制药工艺学
制药工艺学的分类有哪些

制药工艺学的分类有哪些制药工艺学是研究制药过程中药物的制备、纯化、分离和包装等工艺的学科。
根据不同的分类标准,可以将制药工艺学分为以下几个方面。
1. 制药工艺学的主要分类:根据制药工艺的具体流程和操作步骤,可以将制药工艺学分为前处理、制剂工艺和包装工艺三个主要方面。
- 前处理:前处理是制药工艺学中的首个环节,主要包括原药料收集、质量控制、预处理和制剂配方的制定等过程。
前处理的目标是通过选择和预处理原料,以提高产品的质量和效果,为后续的制剂工艺提供更好的物质基础。
- 制剂工艺:制剂工艺是将药物原料转化为最终用于临床诊疗或患者治疗的药剂的过程。
制剂工艺包括各种物质的混合、溶解、分散、乳化、浸渍、包衣和加压等操作。
制剂工艺的目标是制备出稳定、有效、高生物利用度和可控释放的药物制剂。
- 包装工艺:包装工艺是指将制剂装入药品容器中,并通过防潮、防氧化、防光和防辐射等手段,保护制剂免受外界环境的影响。
包装工艺的目标是保障制剂的质量和稳定性,并为便携性、易使用性和长期保存提供条件。
2. 制药工艺学的其他分类:根据不同的角度和需求,制药工艺学还可以按照其他分类标准进行划分,包括:- 工艺流程分类:根据制药工艺中所涉及的物料流动和工作流程的不同,可将制药工艺学分为批次生产工艺、连续生产工艺和混合生产工艺等。
- 制剂类型分类:根据药剂的剂型和应用领域的不同,可以将制药工艺学分为固体制剂、液体制剂、半固体制剂、生物制剂和新型制剂等。
- 工艺标准分类:根据制药工艺所遵循的标准和规范的不同,可以将制药工艺学分为国家标准、行业标准、企业标准和国际标准等。
- 物性分类:根据药物物理和化学性质的不同,可以将制药工艺学分为有机制药工艺、无机制药工艺、生物制药工艺和天然药物制剂工艺等。
- 境内外分类:根据制药过程所处的国际地理位置的不同,可以将制药工艺学分为境内制药工艺和境外制药工艺等。
以上是制药工艺学的几个主要分类。
不同的分类标准在实际应用中可能会相互交叉和重叠,并且会随着科学技术和药物研发的不断进步而不断更新和丰富。
制药工艺学实训报告总结

一、前言制药工艺学是医药行业的基础学科,主要研究药物的合成、制备、质量控制、生产过程等方面。
为了提高自身的实践能力和综合素质,我们参加了制药工艺学实训。
以下是本次实训的总结报告。
二、实训目的1. 了解制药工艺的基本原理和流程;2. 掌握制药设备的使用和操作;3. 培养团队合作和沟通能力;4. 提高自身动手实践能力;5. 为今后从事医药行业打下坚实基础。
三、实训内容1. 制药原理与工艺流程实训过程中,我们学习了药物合成、制备、质量控制、生产过程等方面的基本原理和工艺流程。
通过查阅资料、课堂讲解和实践操作,我们对制药工艺有了初步的认识。
2. 制药设备的使用与操作实训期间,我们学习了制药设备的种类、原理、使用方法和注意事项。
在导师的指导下,我们亲自动手操作了离心机、混合机、干燥机等设备,熟悉了制药设备的使用流程。
3. 药品质量控制实训中,我们学习了药品质量控制的基本原则和方法,包括原料检验、半成品检验、成品检验等。
通过实际操作,我们掌握了药品质量控制的技能。
4. 团队合作与沟通在实训过程中,我们以小组为单位完成各项任务。
通过相互协作、沟通与交流,我们提高了团队合作能力,培养了良好的沟通技巧。
5. 实践操作实训期间,我们参与了以下实践操作:(1)合成实验:学习并掌握药物的合成方法,如重结晶、萃取等。
(2)制剂实验:学习并掌握药品的制备方法,如片剂、胶囊剂、注射剂等。
(3)干燥实验:学习并掌握干燥设备的使用和操作,如流化床干燥、喷雾干燥等。
(4)质量检验:学习并掌握药品质量检验的方法,如高效液相色谱、紫外分光光度法等。
四、实训成果1. 掌握了制药工艺的基本原理和流程;2. 熟练掌握了制药设备的使用和操作;3. 提高了药品质量控制的技能;4. 培养了团队合作和沟通能力;5. 为今后从事医药行业打下了坚实基础。
五、实训体会1. 理论与实践相结合:通过实训,我们深刻体会到理论知识与实践操作的重要性。
只有将所学知识运用到实际操作中,才能更好地掌握制药工艺。
制药工艺学知识点总结高中

