直线与圆锥曲线的综合问题资料

合集下载

高考直线和圆锥曲线综合问题

高考直线和圆锥曲线综合问题

第十七讲 直线与圆锥曲线的综合问题1.(中点弦)(2013·课标全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1 【解析】 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1. ②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2. ∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32, ∴E 的方程为x 218+y 29=1.【答案】 D2.(直线与抛物线位置关系)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1) 【解析】 设直线AB 的倾斜角为θ,由题意知p =2,F (1,0),|AF ||BF |=3.又1|F A |+1|FB |=2p ,∴13|BF |+1|BF |=1,∴|BF |=43,|AF |=4,∴|AB |=163. 又由抛物线焦点弦公式:|AB |=2p sin 2θ,∴163=4sin 2θ, ∴sin 2θ=34,∴sin θ=32,∴k =tan θ=±3.故选C.【答案】 C3.(几何最值)已知椭圆x 24+y 2b 2=1(0<b <2)与y 轴交于A ,B 两点,点F 为该椭圆的一个焦点,则△ABF 面积的最大值为( )A .1B .2C .4D .8【解析】 不妨设点F 的坐标为(4-b 2,0),而|AB |=2b ,∴S △ABF =12×2b ×4-b 2=b 4-b 2=b 2(4-b )2≤b 2+4-b 22=2(当且仅当b 2=4-b 2,即b 2=2时取等号).故△ABF 面积的最大值为2. 【答案】 B图5-3-14.(椭圆与双曲线)(2013·浙江高考改编)如图5-3-1,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.【解析】 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3. 因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8,所以|AF 2|-|AF 1|=22, 因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.【答案】625.(参数的范围)(2013·安徽高考)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.【解析】 设C (x ,x 2),由题意可取A (-a ,a ),B (a ,a ), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a )x 2+a 2-a =0,即y 2+(1-2a )y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.【答案】 [1,+∞)直线与圆锥曲线的位置关系(2013·天津高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,求k 的值.【思路点拨】 (1)由离心率和椭圆基本量之间的关系建立方程,得椭圆方程;(2)联立直线与椭圆方程,借助韦达定理,结合向量的坐标运算求解.【自主解答】 (1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1, 所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.1.(1)本题最常见的是计算错误,关键在于细心认真,平时强化计算能力训练.(2)用代数方法研究曲线的性质,关键是方程思想的应用.2.直线与圆锥曲线的位置关系,联立方程,充分利用根与系数的关系建立等式(或不等式)整体代入求解,并注意判别式满足的条件限制,防止增解.变式训练1 (2013·广州调研)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. 【解】 (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1, 又点P (0,1)在曲线C 1上,∴0a 2+1b 2=1,得b =1,则a 2=b 2+c 2=2, 所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m , 由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,消去y 得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m ,消去y 得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切, 所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.②综合①②,解得⎩⎪⎨⎪⎧ k =22,m =2,或⎩⎪⎨⎪⎧k =-22,m =- 2. 所以直线l 的方程为y =22x +2或y =-22x - 2.定点、定值问题(2013·陕西高考)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明直线l 过定点.【思路点拨】 (1)设出圆心坐标,利用圆在y 轴上截得的弦长构建方程,求得圆心的轨迹方程.(2)设出直线l 的方程,与曲线C 联立,得关于x 的方程,依据根与系数的关系和x 轴平分∠PBQ ,得P 、Q 两点的坐标关系,进而可证直线l 过定点.【自主解答】 (1)如图a ,设动圆圆心O 1(x ,y ),由题意,|O 1A |=|O 1M |.图a当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴|O 1M |=x 2+42 又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42.化简得,y 2=8x (x ≠0).当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:如图b ,由题意,设直线l 的方程为y =kx +b (k ≠0),图bP (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0. 由根与系数的关系得, x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2.②∵x 轴是∠PBQ 的角平分线, ∴y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0,∴(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, ∴2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①②代入③并整理得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线过定点(1,0).1.解题时注意两点:在第(1)问中,不可忽视(0,0)在y 2=8x 上,注意讨论;第(2)问中,不可缺少Δ=b 2-4ac >0,直线与圆锥曲线的综合问题,要把握好以下几个“不”:①不能缺少“Δ”;②不能忽视直线的斜率;③不能小视“基本”变形;④不能弱化几何证明;⑤不能忘记解题结论.2.(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.变式训练2 (2013·江西高考)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图5-3-2所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.图5-3-2【解】 (1)因为e =32=c a ,所以a =23c ,b =13c . 代入a +b =3,得c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明 因为B (2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝⎛⎭⎫k ≠0,k ≠±12,① ①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14, 则2m -k =2k +12-k=12(定值).范围与最值问题 错误!(2013·广东高考)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.【思路点拨】 (1)由点到直线的距离求c 的值,得到F (0,c )后可得抛物线的方程;(2)采用“设而不求”策略,先设出A (x 1,y 1),B (x 2,y 2),结合导数求切线P A ,PB 的方程,代入点P 的坐标,根据结构,可得直线AB 的方程;(3)将|AF |·|BF |转化为关于x 0(或y 0)的函数,再求最值.【自主解答】 (1)依题意,设抛物线C 的方程为x 2=4cy (c >0), 由点到直线的距离公式,得|0-c -2|1+1=322,解得c =1(负值舍去),故抛物线C 的方程为x 2=4y . (2)由x 2=4y ,得y =14x 2,其导数为y ′=12x .设A (x 1,y 1),B (x 2,y 2),则x 21=4y 1,x 22=4y 2,切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0.因为切线P A ,PB 均过点P (x 0,y 0), 所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以⎩⎪⎨⎪⎧ x =x 1,y =y 1和⎩⎪⎨⎪⎧x =x 2,y =y 2为方程x 0x -2y 0-2y =0的两组解.所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1.由⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 并整理得到关于y 的方程为y 2+(2y 0-x 20)y +y 20=0. 由一元二次方程根与系数的关系得y 1+y 2=x 20-2y 0,y 1y 2=y 20.所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1.又点P (x 0,y 0)在直线l 上,所以x 0-y 0-2=0, 即x 0=y 0+2,所以y 20+x 20-2y 0+1=2y 20+2y 0+5=2⎝⎛⎭⎫y 0+122+92, 所以当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.1.(1)第(2)题求过两切点A ,B 的直线方程,即“切点弦所在的直线方程”,求解的依据是“如果两个不同点的坐标满足一条直线的方程,则这个方程就是过上述两点的直线方程”.(2)第(3)题求解的关键运用焦半径公式,将|AF |·|BF |转化为关于y 0的一元函数,配方法求最值.2.范围与最值问题,要根据题意画出图形,通过代数运算细化图形结构,重视数形结合的数学思想的运用,求解的常用方法有两种:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或利用基本不等式求最值.变式训练3 平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x+y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.【解】 (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463. 由题意可设直线CD 的方程为y =x +n (-533<n <3),设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积 S =12|CD |·|AB |=8699-n 2,当n =0时,S 取得最大值,最大值为863.86所以四边形ACBD面积的最大值为3.2013年山东、广东、湖北、江西等省市都对圆锥曲线中的探索性问题进行了考查,主要涉及曲线是否过定点,是否取最值,探寻某些条件是否存在等等,预测2014年高考仍将以探索性问题为载体,考查圆锥曲线的定点、定值、最值等问题.圆锥曲线中探索性问题的求解策略(12分)设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标;(2)过原点斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ ⊥PH?若存在,请说明理由.【规范解答】(1)如图(1),设M(x,y),A(x0,y0),则由|DM|=m|DA|(m>0,且m≠1),可得x=x0,|y|=m|y0|,所以x0=x,|y0|=1m|y|.①因为A点在单位圆上运动,所以x20+y20=1. ②将①式代入②式即得所求曲线C的方程为x2+y2m2=1(m>0,且m≠1).2分因为m∈(0,1)∪(1,+∞),所以当0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(-1-m2,0),(1-m2,0);4分当m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(0,-m2-1),(0,m2-1).5分(2)如图(2)、(3),∀k>0,设P(x1,kx1),H(x2,y2),则Q (-x 1,-kx 1),N (0,kx 1).直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得(m 2+4k 2)x 2+4k 2x 1x+k 2x 21-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由根与系数的关系可得: -x 1+x 2=-4k 2x 1m 2+4k 2,即x 2=m 2x 1m 2+4k 2.7分因为点H 在直线QN 上,所以y 2-kx 1=2kx 2=2km 2x 1m 2+4k 2.于是PQ →=(-2x 1,-2kx 1),PH →=(x 2-x 1,y 2-kx 1)=(-4k 2x 1m 2+4k 2,2km 2x 1m 2+4k 2).9分而PQ ⊥PH 等价于PQ →·PH →=4(2-m 2)k 2x 21m 2+4k 2=0, 即2-m 2=0.由m >0,得m = 2.11分故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .12分【阅卷心语】易错提示 (1)本题第(1)问在求解过程中,常因不分m >1和0<m <1致误. (2)本题第(2)问在求解过程中,常因不会表示H 点的坐标致误.防范措施 (1)对于方程x 2A +y 2B =1(A >0,B >0,A ≠B )而言,A >B 表示焦点在x 轴上的椭圆;A <B 表示焦点在y 轴上的椭圆.(2)对于H 点的求解,结合题设条件可知有两种思路,一种是求直线QN 与椭圆C 的交点;另一种是利用Q 、N 、H 三点共线.就一般题目而言,联立方程组,消元成一元二次方程,利用根与系数的关系及题设条件求解,是解答此类问题的常规思路.1.在抛物线y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)【解析】 显然点A 在抛物线y =2x 2内部.过点A 作准线l 的垂线AH ,垂足为H ,交抛物线于P . 由抛物线定义,|PF |=|PH |, ∴(|P A |+|PF |)min =|PH |+|P A |=|AH |. 将x =1代入y =2x 2,得y =2,∴点P 的坐标为(1,2). 【答案】 B2.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【解】 (1)椭圆W :x 24+y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.所以菱形OABC 的面积是 12|OB |·|AC |=12×2×2|m |= 3. (2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2.因为M 为AC 和OB 的交点,所以直线OB 的斜率为-14k.因为k ·⎝⎛⎭⎫-14k ≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.。

