灰色理论预测模型及GM(1,1)matlab程序

合集下载

GM(1,1)模型中的MATLAB程序

GM(1,1)模型中的MATLAB程序

GM (1,1)模型中的MATLAB 程序一、GM (1,1)模型的建立:(1)、一次累加生成序列的MA TLAB 命令:>> X0=[142 340 200 500 900 800 490 980 463 1100];>> X1(1)=X0(1)X1 =142>> for k=2:10X1(k)=X1(k-1)+X0(k)endX1 =142 482 682 1182 20822882 3372 4352 4815 5915(2)、由一次累加生成序列紧邻均值生成的)1(Z 的MA TLAB 命令:>> X0=[142 340 200 500 900 800 490 980 463 1100];>> X1(1)=X0(1);>> for k=2:10X1(k)=X1(k-1)+X0(k)Z(k)=(1/2)*(X1(k)+X1(k-1))EndX1 =142 482 682 1182 20822882 3372 4352 4815 5915Z =1.0e+003 *0 0.3120 0.5820 0.9320 1.6320 2.4820 3.12703.86204.58355.3650(3)、GM (1,1)的灰微分方程模型为:b k aZ k X =+)()()1()0(。

设∧α为待估计参数向量,⎥⎦⎤⎢⎣⎡=∧b a α。

利用最小二乘法得到Y B B B ')'(1-∧=α,MA TLAB 程序如下:>> B=[-Z(2:10)',ones(9,1)];>> Y=(X0(2:10))';>> alfa=inv(B'*B)*B'*Yalfa =-0.1062371.6018(4)、GM (1,1)的灰微分方程模型 b k aZ k X =+)()()1()0(的时间相应序列为:ab e a b X k X ak +⋅-=+-∧))1(()1()0()1( 由.6018.371,1062.0=-=b a 令.)1(,)0(u X v a b u -== 计算得到1.3499-=u , 1.3641=v 。

灰色系统G(1,1)预测步骤【模板带代码】

灰色系统G(1,1)预测步骤【模板带代码】

=3499.075e -0.1062t

3641.075
编写程序
u=alpha(2)/alpha(1) v=X0(1)-u v=3499.075 u=—3641.075
(5)进行参差检验
1)根据预测公式,计算
v=3499.075 u=—3641.075

1
k
1


X
0
1
for n=0:10
X2(n+1)=v*exp(-alpha(1)*n)+u
end
X2
2.0690
2)累减生成序列
Xˆ X3 =1.0e+003 * (0) 0.1420 0.4079 0.4536
0.5044
0.7713 0.8577 0.9537 1.0605
源程序:X3(1)=X2(1)
for m=1:10
kesi =
4.4388 339.0664 176.2445 203.6132
0 0.1998 1.2682 0.2130 0.8524 0.1330
0.0089
0.3767
0.2203
0.4155
{0%,19.98%,126.82%,0.89%,37.67% ,22.03% ,41.55% ,21.30%,85.24%,13.30%}
e=
179.4592 111.5134 74.1747 175.0204 159.6072 29.2461 215.2168 33.1910
3.2147 24.1540
源程序:S0=0.6745*X0std e=abs(daita0-daita0mean) 对所有的 e 都小于 S0 ,故小参差概率 P(k S0) 1 0.95

Matlab+灰色预测模型模型GM(1,1)

Matlab+灰色预测模型模型GM(1,1)

GM(1,1)灰色预测模型IntroductionInitial给定原始序列:x(0) =(x(0)(1), x(0)(2), x(0)(3)…, x(0)(n))Step 1一次AGO(1-AGO)生成序列,以弱化原始序列的随机性和波动性:x(1) =(x(1)(1), x(1)(2), x(1)(3)…, x(1)(n)) Matlab Programclearsyms a b;c=[a b]';fid=fopen('.\Grey Model\test.txt');x0=fscanf(fid,'%f');x0=x0';fclose(fid);x1=cumsum(x0); %原始数据累加n=length(x0);for i=1:(n-1)z(i)=(x1(i)+x1(i+1))/2; %生成累加矩阵end%计算待定参数的值Y=x0;Y(1)=[];Y=Y';B=[-z;ones(1,n-1)];B=B';c=inv(B'*B)*B'*Y;c=c';a=c(1);b=c(2);%预测后续数据%预测之后10个时间单位的数据xx1=[];xx1(1)=x0(1);for i=2:(n+10)xx1(i)=(x0(1)-b/a)/exp(a*(i-1))+b/a; endxx0=[];xx0(1)=x0(1);Step 2(1) dx (1)dt+ax (1)(t )=u ,式中a, u 为待定系数。

