1102),将其预热到需要的温度后与经氢气缓冲罐分离水分、氢气过滤器(X1102)净化的氢气同时进入氢化塔(T1101)顶部。整个氢化塔由三节触媒床组成,每节塔顶部设有液体分布器、气液分布器,以使进入塔内的气体和液体分布均匀。根据工艺需要,氢化时可使用三节触媒床中的任意一节(单独)或两节(串联),必要时也可同时使用三节(串联),这主要根据氢化效率及生产能力的要求及触媒活性而定。例如当使用上、中节时,工作液与氢气,先进入上节塔顶部,并流而下通过塔内触媒层,

由上塔底流出,再经塔外连通管进入中节塔顶部,再从中节塔底流出,进入氢化液气液分离器(V1103)。 从氢化塔(T1101)出来的氢化液和未反应的氢气(称氢化尾气),连续进入氢化液气液分离器(V1103)进行气液分离,尾气由分离器顶部排出,经氢化尾气冷凝器(E1104)冷凝其中所含溶剂后,进入冷凝液计量罐(V1101),溶剂留于其中。尾气再经尾气流量计控制流量后直接放空,氢化液气液分离器(V1103)中的氢化液,经自控仪表控制一定液位后,借助氢化塔内压力分出10%,先流经氢化液白土床(V1104),而后与其余的90%一起都通过氢化液过滤器(X1103ABC),之后再经氢化液袋式过滤器(X1103D),滤除其中可能夹带的少量触媒粉末和氧化铝粉末,再通过工作液热交换器(E1105)将其热量传给循环工作液泵来的工作液或者后处理工作液,然后进入氢化液贮槽(V1105)。在此,溶解在氢化液中的少量氢气被解析出来,经过放空气冷凝器(E1106)、氢化液液封、阻火器放空。