圆锥曲线的综合问题:直线与圆锥曲线的位置关系

圆锥曲线的综合问题:直线与圆锥曲线的位置关系

圆锥曲线的综合问题:直线与圆锥曲线的位置关系ZHI SHI SHU LI 知识梳理1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共 点及有两个相异的公共点. (2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l 的方程为Ax +By +C =0,圆锥曲线方程f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元,如消去y 后得ax 2+bx +c =0, ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合). ②若a ≠0,设Δ=b 2-4ac .当Δ__>___0时,直线和圆锥曲线相交于不同两点; 当Δ__=___0时,直线和圆锥曲线相切于一点; 当Δ__<___0时,直线和圆锥曲线没有公共点. 2.直线与圆锥曲线相交时的弦长问题(1)斜率为k (k 不为0)的直线与圆锥曲线交于两点P 1(x 1,y 1)、P 2(x 2,y 2),则所得弦长|P 1P 2|=1+k 2·|x 1-x 2|或|P 1P 2|=__1+1k2·|y 1-y 2|___. (2)当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). 3.圆锥曲线的中点弦问题遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0;在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0.ZHONG YAO JIE LUN重要结论求解圆锥曲线标准方程的方法是“先定型,后计算”(1)定型,就是指定类型.也就是确定圆锥曲线的焦点位置,从而设出标准方程.(2)计算,就是利用待定系数法求出方程中的a 2,b 2或p .另外.当焦点位置无法确定时,椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0),抛物线常设为y 2=2ax 或x 2=2ay (a ≠0).SHUANG JI ZI CE双基自测1.(2019·天津模拟)若双曲线x 23-16y 2p 2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p =( D ) A .14B .12C .2D .4[解析] 因为双曲线x 23-16y 2p 2=1(p >0)的左焦点为(-3+p 216,0),抛物线y 2=2px 的准线方程为x =-p2,所以-3+p 216=-p2,得p =4,故选D . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的方程为( D ) A .x 23+y 2=1B .x 23+y 22=1C .x 29+y 24=1D .x 29+y 25=1[解析] 由椭圆的定义,知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =12,所以a =3.因为椭圆的离心率e =c a =23,所以c =2,所以b 2=a 2-c 2=5,所以椭圆C 的方程为x 29+y 25=1,故选D .3.(2019·宁夏模拟)直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( B ) A .y 2=-12x B .y 2=-8x C .y 2=-6xD .y 2=-4x[解析] 设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B .4.已知抛物线x 2=8y 与双曲线y 2a2-x 2=1(a >0)的一个交点为M ,F 为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为( B ) A .5x ±3y =0 B .3x ±5y =0 C .4x ±5y =0D .5x ±4y =0[解析] 设点M (x 0,y 0),则有|MF |=y 0+2=5,y 0=3,x 20=24,由点M (x 0,y 0)在双曲线y 2a2-x 2=1上,得y 20a 2-x 20=1,9a 2-24=1,a 2=925,所以双曲线y 2a 2-x 2=1的渐近线方程为y 2a2-x 2=0,即3x ±5y =0,选B .5.(2019·桂林模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过(c,0),(0,b )两点的直线的距离为c2,则椭圆的离心率为( A )A .32B .22 C .12D .33[解析] 经过(c,0),(0,b )两点的直线方程为x c +yb =1,即bx +cy -bc =0,所以由题设得bcb 2+c 2=c2,化简得c 2=3b 2,得c 2=3(a 2-c 2),所以4c 2=3a 2,所以2c =3a ,故椭圆的离心率e =c a =32.故选A .6.(2019·温州模拟)双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点M (-3,4)关于一条渐近线的对称点恰为双曲线的右焦点F 2,则该双曲线的标准方程为__x 25-y 220=1___.[解析] 由题设知点M (-3,4)与右焦点F 2(c,0)关于直线y =ba x 对称,所以-4c +3·b a =-1,即4b =a (c +3)①,且线段MF 2的中点(c -32,2)在直线y =ba x 上,即2=b a ·c -32,得b (c -3)=4a ②.由①÷②得4c -3=c +34,得c 2=25,c =5,代入①可得b =2a .又c 2=a 2+b 2,所以25=a 2+(2a )2,所以a 2=5,从而b 2=4a 2=20. 故所求双曲线的标准方程为x 25-y 220=1.考点1 直线与圆锥曲线的位置关系——自主练透例1 (1)(2019·兰州检测)若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( B )A .至多一个B .2C .1D .0(2)(2019·湖北武汉调研)已知不过原点O 的直线交抛物线y 2=2px 于A ,B 两点,若OA ,AB 的斜率分别为k OA =2,k AB =6,则OB 的斜率为( D ) A .3 B .2 C .-2D .-3(3)已知直线y =kx -1与双曲线x 2-y 2=4的右支有两个交点,则k 的取值范围为( D ) A .(0,52) B .[1,52] C .(-52,52) D .(1,52) [解析] (1)∵直线mx +ny =4和圆O :x 2+y 2=4没有交点,∴4m 2+n 2>2,∴m 2+n 2<4.∴m 29+n 24<m 29+4-m 24=1-536m 2<1, ∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个,故选B .(2)由题意可知,直线OA 的方程为y =2x ,与抛物线方程y 2=2px联立得⎩⎪⎨⎪⎧y =2x ,y 2=2px ,得⎩⎪⎨⎪⎧x =p 2,y =p ,即A (p 2,p ),则直线AB 的方程为y -p =6(x -p2),即y =6x -2p ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =6x -2p ,y 2=2px ,得⎩⎨⎧ x =2p9,y =-2p 3或⎩⎪⎨⎪⎧x =p 2,y =p ,所以B (2p 9,-2p3),所以直线OB 的斜率为k OB =-2p 32p9=-3.故选D .(3)由题意知k >0,联立⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=4,整理得(1-k 2)x 2+2kx -5=0,因为直线y =kx -1与双曲线x 2-y 2=4的右支有两个交点,则联立所得方程有两个不同的正实数根x 1,x 2,所以⎩⎪⎨⎪⎧Δ=4k 2+20(1-k 2)>0,x 1+x 2=-2k 1-k2>0,x 1x 2=-51-k 2>0,解得1<k <52,即k ∈(1,52),故选D . 名师点拨 ☞研究直线和圆锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组的解的个数.注意:(1)在没有给出直线方程时,要对直线斜率不存在的情况进行讨论,避免漏解;(2)对于选择题、填空题,常利用几何条件,利用数形结合的方法求解.考点2 直线与圆锥曲线的弦长问题——师生共研例2 (2019·常州模拟)已知抛物线E :x 2=2py (p >0)上一点P 的纵坐标为4,且点P 到焦点F 的距离为5. (1)求抛物线E 的方程;(2)如图,设斜率为k 的两条平行直线l 1,l 2分别经过点F 和H (0,-1),l 1与抛物线E 交于A ,B 两点,l 2与抛物线E 交于C ,D 两点.问:是否存在实数k ,使得四边形ABDC 的面积为43+4?若存在,求出k 的值;若不存在,请说明理由.[解析] (1)由抛物线的定义知,点P 到抛物线E 的准线的距离为5. ∵抛物线E 的准线方程为y =-p 2,∴4+p2=5,解得p =2,∴抛物线E 的方程为x 2=4y . (2)由已知得,直线l 1:y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y 得x 2-4kx -4=0, Δ1=16(k 2+1)>0恒成立,|AB |=1+k 2·16(k 2+1)=4(k 2+1).直线l 2:y =kx -1,由⎩⎪⎨⎪⎧y =kx -1,x 2=4y ,消去y 得x 2-4kx +4=0,由Δ2=16(k 2-1)>0得k 2>1, |CD |=1+k 2·16(k 2-1)=4(k 2+1)(k 2-1), 又直线l 1,l 2间的距离d =2k 2+1,∴四边形ABDC 的面积S =12·d ·(|AB |+|CD |)=4(k 2+1+k 2-1).解方程4(k 2+1+k 2-1)=4(3+1),得k 2=2(满足k 2>1),∴存在满足条件的k ,k 的值为± 2. 名师点拨 ☞处理弦长问题的两个注意点(1)利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在时,可直接求交点坐标再求弦长;(2)涉及焦点弦长时要注意圆锥曲线定义的应用. 〔变式训练1〕(2019·贵阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =(x 12,y 1),n =(x 22,y 2),m ·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值?并说明理由. [解析] (1)∵k 1,k 2存在,∴x 1x 2≠0,∵m ·n =0, ∴x 1x 24+y 1y 2=0,∴k 1·k 2=y 1y 2x 1x 2=-14. (2)①当直线PQ 的斜率不存在,即x 1=x 2,y 1=-y 2时, 由y 1y 2x 1x 2=-14,得x 214-y 21=0, 又由P (x 1,y 1)在椭圆上,得x 214+y 21=1, ∴|x 1|=2,|y 1|=22,∴S △POQ =12|x 1||y 1-y 2|=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b .由⎩⎪⎨⎪⎧y =kx +b ,x 24+y 2=1得(4k 2+1)x 2+8kbx +4b 2-4=0,Δ=64k 2b 2-4(4k 2+1)(4b 2-4)=16(4k 2+1-b 2)>0, ∴x 1+x 2=-8kb4k 2+1,x 1x 2=4b 2-44k 2+1.∵x 1x 24+y 1y 2=0, ∴x 1x 24+(kx 1+b )(kx 2+b )=0,得2b 2-4k 2=1, ∵原点O 到直线PQ 的距离d =|b |1+k 2,∴S △POQ =12·|b |1+k 2·|PQ |=12|b |(x 1+x 2)2-4x 1x 2=2|b |4k 2+1-b 24k 2+1=1.综上可得,△POQ 的面积S 为定值.考点3 中点弦问题——多维探究角度1 利用中点弦确定直线方程例3 已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为__x +2y -3=0___.[解析] 易知此弦所在直线的斜率存在,所以设斜率为k .设A (x 1,y 1)、B (x 2,y 2),则x 214+y 212=1①,x 224+y 222=1②,①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2,∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.角度2 利用中点弦确定曲线方程例4 过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则抛物线方程为__x 2=2y 或x 2=4y ___.[解析] 设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=x p ,切线MA 的方程是y -y 1=x 1p(x -x 1),即y =x 1p x -x 212p .又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p ,即x 21-4x 1-4p 2=0;同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2.由线段AB 的中点的纵坐标是6得,y 1+y 2=12,即x 21+x 222p =(x 1+x 2)2-2x 1x 22p=12,16+8p 22p =12,解得p =1或p =2. 角度3 利用中点弦解决对称问题例5 已知双曲线x 2a 2-y 2b 2=1(a ,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( A ) A .32B .52C .2D .3[解析] 由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m =32,选A . 名师点拨 ☞处理中点弦问题常用的求解方法提醒:中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足. 〔变式训练2〕(1)(角度1)(2019·江西五市联考)已知直线y =1-x 与双曲线ax 2+by 2=1(a >0,b <0)的渐近线交于A 、B 两点,且过原点和线段AB 中点的直线的斜率为-32,则ab的值为( A ) A .-32B .-233C .-932D .-2327(2)(角度3)已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,点A 和点B 关于直线l 对称,l 与x 轴交于点G ,则点G 横坐标的取值范围是__(-12,0)___.[解析] (1)由双曲线ax 2+by 2=1知其渐近线方程为ax 2+by 2=0,设A (x 1,y 1),B (x 2,y 2),则有ax 21+by 21=0①,ax 22+by 22=0②,由①-②得a (x 21-x 22)=-b (y 21-y 22),整理得y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=-a b ,设AB 的中点为M (x 0,y 0),则k OM =y 0x 0=2y 02x 0=y 1+y 2x 1+x 2=-32,又知k AB =-1,∴-32×(-1)=-a b ,∴a b =-32,故选A .(2)设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.因为直线AB 过椭圆的左焦点F 且不垂直于x 轴, 所以方程有两个不等实根.设A (x 1,y 1),B (x 2,y 2),AB 的中点N (x 0,y 0), 则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1,因为点A 和点B 关于直线l 对称, 所以直线l 为AB 的垂直平分线,其方程为 y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2,因为k ≠0,所以-12<x G <0,即点G 横坐标的取值范围为(-12,0).故填(-12,0).。