灰微分方程模型为:x (0)(k )+az (1)(k )=u ,z 为背景值z (1)(k )=1/2(x (1)(k )+x (1)(k −1))(2) 构造矩阵B 和数据向量Y nY n =Ba ̂Y n =[ x (0)(2)x (0)(3)⋮x (0)(n )] , B =[ −1/2(x (1)(1)+x (1)(2)),−1/2(x (1)(2)+x (1)(3)),⋮−1/2(x (1)(n −1)+x (1)(n )), 1 1 ⋮ 1]a ̂=(au)=(B T B)−1B T Y nStep 3模型响应函数x ̂(1)(k +1)=(x (0)(1)−u a )e −ak +u ax ̂(0)(k +1)=x ̂(1)(k +1)−x ̂(1)(k )Step 4检验和判断GM(1,1)模型的精度 (1) 残差检验for i=2:(n+10)xx0(i)=xx1(i)-xx1(i-1); end%关联度检验 for i=1:ne(i)=abs(x0(i)-xx0(i)); endmmax=max(e); for i=1:nee(i)=0.5*mmax/(e(i)+0.5*mmax); endr=sum(ee)/n; %后验差检验x0bar=sum(x0)/n; s1=0; for i=1:ns1=s1+(x0(i)-x0bar)^2; ends1=sqrt(s1/n); s2=0;ebar=sum(e)/n; for i=1:ns2=s2+(e(i)-ebar)^2; ends2=sqrt(s2/n); C=s2/s1; p=0;for i=1:nif abs(e(i)-ebar)<0.6745*s1绝对误差:ε(k)=|x(0)(k)−x̂(0)(k)|相对误差:Φ(k)=ε(k)x(0)(k)(2) 关联度检验分辨率β一般取0.5,此时若关联度大于0.6则认为模型可接受(3) 后验差检验和小误差概率原始序列标准差:S1=√∑[x(0)(i)−x̅(0)]2n绝对误差序列标准差:S2=√∑[ε(i)−ε̅]2n计算方差比:C=S2S1小误差概率:P=P{|ε(i)−ε̅|<0.6745S1}p=p+1;endendp=p/n;Cpif p>0.95&C<0.35disp('预测精度好');else if p>0.8&C<0.5disp('预测合格');else if p>0.7&C<0.65disp('预测勉强合格'); elsedisp('预测不合格'); endendend%原始数据与预测数据进行比较t1=1:n;t2=1:(n+10);xx0plot(t1,x0,'o',t2,xx0)。

改进的灰色预测GM(1,1)模型的MATLAB实现

改进的灰色预测GM(1,1)模型的MATLAB实现

改进的灰色预测GM(1,1)模型的MATLAB实现杨旭【摘要】灰色系统理论中的灰色预测理论已得到了广泛的应用,文章简单介绍了改进的灰色预测GM (1,1)模型,使用MATLAB语言给出了建立模型的算法程序,为高效地利用MATLAB强大的科学计算功能解决一些GM(1,1)模型预测等数据处理问题提供了方便。

【期刊名称】《江苏科技信息》【年(卷),期】2014(000)007【总页数】2页(P69-70)【关键词】灰色预测;GM(1,1)模型;改进模型;MATLAB算法程序【作者】杨旭【作者单位】郑州大学水利与环境学院,河南郑州 450001【正文语种】中文0 引言灰色系统理论[1]是由我国学者邓聚龙教授于1982 年在国际上首先提出来的,用于研究少数据、贫信息的不确定性问题的理论方法。

该理论的主要内容之一就是以GM(1,1)模型为核心的预测模型体系。

该模型在工业、农业、商业等经济领域以及环境、社会等领域中都有广泛应用。

然而在使用GM(1,1)模型进行预测的过程中,也会出现预测模型精度较低的情况。

许多学者提出了改进预测模型精度的方法[2-3]。

其中,杨华龙[4]等学者在分析了以往学者的改进方法后认为虽然以往学者提出的模型改进方法对模型精度的提高有所帮助,但模型预测公式本身存在的缺陷并未得到有效的改进。

因此在分析了GM(1,1)模型预测公式的形成过程后,提出并使用自动寻优定权对背景值进行了选择,使用最小二乘法原理对GM(1,1)模型的初始值进行了改进。

且通过实例结果表明,提出的改进方法是有效和完善的,对GM(1,1)模型的预测精度也有较大的提高。

MATLAB 是美国MathWorks 公司出品的科学计算软件,具有强大的科学计算功能和出色的图形处理功能,被广泛地应用于教学和科研之中,是人们进行科学计算等工作的强大有力的工具。