双氧水直接氧化丙烯制环氧丙烷新技术通过鉴定

第4期 56(1):17-34. [2]刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展[J].现代化工,2005,25(3):19-24. [3]BoopathyR.Biologicaltreatmentofswinewasteusinganaerobicbaffledreactors[J].BioresourceTechnol,,1998,64(1):1-6. [4]DewesT,HünscheE.Compositionandmicrobialdegrad-abilityinthesoiloffarmyardmanurefromecologically-managedfarm[J].BiolAgricHortic,1998,16(3):251-268.[5]SilversteinRA,ChenY,Sharma-ShivappaRR,etal.Acomparisonofchemicalpre-treatmentmethodsfoeim-provingsaccharificationofcottonstalks[J].BioresourceTe-chnol,2007,98(16):3000-3011. [6]DupontJ,SouzaRF,SuarezPAZ.Ionicliquid(moltensalt)phaseorganometalliccatalysis[J].ChemRev,2002,102:3667-3692. [7]顾彦龙,彭家建,乔琨,等.室温离子液体及其在催化和有机合成中的应用[J].化学进展,2003,15(3):222-241.[8]HeinzeT,SchwikalK,BarthelS.Ionicliquidsasreactionmediumincellulosefunctionalization[J].MacromolBiosci,2005,5(6):520-525. [9]SwatloskiRP,SpearSK,HolbreyJD,etal.Dissolutionofcellulosewithionicliquids[J].JAmChemSoc,2002,124:4974-4975. [10]WuJ,ZhangJ,HeJS,etal.HomogeneousacetylationofcelluloseinanewIonicliquid[J].Biomacromol,2004,5: 266-268. [11]DadiAP,VaransiS,SchallCA.Enhancementofcellu-losesaccharificationkineticsusinganionicliquidpre-treatmentstep[J].BiotechnolBioeng,2006,95(5):904-910.[12]DuffSJB,MurrayWD.Bioconversionofforestproductsindustrywastecellulosicstofuelethanol:Areview[J].Bio-resourceTechnol,1996,55(1):1-33. [13]WrightJD.Ethanolfrombiomassbyenzymatichydrolysis[J].ChemEngProg,1998,84(8):62-74. [14]hgrenK,BuraR,SaddlerJ,etal.Effectofhemicelluloseandligninremovalonenzymatichydrolysisofsteempre-treatedcornstover[J].BioresourceTechnol,2007,98:2503-2510. [15]DaleBE,MoreiraMJ.Afreezeexplosiontechniqueforincreasingcellulosehydrolysis[C].BiotechnolBioengSymp,1982,12:31-43. [16]余兴莲,王丽,徐伟民.纤维素酶降解纤维素机理的研究进展[J].宁波大学学报,2007,20(1):78-83. [17]GanQ,AllenSJ,TaylorG.Kineticdynamicsinheteroge-neousenzymatichydrolysisofcellulose:anoverview,anexperimentalstudyandmathematicalmodeling[J].ProcessBiochem,2003,38:1003-1018. [18]ChenHZ,JinSY.Effectofethanolandyeastoncellu-laseactivityandhydrolysisofcrystallinecellulose[J].En-zymeMicrobialTechnol,2006,39:1430-1432. Researchprogressesinfuelethanolproductionfromlignocellulosicmaterials MAXian-gang1,2,XUHeng-yong2,LIWen-zhao2 (1.DepartmentofChemistry,HarbinNormalUniversity,Harbin150025,China; 2.LaboratoryofAppliedCatalysis,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences,Dalian116023,China) Abstract:Lignocellulosicmaterialscanbeutilizedtoproducefuelethanol.Therearetwokeytechniquesinvolvedinthiscon-version:hydrolysisofcelluloseinthelignocellulosicmaterialstosugars,andfermentationofsugarstoethanol.Thedevelopmentsta-tusaboutthemispresented.Variousmethodsformaterialpretreatment,hydrolysisandfermentationarereviewed.Thechallengestothisfieldarealsopointedout,andsomesuggestionsareproposedforfurtherresearch. KeyWords:lignocellulose;fuelethanol;materialpretreatment;hydrolysis;fermentation 马现刚等:木质纤维素生产燃料乙醇的研究进展 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 动态简讯 双氧水直接氧化丙烯制环氧丙烷新技术通过鉴定 大连化物所的“双氧水直接氧化丙烯制环氧丙烷”新技术最近通过了由辽宁省科技厅组织、沈阳分院主持的专家组鉴定。专家组一致认为,该项目开发的反应控制相转移催化双氧水直接氧化丙烯制备环氧丙烷的新工艺,与原位耦合法相比,简化了工艺流程,减少了催化剂的损失;与氯醇法相比污染显著减少,工艺简单,环境友好;在优化的工艺条件下,催化剂循环使用5次后,环氧丙烷相对H2O2的产率仍保持在87%以上,产物分布选择性大于99%。该技术在国内外专利、文献中未见报道,属原创性成果,具有良好的应用前景,达到了国际先进水平。 65

氯醇法制环氧丙烷可行性研究报告

第一章项目申报单位概况 (3) 概述 (3) 第二章市场分析 (4) 第一节国际市场的产能和消费结构 (4) 第二节我国环氧丙烷市场情况 (7) 第三节市场分析结论 (9) 第四章产品方案及拟定生产规模 (10) 第一节产品方案 (10) 第二节拟建生产规模 (10) 第五章工艺技术方案 (10) 第一节工艺方案 (10) 第二节设备选择及主要设备清单 (11) 第六章主要原辅材料 (11) 第一节主要原辅材料 (11) 第二节能耗 (11)

第七章工程技术方案 (13) 第一节厂址位置 (13) 第三节土建工程 (14) 第四节公用工程 (19) 第九章环境保护 (23) 第一节环境保护 (23) 第二节污染源 (23) 第三节环保措施 (24) 第十章安全卫生、劳动保护和消防 (26) 第一节安全生产 (26) 第十一章企业组织、劳动定员和人员培训 (29) 第一节企业组织 (29) 第二节劳动定员 (29) 第三节人员培训 (30) 第十二章经济影响分析 (30) 第一节投资估算 (30)

第二节经济分析 (32) 第十三章社会影响分析 (38) 第一节社会影响效果分析 (38) 第二节社会适应性分析 (39) 第三节社会风险及对策分析 (39) 第一章项目申报单位概况 概述 项目名称及承办单位 项目名称:年产10万吨环氧丙烷项目 承办单位:XXX有限公司 项目建设地址:XX县XX镇XXX村 法定代表人:XXX 项目联系人:XXX 电话: 传真 Emil:

