电力系统过电压知识点总结

合集下载

电力系统过电压知识点复习

电力系统过电压知识点复习

内部过电压:由于断路器操作、故障过着其他原因,使系统参数发生变化,引起系统内部电磁能量的转化或传递引起的电压升高。

空载线路的分闸过电压空载线路的合闸过电压切除空载变压器过电压电弧接地过电压工频电压升高谐振过电压暂时过电压(工频电压升高(空载长线的电容效应、不对称短路引起的工频电压升高、甩负荷引起的工频电压升高)、谐振过电压(线性谐振、铁磁谐振、参数谐振))操作过电压(操作过电压(切断空载线路、空载线路合闸、切断空载变压器、电弧接地过电压))内部过电压倍数K空载线路分闸过电压:分闸初期,断路器端口处电弧重燃,引起电磁振荡,出现过电压措施:提高断路器的灭弧能力;带并联电阻空载线路的合闸过电压:(正常运行的计划性合闸、线路故障切除后的自动重合闸)合闸过电压中,以三相重合闸的情况最严重,其过电压幅值可达3Em影响因素:合闸时电源相位;线路损耗(电阻及电导中的损耗,电晕损耗);线路残余电压的极性及大小;母线上接有其他线路;线路长度和电源容量措施:采用带有并联合闸电阻的断路器;单相自动重合闸的采用;同相位合闸;利用避雷器保护(线路首段和末端安装)切除空载变压器过电压:(消弧线圈、并联电抗器、轻载变压器电动机)原因:流过电感的电流在到达自然零值之前被断路器强制切断,从而迫使储存在电感中的电磁能量转化为电场能量导致电压升高。

(截留现象)影响因素:与截断电流I0有关;变压器参数对过电压倍数的影响;变压器的中性点接地方式;限制措施:安装避雷器电弧接地过电压(通常发生在中性点对地绝缘系统)影响因素:电弧过程的随机过程;导线相间电容的影响;电网损耗电阻;对地绝缘的泄漏电导;限制措施:采用中性点直接接地方式;采用中性点经消弧线圈接地方式工频电压升高:空载长线电容效应引起的工频电压升高;不对称短路引起的工频电压升高;发电机突然短路引起的工频电压升高中性点不接地系统:单相接地故障时,工频电压升高可达1.1倍额定电压,避雷器的灭弧电压规定为系统最高电压的1.1倍,称为110%避雷器;中性点经消弧线圈接地系统:单相接地故障时,健全相电压接近额定电压,避雷器的灭弧电压规定为系统最高电压的1.0倍,称为100%避雷器;中性点直接接地系统:单相接地故障时,健全相电压不大于0.8倍额定电压,避雷器的灭弧电压规定为系统最高电压的0.8倍,称为80%避雷器;对330kV及以上系统,线路距离长,计及长线路的电容效应时,吸纳路末端工频电压升高可能超过系统最高电压的80%,根据位置的不同,分为电站型避雷器(80%避雷器)和线路型避雷器(90%避雷器)两种。