一、制药工艺学是指将原料药或中间体通过一系列的物理、化学、生物、药物配方、药物制备、包装和检验等技术过程,加工成符合药品注册批准文书要求的成品药的学科。
制药工艺学对药物生产的每一个环节都有着严格的要求,需要依靠科学合理的工艺流程和技术方法,确保生产出符合质量标准、安全有效的药品。
二、药物生产的工艺流程1.原料药的生产原料药生产是整个制药生产的基础,原料药的质量直接影响到成品药的质量。
原料药的生产包括原料药的合成、提纯、结晶、干燥等环节。
在原料药生产中,要特别注意反应条件的控制、反应过程的监控以及产品的提纯和析出等关键环节。
2.中间体的生产中间体在药物生产中起着至关重要的作用,它是原料药合成的核心环节。
中间体的生产工艺需要对合成路线、反应条件进行合理设计,并且要注意反应物的选择、反应条件的控制等方面。
3.成品药的制备成品药的制备是制药工艺学的最终环节,包括配方确定、制剂工艺的开发、生产工艺的设计、生产设备的选择等。
在成品药的制备过程中,需要重点关注药物的稳定性、溶解度、生物利用度等方面的问题。
三、药物生产中的质量控制1.原料药、中间体和成品药的质量控制药物的质量控制是制药工艺学的核心内容,包括对原料药、中间体和成品药的各个环节进行严格的质量控制。
需要对原辅料的质量、反应过程的控制、产品的纯度、含量、溶解度、稳定性等方面进行检验。
2.环境条件的质量控制药物生产过程中的环境条件对药物的质量有着直接的影响,因此需要对生产环境的洁净度、湿度、温度等条件进行严格的控制。
3.生产设备的质量控制生产设备对药物的质量也有着重要的影响,因此需要对生产设备进行定期检验和维护,确保设备的正常运转和质量稳定。
1.危险性品的防护在药物生产中会接触到一些危险性品,需要采取相应的防护措施,确保生产人员的安全。
2.工艺操作的安全控制药物生产工艺中的每一个环节都需要严格控制,确保操作的安全,防止事故的发生。
3.废物处理的安全控制废物处理对环境和人体健康都有着重要的影响,需要对废物处理进行严格控制,做到安全处理废物。
制药工艺学

适宜的搅拌速度:保证气液混合,提高溶氧
调整搅拌转速:各阶段的生长和耗氧量不同。
(6)消沫
天然油脂:玉米油;
化学消沫剂:泡敌。
策略:少量多次。
注意:不适在前期多加入,影响呼吸代谢
分离提纯
青霉素不稳定,遇酸、碱、热分解失活
水溶液中不稳定,非极性溶剂中稳定
易溶于有机溶剂,水中溶解度很小
生物合成
1.前体合成
2.结构修饰
3.不同组分的装配
青霉素
前体及三肽的合成
前体:L-缬氨酸 半胱氨酸 α-氨基己二酸
1.三肽的合成:L-α-氨基己二酸首先与半胱氨酸缩合形成二肽,然后L-缬氨酸的氨基与半胱氨酸的羧基缩合形成三肽。
2.β-内酰胺环、噻唑环的形成 在环化酶催化下,三肽中的酰胺N原子与S原子相邻的C原子连接进行环化,形成β-内酰胺环。
1 发酵液处理 计算好发酵液实际过程后,加0.1%-0.2%的甲醛溶液,起杀菌和菌体蛋白凝集变性的作用。接着加4%-6%的ZnSO4,去除酸性蛋白并起助滤作用。用15%-20%的碱液调pH至8.2-8.8之间,稳定红霉素,最后过滤。
2 滤液处理 先计算好醋酸丁酯的加入量,用碱液调pH至10-10.5,边加边搅拌,再加适量的消泡剂,保温30-32℃左右。
毒性:抑制细胞生长和青霉素合成。
策略:低浓度流加
控制:保持供应速率略大于生物合成需要。
提高产量的其他物质流加
表面活性剂:新洁尔灭、聚氧乙烯、山梨糖醇酐、单油酸酯、单月桂酸酯、三油酸酯;
可溶性高分子化合物:聚乙烯醇、聚丙烯酸钠、聚乙二胺、聚乙烯吡咯烷醇;
其他:剪切保护剂;分散剂
制药工艺学知识点总结初中