第二章市场分析 环氧丙烷是一种重要的化工原料,它不仅可以生产聚醚多元醇,进而生产聚氨酯,也可生产用途广泛的丙二醇。 第一节国际市场的产能和消费结构 2006年全球PO生产能力约为724万吨左右,2006年全球新增长生产能力约为43万吨/年,主要有壳牌公司与中海油在中国惠州建设的25万吨/年的环氧丙烷装置,日本佳友化学公司和西班牙Repsol公司两个扩能5万吨/年项目。另外亚洲地区还有一些扩建装置相继投产。2007年国外将没有新产能投用,届时世界市场将趋于供需平衡。2008年BASF/DOW化学公司位于比利时安特卫普的使用过氧化氢直接氧化法生产环氧丙烷(HPPO)的装置将投产,韩国SKC也将投用该新技术的装置。据称,BASF/DOW化学公司计划在2009-2010年进一步在亚洲和美国建设过氧化氢直接氧化法生产环氧丙烷(HPPO)装置。莱昂德尔公司计划在中国设新项目;2008-2010年另有几个其他公司项目计划在中国实施;日本佳友公司与沙特合资的PetroRabigh项目,其中包括一套25万吨/年的环氧丙烷装置将在2008年底投产。2010年全球PO需求量将达到776万吨左右,从全球范围内长期去看,未来PO供应不会出现太大过剩,市场前景乐观。 表1 2006年世界环氧丙烷主要生产企业及产能万吨/年

过氧化氢法制备环氧丙烷

过氧化氢直接氧化法从理论上讲,的氧化还原电位高于环氧丙 烷,可以用它直接氧化丙烯制环氧丙烷,而且HQ中活性氧的质量分数远远高于其他过氧化物,达47 % ,其还原产物只有水,清洁无污染,是理想的氧化剂。因此,很早就有人想用HQ氧化丙烯制取环氧丙烷,但由于催化剂的原因均未成功。当TS-1催化剂[6 ]被开发出来后,这一设想终于成为现实。HQ 直接氧化法的化学反应式如下: H202 + HC3CH= CH=CHtCH0CH H20 (环氧丙烷)(10 ) 在压力0 .4 MPa、温度接近室温的条件下,以甲醇水溶液为溶剂,丙烯与H202直接反应制得环氧丙烷,H202的转化率达98 %以上,丙烯转化为环氧丙烷的选择性在97 %以上。目前,该工艺还处于开发阶段,主要的研究集中于各种因素对催化剂性能及成本的影响方面。该方法存在H202运输问题,根据化学计量比,1t纯H202可制得17t环氧丙烷,对于1个万吨级的环氧丙烷生产厂,其运输危险和困难可想而知。意大利的Clerici 等[6]提出将丙烯环氧化过程与蕙醍法制H202过程相结合,用甲醇水溶液为萃取剂代替原有的水萃取剂,将孔02直接萃取出来后进入环氧化反应器进行反应,工艺流程如图3所示。

03丙烯环氧化与葡醍恚制观氧水集成工艺流程 I.反应器2闪蒸塔;3.精温塔4分水塔或氧化塔;。.氧化塔;7,萃取塔唾 以甲醇水溶液为萃取剂,先在萃取塔中将H02从;<醍工作液中萃取出来,与甲醇一起进入反应器中与丙烯进行环氧化反应,然后在闪蒸塔、精馆塔中将未反应的丙烯及产物环氧丙烷分离,丙烯循环使用,余下的甲醇水溶液,一部分与萃取液混合作为反应溶剂循环,另一部分经 分水塔脱除部分反应生成的水后,作为新鲜萃取剂再循环使用,BSH 法生产H202工艺中氢化塔和氧化塔保持不变。这种将1-202生产与环氧丙烷生产相结合的方法无任何废物排放,是环氧丙烷清洁生产的一个重大突破,具有很好的发展前景。 在环氧丙烷生产与H02生产两者结合的过程中,萃取是关键的一步,其平衡组成随萃取条件变化的规律以及萃取液中蕙醍工作液杂质对环氧化过程的影响,萃余液中环氧化过程杂质对蕙醍法制-202的影响等还不清楚,有待进一步研究。

双氧水的生产方法

双氧水的生产方法标准化管理部编码-[99968T-6889628-J68568-1689N]