鉴于此,本文使用MATLAB 语言编写算法,实现改进的灰色预测GM(1,1)模型的程序化,有利于相关学者在实际工作中方便使用改进的GM(1,1)模型,进行便捷而又科学地开展预测等研究工作。

灰色模型预测GM(1,1)MATLAB程序代码

灰色模型预测GM(1,1)MATLAB程序代码

灰⾊模型预测GM(1,1)MATLAB程序代码版权所有引⽤请注明出处function gmcal=gm1(x)%% ⼆次拟合预测GM(1,1)模型%x = [5999,5903,5848,5700,7884];sizexd2 = size(x,2);%求数组长度k=0;for y1=xk=k+1;if k>1x1(k)=x1(k-1)+x(k);%累加⽣成z1(k-1)=-0.5*(x1(k)+x1(k-1));%z1维数减1,⽤于计算Byn1(k-1)=x(k);elsex1(k)=x(k);endend%x1,z1,k,yn1sizez1=size(z1,2);%size(yn1);z2 = z1';z3 = ones(1,sizez1)';YN = yn1'; %转置B=[z2 z3];au0=inv(B'*B)*B'*YN;au = au0';afor = au(1);ufor = au(2);ua = au(2)./au(1);constant1 = x(1)-ua;afor1 = -afor;x1t1 = 'x1(t+1)';estr = 'exp';tstr = 't';leftbra = '(';rightbra = ')';strcat(x1t1,'=',num2str(constant1),estr,leftbra,num2str(afor1),tstr,rightbra,'+',leftbra,num2str(ua),rightbra) %输出时间响应⽅程k2 = 0;for y2 = x1k2 = k2 + 1;if k2 > kelseze1(k2) = exp(-(k2-1)*afor);endendsizeze1 = size(ze1,2);z4 = ones(1,sizeze1)';G=[ze1' z4];X1 = x1';au20=inv(G'*G)*G'*X1;au2 = au20';Aval = au2(1);Bval = au2(2);strcat(x1t1,'=',num2str(Aval),estr,leftbra,num2str(afor1),tstr,rightbra,'+',leftbra,num2str(Bval),rightbra) %输出时间响应⽅程nfinal = sizexd2-1 + 1; %决定预测的步骤数5 这个步骤可以通过函数传⼊%nfinal = sizexd2 - 1 + 1;%预测的步骤数 1for k3=1:nfinalx3fcast(k3) = constant1*exp(afor1*k3)+ua;end%⼀次拟合累加值for k31=nfinal:-1:0if k31>1x31fcast(k31+1) = x3fcast(k31)-x3fcast(k31-1);elseif k31>0x31fcast(k31+1) = x3fcast(k31)-x(1);elsex31fcast(k31+1) = x(1);endendendx31fcast%⼀次拟合预测值for k4=1:nfinalx4fcast(k4) = Aval*exp(afor1*k4)+Bval;end%x4fcastfor k41=nfinal:-1:0if k41>1x41fcast(k41+1) = x4fcast(k41)-x4fcast(k41-1);elseif k41>0x41fcast(k41+1) = x4fcast(k41)-x(1);elsex41fcast(k41+1) = x(1);endendendx41fcast,x%⼆次拟合预测值%***精度检验p C************//////////////////////////////////k5 = 0;for y5 = xk5 = k5 + 1;if k5 > sizexd2elseerr1(k5) = x(k5) - x41fcast(k5);endend%err1%绝对误差xavg = mean(x);%xavg%x平均值err1avg = mean(err1);%err1avg%err1平均值k5 = 0;s1total = 0 ;for y5 = xk5 = k5 + 1;if k5 > sizexd2elses1total = s1total + (x(k5) - xavg)^2;endends1suqare = s1total ./ sizexd2;s1sqrt = sqrt(s1suqare);%s1suqare,s1sqrt%s1suqare 残差数列x的⽅差 s1sqrt 为x⽅差的平⽅根S1k5 = 0;s2total = 0 ;for y5 = xk5 = k5 + 1;if k5 > sizexd2elses2total = s2total + (err1(k5) - err1avg)^2;endends2suqare = s2total ./ sizexd2;%s2suqare 残差数列err1的⽅差S2Cval = sqrt(s2suqare ./ s1suqare);Cval%nnn = 0.6745 * s1sqrt%Cval C检验值k5 = 0;pnum = 0 ;for y5 = xk5 = k5 + 1;if abs( err1(k5) - err1avg ) < 0.6745 * s1sqrtpnum = pnum + 1;%ppp = abs( err1(k5) - err1avg )elseendendpval = pnum ./ sizexd2;pval%p检验值%arr1 = x41fcast(1:6)%预测结果为区间范围预测步长和数据长度可调整程序参数进⾏改进。