制药工艺学知识点总结初中一、制药工艺学的概念制药工艺学是指将药物原料经过一定的物理、化学和生物方法处理,制备成满足药用要求的药品的过程。
它是现代药物工业生产中的重要环节,是药品生产中最基础、最核心的环节之一。
二、制药工艺学的主要内容1. 药物原料的提取和精制药物原料一般来自于天然植物、动物或矿物,通过提取和精制,将其纯化为固体、液体或气体的药物原料。
2. 药物合成通过化学反应合成出具有特定治疗作用的药物。
包括有机合成、无机合成、生物合成等方法。
3. 药物制剂的生产工艺将药物原料或合成的药品与辅料按照一定的配方和工艺要求,制成适合于人或动物用药的物理状态和剂型。
4. 药品包装包装是药品生产中的重要环节,它不仅可以保护药品的安全性和稳定性,还可以方便药品的使用和储存,因此包装工艺也是制药工艺学中的重要内容之一。
5. 药品质量控制药品质量控制是制药工艺学中的核心内容之一,包括药品的理化性质、微生物检验、稳定性试验等。
6. 药品生产设备药品生产设备是实施药品生产工艺的主要条件之一,包括反应釜、干燥设备、填充设备、包装设备等。
7. 药品生产管理药品生产管理包括生产计划、生产过程监控、品质管理、安全管理等,它是保障药品生产质量和安全的重要环节。
三、制药工艺学的基本原理1. 质量原理质量是药品的生命,制药工艺学中的每个环节都要以质量为中心,保证药品质量的稳定性和可靠性。
2. 安全原理制药工艺学中的生产设备、工艺和工作人员都要遵循安全原则,确保生产过程的安全。
3. 经济原理制药工艺学中要尽可能地降低生产成本,提高生产效率,保证药品的合理价格。
4. 环保原理制药工艺学中的生产过程要符合环保要求,减少对环境的污染和破坏。
四、制药工艺学的发展方向1. 绿色制药随着环保意识的增强,绿色制药正逐渐成为制药工艺学的发展方向之一,通过绿色工艺和绿色原料,降低对环境的影响。
2. 智能制药智能制药借助先进的信息技术,实现药品生产过程的自动化、智能化,提高生产效率,减少生产成本。
制药工艺学第一章

制药工艺学的任务是研究药物制造过程中的基本原理、方法和技术,优化生产 工艺,提高药物质量,降低生产成本,为药物研发、生产和应用提供科学依据。
制药工艺学发展历史及现状
发展历史
制药工艺学起源于古代医药实践,随着化学、生物学、工程 学等学科的发展,逐渐形成了独立的学科体系。现代制药工 艺学经历了从经验到科学、从手工到自动化的发展历程。
制药工艺学第一章
目录
• 绪论 • 药物合成路线设计与优化 • 化学反应原理及其在制药工艺中应用 • 原料药生产工艺流程及质量控制 • 制剂生产工艺流程及质量控制 • 现代制药工艺发展趋势与挑战
01 绪论
制药工艺学定义与任务
制药工艺学定义
制药工艺学是研究药物制造过程及其相关技术的科学,涉及药物原料的提取、 合成、纯化、制剂、质量控制等方面。
原料药的定义与分类
原料药是指用于生产各类制剂的原料药物,包 括化学合成原料药、天然药物原料药等。
生产工艺流程简介
原料药的生产通常包括原料准备、化学反应、 分离纯化、干燥、包装等步骤。
工艺流程中的关键操作单元
包括反应釜、分离设备、干燥设备、包装设备等。
原料药生产关键质量控制点识别与监控
关键质量控制点的定义
可行性原则
合成路线应符合化学反应原理和实验 条件,确保反应的可行性和可重复性。
选择性原则
针对目标化合物的结构和性质,选择 合适的反应类型和条件,提高目标产 物的选择性和纯度。
经济性原则
考虑原料、试剂、溶剂等的成本和来 源,选择经济合理的合成路线。
药物合成路线优化方法与技术
反应条件优化
通过调整反应温度、压力、时间、浓度等条 件,提高反应速率和产率。
《制药工艺学》课件

THANKS
感谢观看
制药工艺学具有很强的应用性,需要结合理论和实践,涉及 多种学科领域,如化学、生物学、药剂学等,同时也需要遵 守严格的药品生产质量管理规范(GMP)。
制药工艺学的应用领域
药品研发
制药工艺学在药品研发阶段发挥 着重要作用,涉及新药的发现、 筛选、合成、制剂等方面的研究
。
药品生产
制药工艺学是药品生产的核心技术 ,涉及原料药的生产、药物制剂的 制备、质量控制等方面的技术要求 。
04
制药工艺学中的安全与环保
制药工业的安全管理
制药工业安全管理的重要性
确保生产过程中的安全,防止事故发生,保 护员工健康和环境。
制药工业安全培训
对员工进行安全培训,提高员工的安全意识 和技能,确保员工能够遵守安全规定。
制药工业安全管理体系
建立和完善安全管理体系,包括安全规章制 度、操作规程、应急预案等。
这些设备包括反应器、混合器、分离器、干燥器等,每种设备都有其特定的功能和 操作要求。
了解和掌握这些设备的原理、操作和维护对于保证制药工艺的稳定性和产品质量至 关重要。
制剂生产设备
制剂生产设备是用于将原料药 转化为药物制剂的设备,如片 剂、胶囊剂、注射剂等。
这些设备包括压片机、混合机 、包衣机、灌装机等,每种设 备都有其特定的功能和操作要 求。
《制药工艺学》ppt课件
• 制药工艺学概述 • 制药工艺流程 • 制药设备与技术 • 制药工艺学中的安全与环保 • 药品研发与注册 • 案例分析
01
制药工艺学概述
定义与特点
定义
制药工艺学是一门研究药物制造过程的综合性学科,涉及药 物成分的提取、分离、纯化、制剂、质量控制等方面的理论 和实践。
制药工艺学名词解释