双氧水的生产方法 1.1 蒽醌法 蒽醌法生产双氧水是目前世界上该行业最为成熟的生产方法之一,国外大型的生产厂家都采用蒽醌法生产双氧水,在国内目前双氧水的制备也几乎都是蒽醌法。 20世纪初,人们发明以2-烷基蒽醌作为氢的载体循环使用生产双氧水的方法,后经多次改进,使该技术日趋成熟。其工艺为2-烷基蒽醌与有机溶剂配制成工作溶液,在压力为0.30MPa、温度55℃~65℃、有催化剂存在的条件下,通入H2进行氢化,再在40℃~44℃下与空气进行逆流氧化,经萃取、再生、精制与浓缩制得到H2O2水溶液成品,目 前我国市场上有质量分数分别为27.5%、35.0%和50.0%三种规格的产品。 国内20世纪80年代中期以前,过氧化氢的生产主要以镍催化剂搅拌釜氢化蒽醌法工艺为主,随着生产能力的不断扩大,与搅拌釜工艺相比,以钯为催化剂的固定床工艺逐渐显示出其优越性:氢化设备结构简单、装置生产能力大、生产过程中不需经常补加催化剂、安全性能好和操作方便等优点,借助于计算机集散控制技术,可大大提高装置的安全性能,该工艺已成为过氧化氢生产发展的方向;近期新建装置及老厂的工艺改造几乎都采用蒽醌法,多采用钯催化固定床,镍-钯混合床。目前在国内还没有出现氢化流化床的文献报道,只有上海阿托菲纳双氧水公司和福建第一化工厂引进国外技术采用钯催化氢化流化床的专利工艺。 、双氧水用途及概况 1.1.1.1 物理性质:双氧水(学名过氧化氢),分子式:H2O2,分子量:34,无色、无味透明无毒,但对皮肤有漂白及烧灼作用。皮肤受其侵蚀可引起皮炎、起泡或针刺般疼痛,重者长期不痊愈。它能强烈刺激眼睛,危害眼粘膜,长期接触,可使毛发变黄。双氧水蒸汽可引起眼睛流泪,刺激眼、鼻、喉的粘膜。双氧水蒸气在空气中的最大浓度不应高于0.03mg/L 1.1.2 化学性质: 双氧水是一种强氧化性物质,但遇到比它更强的氧化剂,比如高锰酸钾、氯气等,则呈还原性质。 它的化学性质比较活泼,可以参加分解、分子加成、取代、氧化还原等反应。 双氧水具有较弱的二元酸性质,与某些碱反应可能生成盐,由于它的内在结构关系及杂质的存在,呈现出一定的不稳定性。当双氧水接触到光、热、粗糙表

双氧水用途及生产工艺

双氧水的应用及工业化生产工艺 一、双氧水主要理化性质 纯的过氧化氢(H2O2)是淡蓝色粘稠液体,其水溶液称为双氧水,为无色透明液体,工业规格为%、30%、35%、50%及70%。 35%浓度的双氧水在20℃时密度为ml。 过氧化氢(H2O2)的沸点为℃,相对分子量为,能溶于水、乙醇,乙醚,不溶于苯和石油醚。 浓度大于65%的双氧水与有机物接触易引起爆炸。 PH是影响双氧水稳定性的一个因素,在酸性时比较稳定,PH4±时最稳定,一般使用磷酸作为稳定剂。PH大于8时即剧烈分解。 双氧水遇大部分的金属杂质会剧烈分解,所以双氧水需使用塑料桶(聚乙烯或聚四氟乙烯)、纯铝(纯度大于%)或不锈钢槽车运输。且不适合长距离运输。 二、双氧水的应用领域 我国双氧水的下游应用领域主要是造纸行业(用于纸浆漂白和废纸脱墨,在废纸再生循环利用中过氧化氢的氧化漂白作用可使废纸脱去油墨后达到与原始纸浆同样的白度),约占总消费量的37%。此外印染行业(主要用作纤维的漂白剂,)约占19%,化工合成(主要用于环氧化物或过氧化物的生产)行业约占32%,污水处理行业约占6%,其他领域占6%。 造纸用双氧水的市场主要集中在山东和华中一带。 印染行业用双氧水的市场大都集中在华东的江苏、浙江一带。受环保等多方面因素的影响,印染企业关停较多,印染行业用双氧水比例有所降低。 双氧水在化工合成行业的应用相对分散,而且大多数企业有自己配套的双氧水装置,主要合成产品有环氧大豆油、己内酰胺、环氧丙烷、二氧化硫脲、过碳酸钠、亚氯酸钠等。随着丙烯价格的下降,环保要求的提高,双氧水作为丙烯环氧化制环氧丙烷的原料应用,会成为今后双氧水应用增长的主要领域。