第六章-电力系统过电压

第六章-电力系统过电压
3、10KV对应的最高工作电压为12KV; 66KV对应的最高工作电压为72.5KV。
二、过电压分类
过电压
雷电过电 压(外部、 大气)
直接雷击过电压 雷电反击过电压 感电压的形成及类型
1、雷云形成 雷电是带电荷的云所引起的放电现象。 一般情况下,带负电荷的雷云较多。 2、雷电放电 (1) 先导放电:分级发展的 (2) 主放电:电流最大,时间很短 (3) 余辉放电:发光微弱,电流很小,时间较长 冲击电压大小与雷电流大小和被击物体冲击电阻大小
2、避雷线(架空地线) 3、避雷带和避雷网 避雷带:是沿建筑物易受雷击的部位(如屋脊、屋檐、屋角
等处)装设的带形导体。 避雷网:是屋面上纵横敷设的避雷带组成的网络。 4、接闪器引下线 ①引下线应镀锌,焊接处应涂防腐漆(利用混凝土中钢筋作
引下线除外),在腐蚀性较强的场所,还应适当加大截 面或采用其他防腐措施。 ②引下线是防雷装置极重要的组成部分,必须极其可靠地按 规定装好,以保证防雷效果。 5、接闪器接地要求(P220-221)
( B)米;在12米的高度的保护半径为( )米
A、5 B、5.5 C、8 D、8.5 解: hx=30≥h/2=18 , rx =(h-hx)p=(36-30)×5.5/6=5.5
hx=12≤h/2=18, rx=(1.5h-2hx)p=(1.5×36-2 ×12) ×5.5/6=27.5
一、接闪器
二、避雷器
常用避雷器包括:阀型避雷器、管型避雷器、金属氧化物 避雷器(氧化锌避雷器)。
1、阀型避雷器 (1) 结构:主要由若干火花间隙和阀电阻片串联组成。 (2) 阀电阻片具有非线性特性:
①正常电压时阀片电阻很大; ②过电压时阀片的电阻变得很小,电压越高电阻越小。

电力系统操作过电压

电力系统操作过电压

3、电磁式电压互感器饱和引起的谐振过电压
在接有Y0接线的电磁式电压互感器的中性 点不接地系统中,当出现某些扰动,使电压 互感器各相电感的饱和程度不同时,有可能 出现较高的中性点位移电压而激发起谐振过 电压。
常见的扰动有:电压互感器的突然合闸、 由于雷击或其他原因发生瞬间单相弧光接地、 传递过电压
一、一般特征
1、持续时间比较短
2、其幅值与系统相电压幅值有一定倍数关系 3、其幅值与系统的各种因素有关,有强烈的统 计性 4、依据系统的电压等级不同,显示重要性 也不同
5、在超高压系统中,它是决定系统绝缘水 平依据之一
常见类型:
❖ 中性点不接地系统弧光接地过电压 ❖ 空载线路合闸过电压 ❖ 切空载线路过电压 ❖ 切空载变压器过电压
2.按其性质可分为三类
(1).线性谐振 (2).铁磁谐振 (3).参数谐振
二、铁磁谐振的基本原理
1、铁磁谐振
产生谐振条件:
L 1 C
2、物理过程 (1)串联铁磁谐振回路的伏安特性
(2)分析时注意: 产生铁磁谐振的必要条件 正确分析平衡点的稳定性
3.主要特点:
L (1)对于一定的 L0 值当C
二、间隙电弧接地过电压
1、产生原因
在中心点不接地系统中,当一相发生 故障时,故障点的电弧熄灭和重燃(称之 为间隙性电弧)引起电磁暂态的振荡过渡 过程而引起的过电压。(称之为间隙电弧 接地过电压)
2.单相接地电路图及相量图
3、分析
注意几点 (1)应假设某故障相达到最大值时电弧接地, 这是最严重情况 (2)掌握某一状态、某一时间下电压初始值、 稳态值 (3)过电压的最大幅值可用下面公式估算
2、线路较长时 (1)等值电路图
(2)线路距末端X处电压分布