直线与圆锥曲线的综合问题

直线与圆锥曲线的综合问题

直线与圆锥曲线的综合问题适用学科高中数学适用年级高二适用区域陕西西安课时时长(分钟)60分钟知识点范围问题对称问题定点、定值、最值等问题教学目标进一步理解圆锥曲线的定义、标准方程和几何性质,体会“解析法”思想,会从代数与几何两个角度分析和解决曲线的最值问题,并会进行合理的选择.教学重点能利用解析法研究圆锥曲线中的范围问题、对称问题和最值问题.教学难点定点、定值、最值等问题的探究过程.教学过程一、复习预习圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.二、知识讲解考点1范围问题求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题代数方法:建立目标函数,再求目标函数的最值.考点2对称问题要抓住对称包含的三个条件:(1)中点在对称轴上(2)两个对称点的连线与轴垂直(3)两点连线与曲线有两个交点(0>∆),通过该不等式求范围考点/易错点3定点、定值、最值等问题定点与定值问题的处理一般有两种方法:(1)从特殊入手,求出定点和定值,再证明这个点(值)与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定点(定值).三、例题精析【例题1】【题干】已知椭圆1:22221=+by a x C (0>>b a )与直线01=-+y x 相交于两点A 、B .当椭圆的离心率e 满足2223≤≤e ,且0=⋅OB OA (O 为坐标原点)时,求椭圆长轴长的取值范围. 【答案】[]6,5【解析】由⎩⎨⎧=-+=+01222222y x b a y a x b ,得()()012222222=-+-+b a x a x b a由()0122222>-+=∆b a b a ,得122>+b a此时222212b a a x x +=+,()2222211ba b a x x +-=由0=⋅OB OA ,得02121=+y y x x ,∴()0122121=++-x x x x即022222=-+b a b a ,故12222-=a a b由222222ab a ac e -==,得2222e a a b -= ∴221112ea -+= 由2223≤≤e 得23452≤≤a ,∴625≤≤a 所以椭圆长轴长的取值范围为[]6,5【例题2】【题干】已知椭圆132:22=+y x C ,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同两点关于这条直线对称. 【答案】522522<<-m 【解析】解法一:设存在两点()11,y x A 、()22,y x B 关于l 对称,中点为()00,y x C ,则AB 所在直线为b x y +-=41.与椭圆联立得:06282522=-+-b bx x , ∴ ⎪⎪⎩⎪⎪⎨⎧=+⨯-=+==+=25242544122542210210b b b y y y b x x x∵C 在m x y +=4上, ∴m b b +⨯=42542524, 825m b =.又∵ ()062825422>-⨯-=∆b b ,故8252<b ,即8258252<⎪⎭⎫ ⎝⎛m ,解得:522522<<-m . 由上可知: 当 522522<<-m 时,椭圆C 上有不同两点关于直线m x y +=4对称. 解法二:设存在两点()11,y x A 、()22,y x B 关于l 对称,中点为()00,y x C ,则⎪⎩⎪⎨⎧=+=+62362322222121y x y x , 得 ()()4123230021212121-=-=++-=--y x y y x x x x y y , ∴ 006x y =联立m x y +=004,解的20mx =,m y 30=, ∵M 在椭圆内部,∴()1332222<+⎪⎭⎫ ⎝⎛m m 即522522<<-m 由上可知: 当522522<<-m 时,椭圆C 上有不同两点关于直线m x y +=4对称.【例题3】【题干】已知P 、Q 是椭圆124:22=+y x C 上的两个动点,⎪⎪⎭⎫ ⎝⎛26,1M 是椭圆上一定点,F 是其左焦点,且PF 、MF 、QF 成等差数列.求证:线段PQ 的垂直平分线经过一个定点A ;【解析】证明:设()11,y x P 、()22,y x Q ,由椭圆的标准方程为12422=+y x 知 ()()1212121212222222x x x y x PF +=-++=++=同理2222x OF +=,222+=MF . ∵QF PF MF +=2,∴()212242222x x ++=⎪⎪⎭⎫ ⎝⎛+,∴221=+x x ①当21x x ≠时,由⎪⎩⎪⎨⎧=+=+424222222121y x y x ,得()()0222212221=-+-y y x x ,从而有2121212121y y x x x x y y ++-=-- 设线段PQ 的中点为()n N ,1,由nx x y y k PQ 212121-=--=,得线段PQ 的中垂线方程为()12-=-x n n y ∴()012=--y n x ,该直线恒过一定点⎪⎭⎫ ⎝⎛0,21A .②当21x x =时,⎪⎪⎭⎫ ⎝⎛-26,1P ,⎪⎪⎭⎫ ⎝⎛26,1Q ,或⎪⎪⎭⎫ ⎝⎛-26,1Q ,⎪⎪⎭⎫ ⎝⎛26,1P 线段PQ 的中垂线是x 轴,也过点⎪⎭⎫ ⎝⎛0,21A ,∴线段PQ 的中垂线恒过定点⎪⎭⎫ ⎝⎛0,21A .四、课堂运用【基础】1.已知A 、B 、C 三点在曲线x y =上,其横坐标依次为1,m ,4(41<<m ),当ABC∆的面积最大时,m 等于( )A.3B.49 C.25 D.23 【答案】B【解析】由题意知()1,1A ,()m m B ,,()2,4C .直线AC 所在方程为023=+-y x ,点B 到该直线的距离为10|23|+-=m m d .|41)23(|21|23|2110|23|1021||212--=+-=+-⨯⨯=⋅=∆m m m m m d AB S ABC ∵()4,1∈m ,∴当23=m 时,ABC S ∆有最大值,此时49=m . 2.设R v u ∈,,且2≤u ,0>v ,则()22292⎪⎭⎫ ⎝⎛--+-v u v u 的最小值为( )A.4B.2C.8D.22【答案】C【解析】考虑式子的几何意义,转化为求圆222=+y x 上的点与双曲线9=xy 上的点的距离的最小值.3.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使2π=∠OPA ,则椭圆离心率的范围是_________. 【答案】122<<e【解析】设椭圆方程为12222=+b y a x (0>>b a ),以OA 为直径的圆:022=+-y ax x ,两式联立消y 得022222=+--b ax x ab a .即0222=+-b ax x e ,该方程有一解2x ,一解为a ,由韦达定理x 2=a eax -=22,a x <<20,即12202<<⇒<-<e a a e a . 4.一辆卡车高3米,宽6.1米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________. 【答案】13【解析】由题意可设抛物线方程为ay x -=2,当2a x =时,4ay -=;当8.0=x 时,a y 64.0-=.由题意知364.04≥-aa ,即056.2122≥--a a .解得a 的最小整数为13.【巩固】1.已知抛物线12-=x y 上一定点()0,1-B 和两个动点P 、Q ,当P 在抛物线上运动时,PQ BP ⊥,则Q 点的横坐标的取值范围是_________.【答案】(][)+∞-∞-,13,【解析】设()1,2-t t P ,()1,2-s s Q∵PQ BP ⊥,∴1)1()1(11222-=----⋅+-ts t s t t , 即()0112=+--+s t s t∵R t ∈,∴必须有()()01412≥-+-=∆s s .即0322≥-+s s ,解得3-≤s 或1≥s .2.已知直线1-=kx y 与双曲线122=-y x 的左支交于A 、B 两点,若另一条直线l 经过点()0,2-P 及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围.【答案】22+>b 或2-<b【解析】设()11,y x A ,()22,y x B .由⎩⎨⎧=--=1122y x kx y ,得()022122=-+-kx x k , 又∵直线AB 与双曲线左支交于A 、B 两点,故有⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-0120120)1(8)2(01221221222k x x k k x x k k k解得12-<<-k ,设()00,y x Q ,则221012k k x x x +-=+=,111200-=-=k kx y . l 的斜率为22121112022200-+=+--=+-k k k k k x y . ∴l 的方程为()22212+-+=x k k y . 令0=x ,则2222-+=k k b ,又()1,2--∈k , ∴()22,1222--∈-+k k ,即22+>b 或2-<b3.已知抛物线x y C 4:2=.(1)若椭圆左焦点及相应的准线与抛物线C 的焦点F 及准线l 分别重合,试求椭圆短轴端点B 与焦点F 连线中点P 的轨迹方程;(2)若()0,m M 是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问MQ 有无最小值?若有,求出其值;若没有,说明理由.【答案】⑴12-=x y (1>x );⑵45m in-=m MQ【解析】由抛物线x y 42=,得焦点()0,1F ,准线1:-=x l .(1)设()y x P ,,则()y x B 2,12-,椭圆中心O ',则e BF O F =':,又设点B 到l 的距离为d ,则e d BF =:,∴d BF BF O F ::=',即()()()22222222-=+-x x y x ,化简得P 点轨迹方程为12-=x y (1>x ).