用Matlab实现GM_1_1_灰色模型的供电量预测

用Matlab实现GM_1_1_灰色模型的供电量预测

人工智能及识别技术ARTIFICIAL INTELLIGENCE AND IDENTIFICATION TECHNIQUES1灰色预测模型GM (1,1)灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论,由我国邓聚龙教授在1982年首次提出的。

灰色系统理论具有所需样本数据少,不需要计算统计特征量等优点。

灰色预测解决了连续微分方程的建模问题。

它通过原始数据的整理来寻找数的规律。

在建模时,首先对原始数据进行累加或累减生成,形成新的序列,对新序列建立微分方程模型和解析分析,达到预测原始序列的目的。

其中GM (1,1)模型是基于灰色系统理论的常用预测模型。

因为它具有要求原始数据少、不考虑分布规律、不考虑变化趋势、运算方便、短期精度高、易于检查的优点,得到了广泛的应用。

它的基本原理是:认为原始数列是逐步增长或减少的,通过对原始数列应用累加生成这样的数据处理方法可以得到一条具有指数增长规律的上升形状数列。

由于一阶微分方程的解即是指数增长形式,因此通过建立一阶微分方程模型和累减生成还原就可以得到预测数列。

2GM (1,1)模型的建立(1)对随机序列(i=0,1,2…n )作一次累加(1…AGO)生成序列(i=0,1,2…n ),其中。

(2)按照X i (1)的指数增长规律,可知X i (1)满足下列一阶线性微分方程。

(X(1)是时间t 的函数,这是灰色方程,部分数据未知)(3)参数估计:记待定,经离散化处理,得:Y n=BA.使用最小二乘法求出A 的近似解:,将近似值代入原微分方程:(*)(原微分方程的白化方程)其中(4)Xi (1)的预测值:求解微分方程(*)得到原微分方程的近似解,其中X 1(1)=X 1(0);写成离散形式,得到X i (1)的预测值:(5)X i(0)的预测值:3应用实例用Matlab 实现GM (1,1)灰色模型的供电量预测梁智勇(广东电网公司肇庆供电局,肇庆526040)摘要:介绍灰色预测模型GM (1,1)在电力系统中的预测应用,同时在Matlab 平台上实现了灰色模型GM (1,1)函数的编制。

GM(1,1)灰色预测法理论及matlab语言程序

GM(1,1)灰色预测法理论及matlab语言程序
王文冬;杨颖显
【期刊名称】《黑龙江科技信息》
【年(卷),期】2013(0)29
【摘要】本文通过对GM(1,1)灰色水质预测法研究进展的相关介绍,分析了
GM(1,1)灰色水质预测法模型理论研究,并实现了GM (1,1)灰色模型的matlab程序化。

【总页数】1页(P170-170)
【作者】王文冬;杨颖显
【作者单位】沈阳建筑大学市政与环境工程学院,辽宁沈阳 110168;沈阳建筑大学市政与环境工程学院,辽宁沈阳 110168
【正文语种】中文
【相关文献】
1.基于MATLAB的灰色预测GM(1,1)模型在经济分析中的应用 [J], 宋秀英
2.灰色预测系统GM(1,1)模型及其Matlab实现 [J], 殷鹏远
3.用MATLAB实现灰色预测GM(1,1)模型 [J], 唐丽芳;贾冬青;孟庆鹏
4.改进的灰色预测GM(1,1)模型的MATLAB实现 [J], 杨旭
5.福建省2030年碳达峰前二氧化碳排放趋势研究——基于GM(1,1)、GM(2,1)与GM(1,1)邓聚龙灰色预测模型 [J], 柳尧云;林润玮;阎虎勤
因版权原因,仅展示原文概要,查看原文内容请购买。