电力系统过电压分析

电力系统过电压分析

电力系统过电压分析过电压是指电力系统中出现的电压超过额定值或设定范围的瞬时现象。

过电压可能由于线路故障、雷击、开关操作和电气设备故障等原因引起。

过电压对电力系统的安全稳定运行产生重要影响,因此,对电力系统的过电压进行准确的分析和评估是必要的。

一、过电压的分类1. 外部过电压:外部过电压是指来自电力系统外部的电压幅度超过了正常运行时的额定值。

外部过电压的主要原因是雷击,雷击可以通过设备接闪装置和接地装置来减轻其影响。

2. 内部过电压:内部过电压是指电力系统内部某个节点的电压幅值超过了正常运行时的额定值,可能导致电力设备的损坏。

内部过电压包括故障过电压和运行过电压。

二、过电压的影响1. 设备损坏:过电压可能导致设备的击穿,损坏电气设备,特别是对绝缘性能较差的设备,如变压器、继电器和电能表等。

2. 系统不稳定:当过电压较大或持续时间较长时,电力系统可能变得不稳定,导致设备间的电能传递受到影响。

三、过电压分析的方法过电压分析是通过数学模型和计算方法对电力系统的过电压进行仿真和计算,以评估过电压对电力系统的影响,并确定相应的防护措施。

1. 瞬态稳定分析:通过瞬态稳定分析可以确定电力系统在过电压冲击下的稳定性。

该分析主要考虑电力系统的动态过程,包括电压暂降、电流冲击和设备响应等。

2. 静态稳定分析:静态稳定分析主要评估电力系统在过电压下的静态稳定性。

静态稳定分析可以评估过电压对电力系统中各个节点电压和功率的影响。

3. 电磁暂态分析:电磁暂态分析是通过计算每个节点的电压和电流的瞬时变化来评估过电压对电力系统的影响。

该分析主要关注电力系统的电磁暂态响应。

四、过电压防护措施为了减轻过电压的影响并保护电力系统的安全稳定运行,需要采取一定的过电压防护措施。

1. 接闪装置:接闪装置可接地试验系统,通过将过电压引到接闪装置上,从而保护电力设备免受雷击等外部过电压的影响。

2. 绝缘配合:合理选择和配合电力系统的绝缘设备和绝缘材料,提高系统的绝缘能力,防止内部过电压的产生和传播。

电力系统的过电压保护与控制

电力系统的过电压保护与控制

电力系统的过电压保护与控制随着电力系统的发展与扩大,过电压问题一直是电力系统运行中的一个重点关注的问题。

过电压不仅会对电力设备造成损坏,还会对整个电力系统的稳定运行产生严重影响。

因此,过电压保护与控制是电力系统中的重要环节。

一、过电压产生的原因及危害分析过电压一般是指电压在瞬时时间内突然上升或下降的现象。

其产生的主要原因有以下几个方面:1. 外部因素:如雷电、电力线路的故障、短路等。

2. 内部因素:电力系统的开关操作及突发的负荷变化。

过电压会给电力系统带来诸多危害,主要包括:1. 对设备的影响:过电压会造成电力设备的绝缘击穿,从而导致设备的损坏甚至烧坏。

例如变压器、发电机等重要设备。

2. 对电力系统的影响:过电压会使电力系统的电压分布不均匀,造成电能损失,并可能引发电力系统的不稳定运行甚至崩溃。

二、过电压保护措施为了保护电力系统免受过电压的损害,需要采取相应的保护措施。

以下是一些常见的过电压保护措施:1. 避雷器:避雷器是保护电力系统免受外部雷电等过电压冲击的主要装置。

避雷器能够通过将过电压引入地方来保护电力设备。

避雷器是电力系统中的重要组成部分,确保了电力设备的安全运行。

2. 过电压保护装置:过电压保护装置能够监测电力系统中的电压变化,并及时采取控制措施来保护电力设备。

过电压保护装置分为三类:放电型过电压保护装置、非放电型过电压保护装置和混合型过电压保护装置。

具体选择哪种装置应根据具体的情况进行决策。

3. 控制系统优化:优化电力系统的控制系统,采用合理的控制策略来抑制过电压的产生。

通过控制系统的优化,可以有效地减少过电压的发生概率,降低对设备的损害。