(2)设()y x Q ,,则()45211)(2222-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---+-=+-=m m x x m x y m x MQ (1>x )(ⅰ)当121≤-m ,即23≤m 时,函数45212-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=m m x t 在()+∞,1上递增,故t 无最小值,亦即MQ 无最小值.(ⅱ)当121>-m ,即23>m 时,函数45212-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=m m x t 在21-=m x 处有最小值45-m ,∴45m in -=m MQ .【拔高】1.如图,ADB 为半圆,AB 为半圆直径,O 为半圆圆心,且AB OD ⊥,Q 为线段OD 的中点,已知4=AB ,曲线C 过Q 点,动点P 在曲线C 上运动且保持PB PA +的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设λ=DNDM,求λ的取值范围. 【答案】(1)1522=+y x ;(2)⎪⎭⎫⎢⎣⎡∈1,31λ. 【解析】(1)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系, ∵45212222=>=+=+=+AB QB QA PB PA . ∴曲线C 为以原点为中心,A 、B 为焦点的椭圆.设其长半轴为a ,短半轴为b ,半焦距为c ,则522=a ,∴5=a ,2=c ,1=b .∴曲线C 的方程为1522=+y x . (2)设直线l 的方程为2+=kx y ,代入1522=+y x ,得()015205122=+++kx x k . ()()0511542022>+⨯-=∆k k ,得532>k .由图可知λ==21x x DN DM由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x k k x x将21x x λ=代入得⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x 两式相除得)15(380)51(15400)1(2222k k k +=+=λλ+ ∵532>k ,35102<<k ,∴5205152<+<k ,即3165138042<⎪⎭⎫ ⎝⎛+<k ∴()31614<+<λλ,∵0>=DN DMλ,∴解得331<<λ ①∵DNDMx x ==21λ,M 在D 、N 中间,∴1<λ②又∵当k 不存在时,显然31==DN DM λ (此时直线l 与y 轴重合). 综上⎪⎭⎫⎢⎣⎡∈1,31λ课程小结解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.课后作业【基础】1.已知抛物线px y 22=上有一内接正AOB ∆,O 为坐标原点.求证:点A 、B 关于x 轴对称;xyOAB【解析】设()11,y x A ,()22,y x B ,∵OB OA =,∴22222121y x y x +=+,∴22212122px x px x +=+,即()()022121=++-p x x x x ,∵01>x ,02>x ,0>p ,∴21x x =,21y y -=,故点A 、B 关于x 轴对称2.若直线l 过圆02422=-++y x y x 的圆心M 交椭圆149:22=+y x C 于A 、B 两点,若A 、B 关于点M 对称,求直线l 的方程.【答案】02598=+-y x【解析】()1,2-M ,设()11,y x A ,()22,y x B ,则421-=+x x ,221=+y y又1492121=+y x ,1492222=+y x ,两式相减得:04922212221=-+-y y x x , 化简得()()()()09421212121=-++-+y y y y x x x x , 把421-=+x x ,221=+y y 代入得981212=--=x x y y k AB故所求的直线方程为()2211--=-x y ,即042=-+y x 所以直线l 的方程为 :02598=+-y x .3.在抛物线x y 42=上恒有两点关于直线3+=kx y 对称,求k 的取值范围. 【答案】()0,1-【解析】 (1)当0=k 时,曲线上不存在关于直线对称的两点.(2)当0≠k 时,设抛物线x y 42=上关于直线对称的两点()11,y x A ,()22,y x B ,AB 的中点为()00,y x M ,则直线AB 的斜率为k 1- ,可设直线b x ky AB +-=1: 代入x y 42=得0442=-+kb ky y016162>+=∆kb k (*) k y y 421-=+,kb y y 421-=⋅k y 20-=,()kb k kb y y k x x 24222121+=++-=+,kb k x +=202∵M 在直线3+=kx y 上,∴()3222++=-kb k k k ∴kk bk 3222---=, 代入(*)得即()()01312<⋅+-+kk k k 又032>+-k k 恒成立,所以01<<-m . 综合(1)(2),k 的取值范围是()0,1-【巩固】1.已知P 是椭圆124:22=+y x C 的动点,点⎪⎭⎫⎝⎛0,21A 关于原点O 的对称点是B ,若PB 的最小值为23,求点P 的横坐标的取值范围. 【答案】2-=x 或20≤≤x 【解析】由⎪⎭⎫ ⎝⎛0,21A ,得⎪⎭⎫⎝⎛-0,21B ,设()y x P ,()47121222121222222++=-+⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+=x x x y x PB ,∵23≥PB ,()49471212≥++x ,解得0≥x 或2-≤x 又22≤≤-x ∴2-=x 或20≤≤x2. 定长为3的线段AB 的两个端点在抛物线x y =2上移动,记线段AB 的中点为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标.【答案】⎪⎪⎭⎫ ⎝⎛22,45或⎪⎪⎭⎫ ⎝⎛-22,45 【解析】 设()11,y x A ,()22,y x B ,()00,y x M , 因AB 与x 轴不平行,故可设AB 的方程为a my x +=, 将它代入x y =2得02=--a my y , ∴m y y =+21,a y y -=21由92=AB 得()()912212=-+y y m 即()()[]941212212=-++y y y y m∴()()94122=++a m m ,∴()414922m m a -+= (*) ()221210my y y =+=,()()a m a y y m x x x +=++=+=22221221210, 将(*)代入得()()4541234141149414922220=-≥-+++=++=m m m m x 当且仅当()4114922+=+m m 即22=m 时取等号,此时,41=a ,220±=y ,450=x 所以,点M 为⎪⎪⎭⎫ ⎝⎛22,45或⎪⎪⎭⎫ ⎝⎛-22,45时,到y 轴的最短距离最小,最小值为45.3.已知椭圆12222=+by a x (0>>b a )的离心率为22,以该椭圆上的点和椭圆的左、右焦点1F 1、2F 为顶点的三角形的周长为()124+.一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点.(1)求椭圆和双曲线的标准方程;(2)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明:121=⋅k k .【答案】(1)14422=-y x ;(2)见解析. 【解析】(1)设椭圆的半焦距为c ,由题意知:22=a c , ()12422+=+c a ,所以a =22,c =2, 又222c b a +=,因此2=b .故椭圆的标准方程为14822=+y x . 由题意设等轴双曲线的标准方程为12222=-my m x (0>m ),因为等轴双曲线的顶点是椭圆的焦点, 所以2=m ,因此双曲线的标准方程为14422=-y x . (2)证明:()00,y x P , 则2001+=x y k ,2002-=x y k . 因为点P 在双曲线422=-y x 上,所以42020=-y x .因此14222020000021=-=-⋅+=x yx y x y k k , 即121=k k .【拔高】1.已知椭圆C 过点⎪⎭⎫⎝⎛23,1M ,两个焦点为()0,1-A ,()0,1B ,O 为坐标原点.(1)求椭圆C 的方程;(2)直线l 过点()0,1-A ,且与椭圆C 交于P ,Q 两点,求BPQ ∆的面积的最大值.【答案】(1)13422=+y x ;(2)3. 【解析】(1)由题意,1=c ,可设椭圆方程为112222=++by b x . 因为M 在椭圆上,所以1491122=++bb , 解得32=b ,432-=b (舍去). 所以椭圆方程为13422=+y x . (2)设直线l 方程为1-=ky x ,()11,y x P ,()22,y x Q ,则()⎪⎪⎩⎪⎪⎨⎧+-=⋅+=+⇒=--+⇒⎪⎩⎪⎨⎧=+-=4394360963413412212212222k y y k k y y ky y k yx ky x 所以4311221222121++=-⋅=∆k k y y F F S BPQ. 令t k =+12,则1≥t ,所以tt S BPQ 1312+=∆,而tt 13+在[)+∞,1上单调递增, 所以31312≤+=∆tt S BPQ ,当1=t 时取等号,即当0=k 时,BPQ ∆的面积最大值为3.。