数学建模-灰色预测模型GM(1,1)_MATLAB

数学建模-灰⾊预测模型GM(1,1)_MATLAB %GM(1,1).m%建⽴符号变量a(发展系数)和b(灰作⽤量)syms a b;c = [a b]';%原始数列 AA = [174, 179, 183, 189, 207, 234, 220.5, 256, 270, 285];%填⼊已有的数据列!n = length(A);%对原始数列 A 做累加得到数列 BB = cumsum(A);%对数列 B 做紧邻均值⽣成for i = 2:nC(i) = (B(i) + B(i - 1))/2;endC(1) = [];%构造数据矩阵B = [-C;ones(1,n-1)];Y = A; Y(1) = []; Y = Y';%使⽤最⼩⼆乘法计算参数 a(发展系数)和b(灰作⽤量)c = inv(B*B')*B*Y;c = c';a = c(1);b = c(2);%预测后续数据F = []; F(1) = A(1);for i = 2:(n+10) %这⾥10代表向后预测的数⽬,如果只预测⼀个的话为1F(i) = (A(1)-b/a)/exp(a*(i-1))+ b/a;end%对数列 F 累减还原,得到预测出的数据G = []; G(1) = A(1);for i = 2:(n+10) %10同上G(i) = F(i) - F(i-1); %得到预测出来的数据enddisp('预测数据为:');G%模型检验H = G(1:10); %这⾥的10是已有数据的个数%计算残差序列epsilon = A - H;%法⼀:相对残差Q检验%计算相对误差序列delta = abs(epsilon./A);%计算相对误差Qdisp('相对残差Q检验:')Q = mean(delta)%法⼆:⽅差⽐C检验disp('⽅差⽐C检验:')C = std(epsilon, 1)/std(A, 1)%法三:⼩误差概率P检验S1 = std(A, 1);tmp = find(abs(epsilon - mean(epsilon))< 0.6745 * S1);disp('⼩误差概率P检验:')P = length(tmp)/n%绘制曲线图t1 = 1995:2004;%⽤⾃⼰的,如1 2 3 4 5...t2 = 1995:2014;%⽤⾃⼰的,如1 2 3 4 5... plot(t1, A,'ro'); hold on;plot(t2, G, 'g-');xlabel('年份'); ylabel('污⽔量/亿吨');legend('实际污⽔排放量','预测污⽔排放量'); title('长江污⽔排放量增长曲线'); %都⽤⾃⼰的grid on;。

【数学建模】day14-建立GM(1,1)预测评估模型应用

【数学建模】day14-建⽴GM(1,1)预测评估模型应⽤学习建⽴GM(1,1)灰⾊预测评估模型,解决实际问题:SARS疫情对某些经济指标的影响问题⼀、问题的提出 2003 年的 SARS 疫情对中国部分⾏业的经济发展产⽣了⼀定影响,特别是对部分疫情较严重的省市的相关⾏业所造成的影响是显著的,经济影响主要分为直接经济影响和间接影响。

直接经济影响涉及商品零售业、旅游业、综合服务等⾏业。

很多⽅⾯难以进⾏定量的评估,现仅就 SARS 疫情较重的某市商品零售业、旅游业和综合服务业的影响进⾏定量的评估分析。

究竟 SARS 疫情对商品零售业、旅游业和综合服务业的影响有多⼤,已知某市从 1997 年 1 ⽉到 2003 年 12 ⽉的商品零售额、接待旅游⼈数和综合服务收⼊的统计数据如下⾯三表所⽰。

试根据这些历史数据建⽴预测评估模型,评估 2003 年 SARS 疫情给该市的商品零售业、旅游业和综合服务业所造成的影响。

⼆、模型的分析与假设模型分析: 根据所掌握的历史统计数据可以看出,在正常情况下,全年的平均值较好地反映了相关指标的变化规律。

这样,对于每⼀个经济指标,考虑从两部分着⼿建⽴预测评估模型:1. 利⽤灰⾊理论建⽴GM(1,1)模型,根据1997-2002年的平均值序列,预测2003年的平均值。