三、过电压控制原则与方法在电力系统中,为了保证过电压不对设备造成损害,需要制定一套科学的过电压控制原则与方法。

以下是一些常见的控制原则与方法:1. 合理地设计电力系统的接地方式:良好的接地系统能够有效地引导过电压到地,保护电力设备。

合理的接地方式可以减少过电压的产生。

电力系统内部过电压

电力系统内部过电压

二.过电压的分类
能量来源
1.雷电过电压:雷云中大量雷电荷倾注 于电力系统而形成 2.内部过电压: 由于电力系统内部能量的 转化或传递引起的
能量转化是指磁能转化为电能 能量传递则主要是通过各部分相互之间的电磁耦合。电 网内的操作(拉闸或合闸)和故障(断线或接地等)都 是激发能量转化的原因,按不同原因,将内过电压分为 操作过电压和暂时过电压,暂时过电压包括工频电压升 高及谐振过电压。
有并联电阻时切空线的电流和电压波形
合闸电阻同时还可以起到限制切空线过电压的作用。参看图12-10 因为开断时主断口S1先分开(t=t1),此时,由于Rb的存在,电容 C上的电荷可以通过Rb流向电源,使电压uC不再保持不变,因此主 断口S1上的恢复电压要比没有并联电阻时小。显然Rb愈小恢复电 压就愈小,重燃的概率也就愈低。主断口S1分开后,经过1.5个工 频周期后(t=t2),辅助断口S2打开。此时由于Rb的存在减小了电 容电流和电压间的相位差,从而降低了作用在断口S2上的恢复电压, 所以辅助断口S2重燃的概率也就相应降低。而且即使重燃,Rb将 起阻尼作用,过电压也不会大。
kV kV
对地操作过电压的1.4~1.45倍; 对地操作过电压的1.5倍。
三.空载长线操作过电压的限制措施
1.改善开关熄弧性能 无重燃 无过电压
∵目前断路器己可基本消除重燃现象
∴线路设计中可不考虑切空线过电压
220kV及以下: 不需要采用限制重合空闸过电
压的措施
330 kV
以上:
断路器断口加并联电阻
合闸后: C11与C22并联 合闸瞬间:C11,C22上电荷重新分配
u E m c11 E m c 22 c11 c 22 0
• l1 上起始电压为 0,而不是 - Em ∴ 过电压为 2Em,而不是 3Em

《电力系统过电压》课件

《电力系统过电压》课件
• 加强设备绝缘,防止 过电压产生。
系统规划
• 合理设计电力系统结 构和拓扑,减少电力 系统的脆弱性。
• 良好的接地系统可以 减缓过电压对系统的 影响。
实时监测
• 使用过电压监测技术 和设备,实时监测电 力系统的电压波动。
• 快速响应过电压事件, 采取相应的措施避免 损失。
过电压监测技术
电压测量
通过电压测量装置实时监测电 力系统的电压波动和过电压情 况。
由闪电、雷电或线路故障等外部因素引起的过电 压。
内部过电压
由电力设备故障或操作失误等内部因素引起的过 电压。
过电压的原因
1 自然灾害
闪电、雷击和地震等自然灾害是造成过电压的常见原因。
2 设备故障
电力设备故障或过载可能导致电力系统出现过电压情况。
3 操作失误
不正确的操作或维护程序可能导致电力系统受到过电压的影响。
过电压的危害
1
设备损坏
过电压可能导致设备烧毁、损坏或失效,给企业和个人带来巨大损失。
2
停电
过电压可能导致电力系统中断,造成停电和生产中断。
3
电击危险
过电压可能对人员安全构成威胁,导致电击事故发生。
过电压的防护
设备保护
• 安装保护装置,如避 雷器和过压保护器, 以降低过电压对设备
• 的定期影维响护。和检查设备, 确保其正常运行。
《电力系统过电压》PPT 课件
在这个PPT课件中,我们将深入探讨电力系统过电压的不同方面,包括定义、 类型、原因、危害、防护以及监测技术。让我们一起了解这个重要而有趣的 主题。
电力系统过电压的定义
什么是过电压?
过电压是指电力系统中超过额定电压的瞬时电压波动或持续时间较长的电压峰值。