直线和圆锥曲线的综合问题

直线和圆锥曲线的综合问题

第九节直线和圆锥曲线的综合问题[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或1+1k2|y 1-y 2|.典题导入[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值.由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎡⎦⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]例2.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,求△ABC 面积的最大值。

例3.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e >12的椭圆E :x 2a 2+y 2b 2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.。

直线与圆锥曲线综合性问题(含答案)

直线与圆锥曲线综合性问题(含答案)

直线与圆锥曲线综合性问题(含答案)一.考点分析。

⑴直线与圆锥曲线的位置关系和判定直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得到一个一元二次方程,直线和圆锥曲线相交、相切、相离的充分必要条件分别是、、.⑵直线与圆锥曲线相交所得的弦长直线具有斜率,直线与圆锥曲线的两个交点坐标分别为,则它的弦长上面的公式实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为,运用韦达定理来进行计算. 当直线斜率不存在是,则.注:,1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算;2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,二是点差法;3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围,二是建立不等式,通过解不等式求范围. 二.考试探究圆锥曲线是解析几何的核心内容,也是高考命题的热点之一.高考对圆锥曲线的考查,总体上是以知识应用和问题探究为主,一般是给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(求)其轨迹;或给出直线与曲线、曲线与曲线的位置关系,讨论与其有关的其他问题(如直线的方程、直线的条数、弦长、曲线中参变量的取值范围等);或考查圆锥曲线与其他知识综合(如不等式、函数、向量、导数等)的问题等. 1.,(2006年北京卷,文科,19)椭圆C:的两个焦点为F1,F2,点P 在椭圆C 上,且0∆>0∆=0∆<k 1122(,),(,)A x y B x y 1212()y y x x -=-k 12AB y y =-22221(0)x y a b a b+=>>(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M ,交椭圆C 于A 、B 两点,且A 、B 关于点M对称,求直线l 的方程.〖解析〗(Ⅰ)由椭圆的定义及勾股定理求出a,b,c 的值即可,(Ⅱ)可以设出A 、B 点的坐标及直线方程,联立直线方程和椭圆方程后利用一元二次方程根与系数关系即可求出直线方程,也可以利用“点差法”求出直线的斜率,然后利用点斜式求出直线方程. 〖答案〗解法一:(Ⅰ)因为点P 在椭圆C 上,所以,a=3.在Rt △PF1F2中,故椭圆的半焦距c=,从而b2=a2-c2=4,所以椭圆C 的方程为=1. (Ⅱ)设A ,B 的坐标分别为(x1,y1)、(x2,y2).已知圆的方程为(x+2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为y=k(x+2)+1,代入椭圆C 的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k -27=0. 因为A ,B 关于点M 对称.所以,,,解得, 所以直线l 的方程为,,,,,即8x-9y+25=0. (经检验,所求直线方程符合题意) 解法二: (Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x+2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1).11212414,||,||.33PF F F PF PF ⊥==6221=+=PF PF a ,52212221=-=PF PF F F 54922y x +.29491822221-=++-=+kkk x x 98=k ,1)2(98++=x y,设A ,B 的坐标分别为(x1,y1),(x2,y2).由题意x1x2且,,,,,,,,,①,,,,,,,,,②由①-②得,,,,,,,,,③因为A 、B 关于点M 对称,所以x1+,x2=-4,,y1+,y2=2,代入③得=,即直线l 的斜率为,所以直线l 的方程为y -1=(x+2),即8x -9y+25=0. (经检验,所求直线方程符合题意.) 2.(2008年山东卷,文科,22)已知曲线所围成的封闭图形的面积为曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.(Ⅰ)求椭圆的标准方程;(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.(1)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程;(2)若是与椭圆的交点,求的面积的最小值.≠,1492121=+yx ,1492222=+yx .04))((9))((21212121=+-++-y y y y x x x x 2121x x y y --98989811(0)xyC a b a b+=>>:1C 32C 1C 2C AB 2C l AB M l MO OA λ=O A 2C M M l 2C AMB △〖解析〗(Ⅰ)由三角形面积公式和点到直线的距离公式可得关于a ,b 的方程组,,曲线与坐标轴的交点为椭圆的顶点,显然为焦点在x 轴的椭圆;(Ⅱ)(1)设出的方程,,,联立直线与椭圆得到方程组后,由可得的轨迹方程,注意或不存在时所得方程仍然成立;(2)由直线的方程:和椭圆方程联立后表示出由不等式放缩即可求出最小值.〖答案〗(Ⅰ)由题意得又,解得,.因此所求椭圆的标准方程为.(Ⅱ)(1)假设所在的直线斜率存在且不为零,设所在直线方程为,.解方程组得,, 所以. 设,由题意知,所以,即, 因为是的垂直平分线,所以直线的方程为,即,因此, 1C 2C AB (0)y kx k =≠()A A A x y ,()M x y ,(0)MO OA λλ=≠M 0k =l 1y x k =-22214AMB S ABOM =△2ab ⎧=⎪⎨=0a b >>25a =24b =22154x y +=AB AB (0)y kx k =≠()A A A x y ,22154x y y kx ⎧+=⎪⎨⎪=⎩,,222045A x k =+2222045A k y k =+22222222202020(1)454545AAk k OA x y k k k+=+=+=+++()M x y ,(0)MO OA λλ=≠222MO OA λ=2222220(1)45k x y kλ++=+l AB l 1y x k=-x k y =-22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++又,所以,故. 又当或不存在时,上式仍然成立.综上所述,的轨迹方程为.(2)当存在且时,由(1)得,, 由解得,, 所以,,. 解法一:由于 , 当且仅当时等号成立,即时等号成立, 此时面积的最小值是. 当,. 当不存在时,. 综上所述,的面积的最小值为. 解法二:因为, 220x y +≠2225420x y λ+=22245x y λ+=0k=M 222(0)45x y λλ+=≠k 0k ≠222045Ax k =+2222045A k y k=+221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,2222054M k x k =+222054M y k =+2222220(1)45AAk OA x y k +=+=+222280(1)445k AB OA k +==+22220(1)54k OM k+=+22214AMBSAB OM =△2222180(1)20(1)44554k k k k++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭224554k k +=+1k =±AMB △409AMB S=△0k=140229AMB S =⨯=>△k 140429AMB S ==>△AMB △409222222111120(1)20(1)4554k k OA OMk k +=+++++2224554920(1)20k k k +++==+。

数学高职高考专题复习直线、圆锥曲线问题

数学高职高考专题复习直线、圆锥曲线问题

数学高职高考专题复习直线、圆锥曲线问题数学高职高考专题复习:直线与圆锥曲线问题在数学高职高考中,直线与圆锥曲线问题是一个重要的考点,也是考生在复习过程中需要重点掌握的内容。