过氧化氢环氧化丙烯制环氧丙烷的研究新进展

过氧化氢环氧化丙烯制环氧丙烷的研究新进展 来源:中国化工信息网 2007年12月17日 环氧丙烷(PO)是丙烯衍生物中产量仅次于聚丙烯和丙烯腈的第三大有机化工产品,因其具有张力很大的含氧三元环,化学性质十分活泼,主要用于生产聚醚、丙二醇、异丙醇胺、丙烯醇、非聚醚多元醇等,进而生产不饱和聚酯树脂、聚氨酯、表面活性剂(油田破乳剂、农药乳化剂及润湿剂)、阻燃剂等重要原料。目前工业上生产PO主要采用氯醇法、间接氧化法(共氧化法)和异丙苯法。但氯醇法的主要缺点是使用有毒氯气,设备腐蚀严重并产生大量污染环境的含氯废水,不符合绿色化学和清洁生产的要求,因此随着环境保护要求的日益提高,该工艺将最终被淘汰;间接氧化法虽克服了氯醇法的污染环境和腐蚀设备等缺点,是比氯醇法相对清洁的生产工艺,但缺点是对原料质量要求高,且需平衡大量联产品,工艺冗长,投资规模大,成本高。异丙苯法工艺采用过氧化氢异丙苯(CHP)为氧化剂,该工艺在技术和经济上具有优越性,但其实质仍是一种共氧化法工艺,开发应用时间短。 鉴于目前工业上制备PO工艺路线存在的弊端,近20多年来研究者一直致力于流程简单、副产物少和绿色无污染的PO绿色清洁生产工艺的研究,直到现在世界各大公司还在积极开发新技术并不断改进现有技术,其中丙烯直接氧化法成为研究热点,尤其是过氧化氢氧化工艺日趋成熟,展现出良好的工业化前景,目前关键是廉价高效的催化剂设计与制备。自意大利EniChem公司1983年首次合成选择氧化催化剂TS-1以来,由于其优异的选择氧化性能以及温和 O),HP)是公认的绿色的反应条件而成为氧化催化剂的研究热点。过氧化氢(H 2 氧化剂,其氧化副产物只有水。以HP为氧化剂,钛硅分子筛可以较高的转化率和选择性催化丙烯环氧化反应合成PO。该过程具有条件温和,原料无毒、无腐蚀性,使用相对廉价而安全的稀即水溶液作氧化剂,原子利用率高(76%),反应速度快,选择性高,过程环境友好无污染等优点,符合绿色化学和原子经济发展理念的要求,因此被认为是生产PO的绿色新工艺。 本文就极具应用前景以及即将工业化的PO制备工艺,来评述以HP为氧化剂的丙烯环氧化工艺方面的研究进展。 1 以商品HP为氧化剂的PO制备工艺 以HP为氧化剂,钛硅分子筛可以较高的转化率和选择性催化丙烯环氧化反应合成PO。HP生产环氧丙烷工艺(HPPO)的吸引力在于装置设计简化,是环境友好的清洁生产系统,并且无副产物。HPPO技术在经济性、环保和未来的发展机遇方面有独特的优势,同时还使原材料一体化,并且不产生联产品。近年来用HP直接环氧化丙烯制PO的方法受到关注,并取得令人瞩目的研发成果。德国BASF公司、Degussa公司和Kmpp-Uhde公司以及Enichem公司等均在开发使用HP催化丙烯环氧化生成PO的新工艺,并大都建有中试装置。 德国BASF公司开发的HPPO工艺使用管式反应器,在中温、低压和液相条件下在甲醇溶剂中用HP催化丙烯环氧化生产PO。2000年BASF公司在路德维希港(Ludwigshafen)投运了100t/aHPPO工艺中试装置,并用工业原料和全集成的过程回路验证了该工艺过程。BASF公司和美国Dow化学公司于2002年开始合作开发HPPO工艺,已决定联合使HPPO技术推向工业化,已于2006年在

相关文档
最新文档