电力系统过电压复习重点

电力系统过电压复习重点

.电磁暂态分析的理论基础1、电源合闸至单频振荡电路,在电容元件上产生的最大过电压幅值为,Ucm=稳态值+振荡幅值=稳态值+(稳态值—初始值)=2*稳态值—初始值2、导致波在传播过程产生损耗的因素主要有以下四种:1)导线电阻引起损耗;2)导线对地电导引起的损耗;3)大地电阻的损耗;4)导线发生电晕引起的损耗。

3、冲击电晕对波过程的影响对导线耦合系数的影响:发生冲击电晕后,在导线周围形成导电性能较好的电晕套,在这个电晕区内充满电荷,相当于扩大了导线的有效半径,因而与其它导线间的耦合系数也增大。

对波阻抗和波速的影响:冲击电晕将使线路波阻抗减小、波速减小对波形的影响:冲击电晕减小波的陡度、降低波的幅值的特性,有利于变电所的防雷保护。

4.一般连续式变压器绕组的αl值为5~10。

变压器绕组的末端不论接地与否,其初始电压分布均相同,按指数规律分布。

最大电位梯度出现在绕组的首端。

冲击电压波作用于变压器绕组初瞬,绕组首端的电位梯度是平均电位梯度的αl倍。

αl越大,电位分布越不均匀,相应绕组的抗冲击能力越差。

(危及变压器绕组的首端匝间绝缘)5.变压器绕组中的电磁振荡过程在10μs以内尚未发展起来,在这段时间内变压器绕组的特性主要由其纵向电容和对地电容组成的电容链决定,对首端来说相当于一个等效集中电容Cr,称为变压器的入口电容。

6.最大电位梯度均出现在绕组首端,其值等于αU0,对变压器绕组的纵绝缘(匝间绝缘)有危害。

绕组内的波过程除了与电压波的幅值有关外,还与作用在绕组上的冲击电压波形有关。

过电压波的波头时间越长(陡度越小),由于电感分流的影响,振荡过程的发展比较和缓,绕组各点的最大对地电压和纵向电位梯度都将下降;反之则振荡越激烈。

波尾也有影响,在短波作用下,振荡过程尚未充分激发起来时,外加电压已经大为减小,导致绕组各点的对地电压和电位梯度也比较低。

截波作用下绕组内的最大电位梯度将比全波作用时大,会在变压器绕组中产生很大的电位梯度,从而危及变压器绕组的纵绝缘,电力变压器不仅需要进行全波冲击耐压试验,还要通过截波耐压试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章
1.地面落雷密度:一个雷电日每 km2 的地面上落雷的次数(次/雷电日·km 2 )。

落雷密度为单位时间单位面积的地面平均落雷次数
2.保护设备与被保护设备的伏秒特性应如何配合?为什么?答案:保护设备的伏秒特性应始终低于被保护设备的伏秒特性。

这样,当有一过电压作用于两设备时,总是保护设备先击穿,进而限制了过电压幅值,保护了被保护设备。

3. ZnO 避雷器的主要优点有哪些?答案:ZnO 避雷器的主要优点有无间隙、无续流、电气设备所受过电压可以降低、通流容量大、ZnO 避雷器特别适用干直流保护和 SF6 电器保护等优点。

适于大批量生产,造价低,经济性能好。

4.跨步电压:人的两脚着地点之间的电位差称为跨步电压。

(取跨距为 0.8m)工作接地中,对人身安全造成威胁的电位差包括接触电位差和跨步电位差人所站的地点与接地设备之间的电位差称为接触电势
5.内部过电压倍数:内部过电压倍数:内部过电压幅值与最大运行相电压幅值之比。

6.【简答题】什么叫做操作过电压?答案:电力系统是由电源、电阻、电感、电容等元件组成的复杂系统,当开关操作,或事故状态引起系统拓扑结构发生改变时,各储能元件的能量重新分配并发生振荡,在设备上将会产生数倍于电源电压的过渡过程的过电压,称为操作过电压。