本文将从以下几个方面对这一问题进行专题复习:一、直线的倾斜角与斜率直线的倾斜角与斜率是直线的重要属性,也是解决直线问题的基础。

在高职高考中,倾斜角与斜率的计算、斜截式方程以及直线的平行与垂直等都是需要考生熟练掌握的内容。

例题1:已知直线过点A(3,2),且与直线y=x+1平行,求该直线的方程。

解析:根据直线的平行关系,可设所求直线的方程为y=x+c。

由于直线过点A(3,2),将该点坐标代入方程得:2=3+c,解得c=-1。

因此,所求直线的方程为y=x-1。

二、圆锥曲线的定义与标准方程圆锥曲线是平面解析几何中的一个重要内容,包括椭圆、双曲线和抛物线等。

在高职高考中,考生需要掌握圆锥曲线的定义、标准方程以及它们的几何性质。

例题2:已知椭圆的两焦点为F1(-2,0)、F2(2,0),且椭圆经过点(0,2),求该椭圆的标准方程。

解析:根据椭圆的定义,可知该椭圆的焦点在x轴上,且半焦距c=2。

再由椭圆的性质可知,a=√(b^2+c^2)=2√2,从而得出b=√(a^2-c^2)=√(8-4)=2。

因此,所求椭圆的标准方程为:x^2/8+y^2/4=1。

三、直线与圆锥曲线的综合问题直线与圆锥曲线的综合问题往往是高职高考中的难题,这类问题需要考生综合运用直线和圆锥曲线的知识进行求解。

考生在复习时,应注重对这类问题的练习和掌握。

例题3:已知直线l过点(1,-2),且与椭圆5x^2+4y^2=20相交于A、B两点,求弦AB的长度。

解析:设直线l的方程为y+2=k(x-1)。

然后,将该方程代入椭圆方程5x^2+4y^2=20中,得到一个关于x的二次方程。

再根据韦达定理,可以求出交点A、B的横坐标之和x1+x2和纵坐标之和y1+y2。

利用两点间的距离公式求出|AB|的值。

直线与圆锥曲线的综合问题 课件

直线与圆锥曲线的综合问题   课件

从而 k1(3λ-k1)=-1,即 k21-3λk1-1=0. 同理 k22-3λk2-1=0,所以 k1,k2 是关于 k 的方程 k2-3λk-1=0 的两实根. 由根与系数关系,得 k1k2=-1,所以 DA⊥DB,所以以 AB 为直径的圆恒过定点 D(0,3).
【精要点评】定点问题的两种求解方法: ①引进参数法,引进动点的坐标或动直线中系数为参数表示变化量,再研究变化 的量与参数何时没有关系,找到定点. ②由特殊到一般法,根据动点或动直线的特殊情况探索出定点,再证明该定点与 变量无关.
若直线 x=my+t 与圆锥曲线交于 A(x1,y1),B(x2,y2)两点,则弦长 AB= ____1_+__m_2__y_1-__y_2__2 _.
定值问题
如图,在平面直角坐标系 xOy 中,已知 B1,B2 是椭圆xa22+by22=1(a>b>0)的 短轴端点,P 是椭圆上异于点 B1,B2 的一动点.当直线 PB1 的方程为 y=x+3 时,线 段 PB1 的长为 4 2.
=-ba22,亦即 kAB·kOM=-ba22,对于双曲线、抛物线,可得到类似的结论.
4.弦长公式
若直线 y=kx+b 与圆锥曲线交于 A(x1,y1),B(x2,y2)两点,则弦长 AB= ___1_+__k_2__x_1_-__x2__2__=____1_+__k_2·___x_1+__x_2_2_-__4_x_1_x2___.
线与圆锥曲线的综合问题
1.直线 y=x+4 与双曲线 x2-y2=1 的交点坐标为__-__1_87_,__18_5___.
【解析】联立xy2=-xy+2=4,1, 消去 y,得 x2-(x+4)2=1,即 8x=-17,解得 x= -187,代入 y=x+4,得 y=185,故直线 y=x+4 与双曲线 x2-y2=1 的交点坐标为 -187,185.