2. 通过历史数据计算每⼀个⽉的指标值与全年总值之间的关系,并将此关系拓展到2003年,进⽽预测出2003年每⼀个⽉的指标值。

进⽽与真实数据值作⽐较,从⽽得出结论。

模型假设:1. 假设所有的统计数据真实可靠。

2. 假设该市SARS疫情流⾏期间和结束之后,数据的变化只与SARS疫情的影响有关,不考虑其他随机因素的影响。

三、建⽴灰⾊预测模型GM(1,1) 由已知数据,对于1997-2002年的某项指标记为A= (a ij)6*12,计算每年的平均值作为初始数列。

记为: 并要求级⽐。

对x(0)做⼀次累加得1-AGO序列: 式中: 取x(1)的加权均值序列: 式中,α是确定参数。

灰色预测及MATLAB实现

的未来预测值。
(3)对累加生成数据做均值生成 B 矩阵与常数项向量Yn ,即
0.5(x(1) (1) x(1) (2))
B

0.5(
x(1)
(2)

x(1)
(3))


,Yn

(x(0) (2), x(0) (3),
, x(0) (n))T


0.5(x(1) (n 1) x(1) (n))
3.2 灰色预测的MATLAB程序
3.2.1 典型程序结构
(1)对原始数据进行累加。
矩阵处理, MATLAB的长

(2)构造累加矩阵B与常数向量。
(3)求解灰参数。
(4)将参数代入预测模型进行数据预测。
【例】某公司1999-2008年利润为(元/年):[89677 99215 109655 120333 135823 159878 182321 209407 246619 300670], 预测该公司未来几年的利润情况。
已知本届会议的回执情况(表1),往几届会议代表回执和 与会情况(表2),根据这些数据预测本届与会代表。
表1 回执中对住房的要求
要求 男 女
合住1 154 78
合住2 104 48
合住3 32 17
独住1 107 59
独住2 68 28
独住3 41 19
表2 以往几届代表的回执参会情况表
届次
第一届
第二届
dx
由于aˆ 是通过最小二乘法求出的近似值,因此 xˆ(1) (t 1)事近似表达
式,与原序列区分,多了一个“帽子”。
(6)对函数表达式 xˆ(1) (t 1)及 xˆ(1) (t)进行离散,将二者作差以便还
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰色理论预测模型及GM(1,1)matlab程序灰色预测方法简介
灰色预测是一种对含有不确定因素的系统进行预测的方法。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

通过对原始数据的整理寻找数的规律,分为三类:
a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。

累加前数列为原始数列,累加后为生成数列。

b、累减生成:前后两个数据之差,累加生成的逆运算。

累减生成可将累加生成还原成非生成数列。

c、映射生成:累加、累减以外的生成方式。

建模步骤
a、建模机理
b、把原始数据加工成生成数;
c、对残差(模型计算值与实际值之差)修订后,建立差分微分方程模型;
d、基于关联度收敛的分析;
e、gm模型所得数据须经过逆生成还原后才能用。

f、采用“五步建模(系统定性分析、因素分析、初步量化、动态量化、优化)”法,建立一种差分微分方程模型gm(1,1)预测模型。

GM(1,1)程序:
% 本程序主要用来计算根据灰色理论建立的模型的预测值。

% 应用的数学模型是GM(1,1)。

% 原始数据的处理方法是一次累加法。

clear;clc;
% load ('data.txt');
% y=data';
y=[3 4 5 4 7 7];
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
yy(i)=yy(i-1)+y(i);
end
B=ones(n-1,2);
for i=1:(n-1)
B(i,1)=-(yy(i)+yy(i+1))/2;
B(i,2)=1;
end
BT=B';
for j=1:n-1
YN(j)=y(j+1);
end
YN=YN';
A=inv(BT*B)*BT*YN;
a=A(1);
u=A(2);
t=u/a;
t_test=input('请输入需要预测个数:');
i=1:t_test+n;
yys(i+1)=(y(1)-t).*exp(-a.*i)+t;
yys(1)=y(1);
for j=n+t_test:-1:2
ys(j)=yys(j)-yys(j-1);
end
x=1:n;
xs=2:n+t_test;
yn=ys(2:n+t_test);
plot(x,y,'^r',xs,yn,'*-b');
det=0;
for i=2:n
det=det+abs(yn(i)-y(i));
end
det=det/(n-1);
disp(['百分绝对误差为:',num2str(det),'%']); disp(['预测值为:',num2str(ys(n+1:n+t_test))]);。

相关文档
最新文档