电力系统由于操作从一种稳定工作状态通过震荡转变到另一种工作状态的过渡过程所产生的过电压称为操作过电压。

7.简述电力系统中操作过电压的种类。

答案:①间歇电弧接地过电压②空载变压器分闸过电压③空载线路分闸过电压④空载线路合闸过电压一种是计划性的合闸操作,另一种是自动重合闸操作⑤电力系统解列过电压
8.在不同电压等级中起主导作用的操作过电压类型?答案:(一)6~10kV,35~60kV:电弧接地过电压;(二)110~220kV:切空载变压器,切除空载线路过电压;(三)330~500kV:合空载线路过电压。

9.电弧接地过电压:在中性点绝缘的电网中发生单相接地时,将会引起健全相得电压升高到线电压。

如果单相接地为不稳定的电弧接地,即接地点的电弧间歇性地熄灭和重燃,则在电网健全相和故障相上将会产生很高的过电压,一般把这种过电压称为电弧接地过电压。

10.影响电弧接地过电压的因素有哪些?答案:(一)电弧熄灭与重燃时的相位;(二)系统的相关参数(相间电容、线路损耗);(三)中性点接地方式。

11.电弧接地过电压的发展过程和幅值大小都与什么有关?答案:电弧过电压的发展过程和幅值大小都与熄弧的时间有关,存在两种熄弧时间:(1)电弧在过渡过程中的高频振荡电流过零时即可熄灭(2)电弧要等到工频电流过零时才能熄灭
12.什么叫做截流?答案:流过电感的电流在到达自然零点前被断路器强行切断,称为强制熄弧,使得储存在电感中的磁场能量被强迫转化为电场能,导致电压的升高。

当采用灭弧能力很强的断路器切断很小的励磁电流时,工频励磁电流的电弧可能在自然过零前被强制熄灭,甚至电流在接近幅值 m I 时被突然截断,这就是断路器的截流现象。

13.为什么说切空载变压器容易发生截流现象?答案:切断 100A 以上的交流电流时,电弧通常都是在工频电流自然过零时熄灭的;但当被切断的电流较小时(空载变压器的激磁电流很小,一般只是额定电流的 0.5%~4%,约数安到数十安),电弧提前熄灭,亦即电流会在过零之前就被强行切断。

14.断路器的性能和变压器的参数是怎么影响切空变压器的?答案:切断小电流电弧时,性能差的断路器,由于切断电流能力不强,切除空载变压器时过电压较低;而切除小电流电弧时性能好的断路器,由于切流能力强,切除空载变压器过电压较高。

另外,当断路器的灭弧能力差时,切流后在断路器触头间容易引起电弧重燃,而这种电弧重燃与切空线相反,使变压器侧的电容中电场能量向电源释放,从而降低了过电压。

使用相同断路器,即使是在相同的截流能力下,当变压器的电容越大和电感越小时,过电压会降低。

15.如何限制切空载变压器的过电压?答案:(一)在断路器的变压器侧加装阀式避雷器。

(二)在断路器的主触头上并联一线性或非线性电阻。

(三)需频繁进行变压器的分合闸操作的场合可采用:在电弧炉变压器的低压绕组侧并接三相整流电路,直流回路中接有大容量电解电容。

16.在不同电压等级中起主导作用的操作过电压类型?答案:(一)6~10kV,35~60kV:电弧接地过电压;(二)110~220kV:切空载变压器,切除空载线路过电压;(三)330~500kV:合空载线路过电压。