(完整版)数学高职高考专题复习__直线、圆锥曲线问题

(完整版)数学高职高考专题复习__直线、圆锥曲线问题

高考直线、圆锥曲线问题专题复习一、直线基础题1、已知直线L 与直线2x -5y -1=0平行,则L 的斜率为 ( ) A.52 B.52- C.25 D.25- 2、平行直线2x+3y-6=0和4x+6y-7=0之间的距离等于 ( ) A.1313 B.26135 C.13132 D.26133、已知点A (1,3)和B (-5,1),则线段AB 的垂直平分线的方程是 ( ) A.3x +y+4=0 B.x -3y+8=0 C.x+3y -4=0 D.3x -y+8=04、 过点(-3,1)且与直线3x -y -3=0垂直的直线方程是 ( ) A.x +3y=0 B.3x +y=0 C.x -3y +6=0 D.3x -y -6=05、已知M (3,-1),N (-3,5),则线段MN 的垂直平分线方程为 ( )A.x -y -2=0B.x +y -2=0C.3x -2y +3=0D.x -y +2=06、如果点(4,a)到直线4x -3y -1=0的距离不大于3,那么a 的取值范围是区间 ( ) A.[2,12] B.[1,12] C. [0,10] D. [-1,9]7、实数a=0是直线ax -2y -1=0与2ax -2y -3=0平行的 ( ) A.充分而非必要的条件 B.充分且必要的条件C.必要而非充分的条件D.既非必要又非充分的条件 8、已知P ,M 和N 三点共线,且点M 分有向线段所成的比为2,那么点N 分有向线段所成的比为 ( ) A.31-B.-3C.31D.3 9、已知A (-2,1),B (2,5),则线段AB 的垂直平分线的方程是_________.10、在x 轴上截距为3且垂直于直线x+2y=0的直线方程为___ _______________.二、圆锥曲线基础题11、已知抛物线方程为y 2=8x ,则它的焦点到准线的距离是 ( ) A.8 B.4 C.2 D.6 12、已知椭圆上一点到两焦点(-2,0),(2,0)的距离之和等于6,则椭圆的短轴长为 A.5 B.10 C.5 D.52 ( )13、椭圆9x 2+16y 2=144的焦距为 ( ) A.10 B.5 C.72 D.1414、已知双曲线上有一点到两焦点(-2,0),(2,0)的距离差是2,则双曲线方程为 ( )A.1322=-y x B.1322-=-y x C.1322-=-y x D.1322=-y x 15、P 为椭圆25X 2+9Y 2=225上一点,F 1,F 2是该椭圆的焦点,则| PF 1 |+| PF 2|的值为A.6B.5C.10D.3 (01年成人) ( )16、过双曲线193622=-y x 的左焦点F 1的直线与这双曲线交于A ,B 两点,且|AB|=3.F 2是右焦点,则|AF 2|+|BF 2|的值是 ( ) A.21 B.30 C.15 D.27 17、平面上到两定点F 1(-7,0),F 2(7,0)距离之差的绝对值等于10的点的轨迹方程为 ( )A.11610022=-y x B.14910022=-y x C.1242522=+y x D.1242522=-y x 18、抛物线x y 82=的准线方程是 ( ) A.x =﹣4 B.x =﹣2 C.=y ﹣4 D.=y ﹣219、椭圆15922=+y x 的焦距等于 ( ) A.6 B.214 C.4 D.1420、长为2的线段MN 的两个端点分别在x 轴、y 轴上滑动,则线段MN 的中点的轨迹方程是 ( )A.222=+y xB.422=+y x C.222=+y x D.122=+y x21、记双曲线15422=-y x 的右焦点为F,右准线为l .若双曲线上的点P 到l 的距离为35,则=PF ( )A.25 B.35 C.27D.10922、若抛物线px y 22=上到焦点距离为3的点之横坐标为2,则P= ( ) A.4 B.3 C.2D.123、设P 是双曲线191622=-y x 上一点,已知P 到双曲线的一个焦点的距离等于10,则P 到另一个焦点的距离是 ( )A.2B.18C.20D.2或18 24、中心在坐标原点,焦点在x 轴,且离心率为22、焦距为1的椭圆方程是 ( ) A.14222=+y xB.14222=+y x C.12422=+y xD.12422=+y x 25、方程0)()(22=-+-b y a x 的图形是 ( ) A.一个圆 B.两条直线 C.两条射线 D.一个点26、方程0)2)(1(2=+-y x 的图形是 ( ) A.一条直线 B.两条直线 C.一条抛物线 D.直线或抛物线27、如果圆x 2+y 2= r 2 (r>0) 与圆x 2+y 2-24x -10y +165=0相交,那么r 的取值范围是区间 A.(5,9) B.(6,10) C.(10,12) D.(11,15)( ) 28、椭圆21222=+y x 的准线方程是 ( ) A.x=±1 B. y=±1 C. y=±2 D. x=±2 29、焦点在x 轴上,以直线x y 3=与x y 3-=为渐近线的双曲线的离心率为 ( )A.4B.2C.2D.0.530、焦距为2,离心率为33的椭圆,它的两条准线的距离为 ( ) A.6 B.8 C.34 D.3331、如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是区间( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)32、如果方程192222=-+-a y a x 表示焦点在y 轴上的双曲线,那么实数a 的取值范围是区间 ( )A.(-3,2)B.(-3,3)C.(-3,+∞)D.(-∞,2)33、已知椭圆2222b x a y +=1(a >b >0)的离心率为53,两焦点的距离为3,则a+b=_______.三、直线、圆锥曲线综合题35、过圆x 2+y 2=25上一点P (3,4)并与该圆相切的直线方程是 ( ) A.3x -4y=0 B.3x+4y=0 C. 3x -4y -25=0 D.3x +4y -25=0 36、圆x 2+y 2-10y=0的圆心到直线3x +4y -5=0的距离等于 ( )A.53 B.3 C.75D.15 37、如果直线4x -3y+5=0与圆x 2+y 2-4x -2y+m=0相离,那么m 的取值范围是区间( )A.(0,5)B.(1,5)C.(2,6)D.(-1,4)38、直线012=++y x 被圆9)1()2(22=-+-y x 所截得的线段长等于 . 39、(8分)设双曲线x 2-y 2=1上一点P (a ,b )到直线y=x 的距离等于2,其中a>b,求a,b.40、(10分)已知椭圆1222=+y x ,过点P (1,0)作直线L,使得L 与该椭圆交于A 、B 两点,L 与y 轴交于Q 点,P 、Q 在线段AB 上,且︱AQ ︱=︱BP ︱,求L 的方程.41、(8分) 已知圆的方程为x 2+y 2-6x -4y+12=0,求圆的过点P(2,0)的切线方程.42、(10分) 已知抛物线以原点为顶点,x 轴为对称轴,开口向左,且焦点与顶点的距离为p.在此抛物线上取A 、B 、C 、D 四点,分别记M 和N 为AB 和CD 的中点,如果AB ⊥CD ,求点M 和点N 的纵坐标的乘积.43、(10分) 已知斜率为a ,在y 轴上的截距为2的直线与椭圆132222=+ay a x 有两个不同的交点,求实数a 的取值范围.44、(8分) 已知直线在x 轴上的截距为-1,在y 轴上的截距为1,又抛物线y=x 2+bx+c的顶点坐标为(2,-8),求直线和抛物线两个交点横坐标的平方和.45、(10分) 设F 1和F 2分别是椭圆1422=+y x 的左焦点和右焦点,A 是该椭圆与y 轴负半轴的交点.在椭圆上求点P 使得| PF 1 |,| PA |,| PF 2 |成等差数列.46、(11分) 已知椭圆12222=+by a x 和点P (a ,0).设该椭圆有一关于x 轴对称的内接正三角形,使得P 为其一个顶点,求该正三角形的边长.47、(11分) 设椭圆)0(16222φλλ=+y x 的焦点在x 轴上,O 为坐标原点,P 、Q 为椭圆上两点,使得OP 所在直线的斜率为1,OP ⊥OQ ,若△POQ 的面积恰为λ423,求该椭圆的焦距.48、(12分) 已知正方形ABCD 对角的两个顶点A,C 都在抛物线x y 42=上,另外两个顶点B,D 在直线942=-y x 上,求正方形的中心N 的坐标和正方形的面积.49、( 12分) 已知直线b x y +=2与椭圆18222=+y x 相交于不同的两点..、B A 定点P的坐标为(1,2).求b 值,使PAB ∆的面积最大,并求这个最大值.50、给出定点P (2,2)和Q (-2,0),动点M 满足:直线PM 的斜率与QM 的斜率的比值等于2.求动点M 的轨迹方程. 51、经过点P (2,0)且与定圆0422=++x y x 相切的圆的圆心轨迹如何?52、已知椭圆的焦点是F 1(0,50-)和F 2(0,50),且直线y=3x -2被它截得的线段的中点之横坐标为21,求这个椭圆的方程.53、给定抛物线y 2=8x 和定点P (3,2).在抛物线上求点M ,使M 到P 的距离与到抛物线焦点的距离之和最小,并求这个最小值.附:参考答案 1-8 ABAAD CBA 9.x+y -3=0 10.2x -y -6=0 11-32.BDCAC DDBCDACDAD ADBBA DA 33.29 35-37 DBB 38.4 39.43,45-==b a 40.2222,2222+-=-=x y x y 41.3x -4y -6=0或x=2 42.-4p 243.a >1或a<-1 44.35 45.)31,324(,)31,324(),1,0(--- 46.222334b a ab + 47.4 48.N (25,-1),24549.当b=±22时,面积有最大值250.xy+2x -6y+4=0(x ≠±2) 51.双曲线1322=-y x 52.1752522=+y x 53.)2,21(M ,5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第32练 直线与圆锥曲线的综合问题[题型分析·高考展望] 本部分重点考查直线和圆锥曲线的综合性问题,从近几年的高考试题来看,除了在解答题中必然有直线与圆锥曲线的联立外,在填空题中出现的圆锥曲线问题也经常与直线结合起来.本部分的主要特点是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍的效果.预测在今后高考中,主要围绕着直线与椭圆的位置关系进行命题,有时会与向量的共线、模和数量积等联系起来;对于方程的求解,不要忽视轨迹的求解形式,后面的设问将是对最值、定值、定点、参数范围的考查,探索类和存在性问题考查的概率也很高.常考题型精析题型一 直线与圆锥曲线位置关系的判断及应用例1 (1)(2015·福建改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是________________.(2)设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1 (b >0),其离心率为22. ①求椭圆M 的方程;②若直线l 过点P (0,4),则直线l 何时与椭圆M 相交?点评 对于求过定点的直线与圆锥曲线的位置关系问题,一是利用方程的根的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零;二是利用图形来处理和理解;三是直线过定点位置不同,导致直线与圆锥曲线的位置关系也不同.变式训练1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,且过点P (2,3). (1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点A (0,22),连结AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.题型二 直线与圆锥曲线的弦的问题例2 设椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点分别为F 1,F 2,且焦距为6,点P 是椭圆短轴的一个端点,△PF 1F 2的周长为16.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线l 被椭圆C 所截得的线段中点的坐标.点评 直线与圆锥曲线弦的问题包括求弦的方程,弦长,弦的位置确定,弦中点坐标轨迹等问题,解决这些问题的总体思路是设相关量,找等量关系,利用几何性质列方程(组),不等式(组)或利用一元二次方程根与系数的关系,使问题解决.变式训练2 在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22. (1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P .设OP →=tOE →,求实数t 的值.高考题型精练1.(2015·北京)已知椭圆C :x 2+3y 2=3,过点D (1,0)且不过点E (2,1)的直线与椭圆C 交于A ,B 两点,直线AE 与直线x =3交于点M .(1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.2.如图,已知抛物线C 的顶点为O (0,0),焦点为F (0,1).(1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO 、BO 分别交直线l :y =x -2于M 、N 两点,求MN 的最小值.3.(2015·南京模拟)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求AF ·BF 的最小值.4.