17.试说明电力系统中影响切空载线路过电压的因素有哪些?答案:(一)断路器的灭弧性能;(二)线路泄漏损耗;(三)中性点运行方式;(四)系统参数。

18.试说明电力系统中限制切空载线路过电压的措施有哪些?答案:(一)提高断路器的灭弧性能,减少或避免电弧重燃;(二)在断路器中加装并联电抗器;(三)装设避雷器。

(四)线路上装设泄流设备,如电磁式电压互感器
19.为什么在断路器的主触头上并联电阻有利于限制切除空载长线时的过电压?答案:使用带并联电阻的断路器(如图)是一个有效的措施,这种断路器有两个触头,主触头并联一个电阻 R,是辅助触头,断路器的动作分两步进行。

分闸时先断开主触,使 R 串联在回路之中阻尼了振荡的发生,消耗电容电荷的能量,使电弧不易发生重燃;再经过 1.5~2 个工频周波,辅助触头断开,因 R 消耗了部分能量,线路残余电压较低,上电弧不易发生重燃,即使中的电弧发生重燃,因 R 的阻尼作用,过电压显著降低。

图图图图图图图图图图图
20.在切除空载线路时,如何判断电弧是否能够重燃?答案:电弧重燃的根本原因是断口间的电压大,电场强度大,导致了断口间的空气被击穿,形成导电通路,在切除空载线路时,如果断路器触头之间的绝缘强度恢复速度大于恢复电压上升的速度,触头间的电弧就不会重燃,如果断路器触头之间的绝缘强度恢复速度小于恢复电压上升的速度,触头间的电弧就有可能发生重燃。

21.切除空载线路和切除空载变压器时为什么能产生过电压?答案:切空线操作是常见的一种操作,如检修线路。

断路器触头分离后,电弧熄灭,但触头间恢复电压上升速度超过了介质强度的恢复速度,电弧就可能发生重燃,在线路上出现过电压。

切除空载变压器时流过电感的电流在到达自然零点前被断路器强行切断,称为强制熄弧,使得储存在电感中的磁场能量被强迫转化为电场能,导致电压的升高。

22.为什么说自动重合闸过电压是合闸过电压中最严重的一种?答案:正常合闸的情况,空载线路上没有残余电荷,初始电压 U c (0)=0。

如果是自动重合闸的情况,那么条件将更为不利,主要原因在于这时线路上有一定残余电荷和初始电压,重合闸时振荡将更加激烈。

计划性合空载线路产生的最大过电压为 2.0 倍,三相重合空载线路产生的最大过电压为 3.0 倍
23.影响合闸过电压产生的主要因素?答案:(1)合闸相位;如果合闸不是在电源电压接近幅值时发生,出现的合闸过电压自然就较低了。

(2)线路残余电压的大小与极性。

(3)线路参数,电网结构,母线出线数,断路器合闸时三相的同期性和导线的电晕有关
24.采用带并联电阻的断路器时,并联电阻主要起什么作用,可有效降低空载线路合闸过电压?答案:并联电阻起到了阻尼振荡以及降低了振荡过程中初始值与稳态值之间的差值的作用。

25.限制合闸过电压的措施有哪些?答案:(一)在断路器中加装并联合闸电阻;(二)采用同步合闸;(三)消除和削弱线路残余电压(电磁式电压互感器)。

(四)氧化锌避雷器
26.为什么在断路器的主触头上并联电阻有利于限制空载线路合闸过电压?答案:如图所示,带并联电阻的断路器合闸时,辅助触头 K2 先闭合,电阻 R 接入电路中,阻尼了高频振荡,R 愈大阻尼作用愈强,这个阶段过电压降低。

经过 1.5~2 个工频周期,主触头 K1 再闭合,把合闸电阻 R 短接,完成了合闸过程。

由于合闸的第一阶段,阻尼电阻 R 的作用,使线路电压较低,主触头合闸时触头之间电压也较低,主触头合闸产生的振荡过程较弱,合闸过电压也就较低。

R 两端的电压愈低,产生的过电压就愈低,并联电阻 R 愈小,过电压也愈低。

图图图图图图图图。

相关文档
最新文档