已知点A ,B 是抛物线C :y 2=2px (p >0)上不同的两点,点D 在抛物线C 的准线l 上,且焦点F 到直线x -y +2=0的距离为322. (1)求抛物线C 的方程;(2)现给出以下三个论断:①直线AB 过焦点F ;②直线AD 过原点O ;③直线BD 平行于x 轴. 请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.答案精析第32练 直线与圆锥曲线的综合问题常考题型典例剖析例1 (1)⎝⎛⎦⎤0,32 解析 设左焦点为F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4,∴AF +AF 0=4,∴a =2.设M (0,b ),则|3×0-4×b |32+(-4)2=4b 5≥45,∴1≤b <2. 离心率e =c a =c 2a 2=a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32. (2)解 ①因为椭圆M 的离心率为22, 所以4-b 24=⎝⎛⎭⎫222,得b 2=2. 所以椭圆M 的方程为x 24+y 22=1. ②(ⅰ)过点P (0,4)的直线l 垂直于x 轴时,直线l 与椭圆M 相交.(ⅱ)过点P (0,4)的直线l 与x 轴不垂直时,可设直线l 的方程为y =kx +4.由⎩⎪⎨⎪⎧y =kx +4,x 24+y 22=1, 消去y ,得(1+2k 2)x 2+16kx +28=0.因为直线l 与椭圆M 相交,所以Δ=(16k )2-4(1+2k 2)×28=16(2k 2-7)>0,解得k <-142或k >142. 综上,当直线l 垂直于x 轴或直线l 的斜率的取值范围为⎝⎛⎭⎫-∞,-142∪⎝⎛⎭⎫142,+∞时,直线l 与椭圆M 相交.变式训练1 解 (1)由已知条件得椭圆C 的焦点为F 1(-2,0),F 2(2,0),PF 1=(2+2)2+3=9+42=22+1,PF 2=(2-2)2+3=9-42=22-1,2a =PF 1+PF 2=42,则a =2 2.b 2=a 2-c 2=4,因此椭圆C 的方程为x 28+y 24=1.(2)设D (x 1,0), DA →=(-x 1,22), EA →=(-x 0,22);由DA →⊥EA →,得DA →·EA →=0,则G (-x 1,0)x 1x 0+8=0,则x 1=-8x 0,k QG =y 0x 0+x 1=y 0x 0-8x 0=x 0y 0x 20-8, 直线QG 的方程为y =x 0y 0x 20-8⎝⎛⎭⎫x -8x 0=yx 20-8(x 0x -8),又x 208+y 204=1,y 20=4⎝⎛⎭⎫1-x 28=12(8-x 20),可得y =±28-x 202(x 20-8)(x0x -8),①将①代入x 28+y 24=1整理得8x 2-16x 0x +8x 20=0,Δ=(-16x 0)2-4×64x 20=0,∴直线QG 与椭圆C 一定有唯一的公共点.例2 解 (1)设椭圆的半焦距为c ,则由题意,可得⎩⎪⎨⎪⎧ 2c =6,2a +2c =16, 解得⎩⎪⎨⎪⎧a =5,c =3,所以b 2=a 2-c 2=52-32=16.故所求椭圆C 的方程为x 225+y 216=1. (2)方法一 过点(3,0)且斜率为45的直线l 的方程为y =45(x -3),将之代入C 的方程,得x 225+(x -3)225=1, 即x 2-3x -8=0.因为点(3,0)在椭圆内,设直线l 与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),因为x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45×(32-3)=-65. 故所求线段的中点坐标为⎝⎛⎭⎫32,-65. 方法二 过点(3,0)且斜率为45的直线l 的方程为y =45(x -3),因为(3,0)在椭圆内,所以直线l 与椭圆有两个交点,设两交点的坐标分别为(x 1,y 1),(x 2,y 2),中点M 的坐标为(x 0,y 0), 则有⎩⎨⎧ x 2125+y 2116=1, ①x 2225+y 2216=1, ②由①-②,得(x 1-x 2)(x 1+x 2)25=-(y 1-y 2)(y 1+y 2)16, 即16x 025y 0=-45.又y 0=45(x 0-3), 所以⎩⎨⎧ x 0=32,y 0=-65.故所求线段的中点坐标为⎝⎛⎭⎫32,-65.变式训练2 解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0), 则⎩⎪⎨⎪⎧c 2=a 2-b 2,c a =22,2b =2,解得a =2,b =1,故椭圆C 的方程为x 22+y 2=1. (2)①当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m ,由题意得-2<m <0或0<m < 2.将x =m 代入椭圆方程得|y |= 2-m 22, 所以S △AOB =|m | 2-m 22=64. 解得m 2=32或m 2=12.(ⅰ) 又OP →=tOE →=12t (OA →+OB →)=12t (2m,0)=(mt,0), 又点P 在椭圆上,所以(mt )22=1.(ⅱ) 由(ⅰ)(ⅱ)得t 2=4或t 2=43. 又因为t >0,所以t =2或t =233. ②当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =kx +n ,由⎩⎪⎨⎪⎧y =kx +n ,x 22+y 2=1得(1+2k 2)x 2+4knx +2n 2-2=0. 设A (x 1,y 1),B (x 2,y 2),由Δ=16k 2n 2-4(1+2k 2)(2n 2-2)>0得1+2k 2>n 2.此时x 1+x 2=-4kn 1+2k 2,x 1x 2=2n 2-21+2k 2, y 1+y 2=k (x 1+x 2)+2n =2n 1+2k 2. 所以AB =1+k 2(x 1+x 2)2-4x 1x 2=2 2 1+k 2 1+2k 2-n 2(1+2k 2)2. 又点O 到直线AB 的距离d =|n |1+k 2. 所以S △AOB =12d ·AB =12×2 2 1+k 2 1+2k 2-n 2(1+2k 2)2|n |1+k 2.=2·1+2k 2-n 2(1+2k 2)2·|n |=64. 令r =1+2k 2代入上式得:3r 2-16n 2r +16n 4=0.解得r =4n 2或r =43n 2, 即1+2k 2=4n 2或1+2k 2=43n 2. 又OP →=tOE →=12t (OA →+OB →)=12t (x 1+x 2,y 1+y 2) =⎝ ⎛⎭⎪⎫-2knt 1+2k 2,nt 1+2k 2. 又点P 为椭圆C 上一点, 所以t 2⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫-2kn 1+2k 22+⎝ ⎛⎭⎪⎫n 1+2k 22=1, 即n 21+2k 2t 2=1. 由⎩⎪⎨⎪⎧ 1+2k 2=4n 2或1+2k 2=43n 2,n 21+2k 2t 2=1得t 2=4或t 2=43. 又t >0,故t =2或t =233. 经检验,适合题意.综合①②得t =2或t =233. 常考题型精练1.解 (1)椭圆C 的标准方程为x 23+y 2=1,所以a =3,b =1,c = 2.所以椭圆C 的离心率e =c a =63. (2)因为AB 过点D (1,0)且垂直于x 轴,所以可设A (1,y 1),B (1,-y 1),直线AE 的方程为y -1=(1-y 1)(x -2),令x =3,得M (3,2-y 1),所以直线BM 的斜率k BM =2-y 1+y 13-1=1. (3)直线BM 与直线DE 平行,证明如下:当直线AB 的斜率不存在时,由(2)可知k BM =1.又因为直线DE 的斜率k DE =1-02-1=1,所以BM ∥DE , 当直线AB 的斜率存在时,设其方程为y =k (x -1)(k ≠1),设A (x 1,y 1),B (x 2,y 2),则直线AE的方程为y -1=y 1-1x 1-2(x -2).令x =3,得点M ⎝ ⎛⎭⎪⎫3,y 1+x 1-3x 1-2, 由⎩⎪⎨⎪⎧x 2+3y 2=3,y =k (x -1),得(1+3k 2)x 2-6k 2x +3k 2-3=0, 所以x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k2, 直线BM 的斜率k BM =y 1+x 1-3x 1-2-y 23-x 2, 因为k BM -1=k (x 1-1)+x 1-3-k (x 2-1)(x 1-2)-(3-x 2)(x 1-2)(3-x 2)(x 1-2)=(k -1)[-x 1x 2+2(x 1+x 2)-3](3-x 2)(x 1-2)=(k -1)⎝ ⎛⎭⎪⎫-3k 2+31+3k 2+12k 21+3k 2-3(3-x 2)(x 1-2)=0所以k BM =1=k DE .所以BM ∥DE ,综上可知,直线BM 与直线DE 平行.2.解 (1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p 2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧ y =kx +1,x 2=4y 消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4.从而|x 1-x 2|=4k 2+1. 由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理点N 的横坐标x N =84-x 2. 所以MN =2|x M -x N | =2⎪⎪⎪⎪⎪⎪84-x 1-84-x 2 =82⎪⎪⎪⎪⎪⎪x 1-x 2x 1x 2-4(x 1+x 2)+16 =82k 2+1|4k -3|. 令4k -3=t ,t ≠0,则k =t +34.当t >0时,MN =2 2 25t 2+6t +1>2 2. 当t <0时,MN =2 2 ⎝⎛⎭⎫5t +352+1625≥852. 综上所述,当t =-253,即k =-43时, MN 的最小值是852. 3.解 (1)依题意知|c +2|2=322,c >0,解得c =1. 所以抛物线C 的方程为x 2=4y . (2)由y =14x 2得y ′=12x , 设A (x 1,y 1),B (x 2,y 2),则切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0. 同理可得切线PB 的方程为x 2x -2y -2y 2=0,又点P (x 0,y 0)在切线P A 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解,所以直线AB 的方程为x 0x -2y -2y 0=0.(3)由抛物线定义知AF =y 1+1,BF =y 2+1,所以AF ·BF =(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0,所以y 1+y 2=x 20-2y 0,y 1y 2=y 20, 所以AF ·BF =y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1=y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5=2⎝⎛⎭⎫y 0+122+92, 所以当y 0=-12时,AF ·BF 取得最小值,且最小值为92. 4.解 (1)∵抛物线C :y 2=2px (p >0)的焦点为F ⎝⎛⎭⎫p 2,0,依题意得d =|p 2-0+2|2=322, 解得p =2,∴抛物线C 的方程为y 2=4x .(2)①命题.若直线AB 过焦点F ,且直线AD 过原点O ,则直线BD 平行于x 轴.设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ty +1,y 2=4x , 得y 2-4ty -4=0, ∴y 1y 2=-4.直线AD 的方程为y =y 1x 1x , ∴点D 的坐标为⎝⎛⎭⎫-1,-y 1x 1.∴-y 1x 1=-4y 1y 21=-4y 1=y 2.∴直线BD 平行于x 轴. ②命题:若直线AB 过焦点F ,且直线BD 平行于x 轴,则直线AD 过原点O .设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ty +1y 2=4x ,得y 2-4ty -4=0,∴y 1y 2=-4,即点B 的坐标为⎝⎛⎭⎫x 2,-4y 1, ∵直线BD 平行于x 轴,∴D 点的坐标为⎝⎛⎭⎫-1,-4y 1. ∴OA →=(x 1,y 1),OD →=⎝⎛⎭⎫-1,-4y 1.由于x 1⎝⎛⎭⎫-4y 1-y 1(-1)=-y 1+y 1=0, ∴OA →∥OD →,即A ,O ,D 三点共线.∴直线AD 过原点O .③命题:若直线AD 过原点O ,且直线BD 平行于x 轴,则直线AB 过焦点F . 设直线AD 的方程为y =kx (k ≠0),则点D 的坐标为(-1,-k ),∵直线BD 平行于x 轴,∴y B =-k .∴x B =k 24,即点B 的坐标为⎝⎛⎭⎫k 24,-k ,由⎩⎪⎨⎪⎧y =kx ,y 2=4x ,得k 2x 2=4x ,∴x A =4k 2,y A =4k,即点A 的坐标为⎝⎛⎭⎫4k 2,4k . ∴F A →=⎝⎛⎭⎫4k 2-1,4k ,FB →=⎝⎛⎭⎫k 24-1,-k ,∵⎝⎛⎭⎫4k 2-1(-k )-4k ·⎝⎛⎭⎫k 24-1=-4k +k -k +4k=0. ∴F A →∥FB →,即A ,F ,B 三点共线.∴直线AB 过焦点F .。

相关文档
最新文档