制药工艺学名词解释制药工艺学是研究制药过程的科学学科,涉及药物的制备、转化、纯化和包装等方面的工艺技术。
在制药工艺学中,有许多重要的名词需要解释,以下将详细介绍一些关键的名词。
1. 药物:指的是具有治疗、预防或诊断疾病作用的化学物质。
药物可以是天然产物,也可以是合成的化学物质。
制药工艺学的主要任务之一就是研究如何有效地制备药物。
2. 药物制备:指的是从原料开始,通过一系列化学反应和工艺步骤将原料转化成药物的过程。
药物制备通常包括合成、提取、纯化等步骤,还可能包括晶化和干燥等工艺。
3. 中间体:在药物的制备过程中,中间体是指在合成路线中生成但不是最终产品的化合物。
中间体是制备药物过程中的关键步骤,它们在反应过程中被转化为最终的药物。
4. 化学反应:化学反应是指原子、离子或分子之间发生的变化,生成新的物质。
在药物制备中,化学反应经常被用来将一种化合物转化为另一种化合物,以获得所需的药物。
5. 提取:提取是指从天然来源中获取药物或化合物的过程。
提取通常涉及将天然原料浸泡在溶剂中,使药物或化合物溶解在溶剂中,然后通过蒸发等方式从溶剂中分离出目标化合物。
6. 纯化:纯化是指从混合物中分离出目标化合物的过程。
纯化通常包括使用化学或物理方法去除杂质,以获得纯度较高的药物或化合物。
7. 结晶:结晶是指溶液中溶解物质的无序分子重新排列为有序晶体的过程。
结晶常常被用来纯化药物,因为在结晶过程中,杂质往往不能结晶并被排除在晶体之外。
8. 干燥:干燥是指将药物中的水分或其他溶剂去除的过程。
干燥药物可以提高其稳定性和保存时间。
9. 控释:控释是指通过特定的技术手段控制药物在体内的释放速率和持续时间。
控释技术可以使药物长时间维持在治疗剂量,减少药物的副作用。
10. 药剂学:药剂学是研究药物制剂的学科,主要涉及药物制剂的设计、制备和评价。
药剂学的目标是开发出安全有效的药物剂型,以方便患者使用。
11. 药物分析:药物分析是研究药物质量和纯度的科学技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南大学硕士招生考试
916-《制药工艺学》考试大纲
《制药工艺学》专业课程考试大纲适用于云南大学制药工程专业的硕士研究生入学考试,涉及两大部分内容:(1)制药工艺学课程,(2)有机化学课程。
考题总分为150分,其中第一部分制药工艺学课程考试内容约占85分,第二部分有机化学课程考试内容约占65分。
要求学生全面掌握制药工艺学的基本概念、基本原理和基本技能,熟悉代表性产品的工艺研究、工艺过程与控制原理等,具有应用所学知识进行分析和解决工艺过程中存在问题的初步能力。
一、考试的内容
(一)制药工艺学部分考试内容:
1、绪论
制药工艺学研究的对象与内容、化学合成药物的生产特点、GLP、GMP、GSP、GCP、实验室工艺研究过程、中试放大研究过程、我国现阶段制药工业主要发展战略、创新药的概念及研究开发过程、仿制药的概念及研究开发过程、药品注册管理和生产管理法律法规
2、药物合成工艺路线的设计与选择
工艺路线的概念、工艺路线设计与选择的研究对象、合成路线设计的相关概念、逆合成分析方法、追溯求源法、分子对称法、模拟类推法、药物合成工艺路线的评价标准、药物合成工艺路线的选择、收率的计算
3、化学合成药物的工艺研究
影响化学反应的因素、工艺研究的基本思路和方法、反应试剂的选择、催化剂的选择、反应溶剂的选择、配料比与反应浓度、加料顺序与投料方法、反应温度、反应压力、搅拌与搅拌方式、反应时间、优化催化反应、反应后处理方法、产物
纯化与精制方法、重结晶技术、工艺过程控制的研究内容和方法、利用实验设计优化工艺
4、手性药物的制备技术
手性药物与生物活性、手性药物的制备技术、影响手性药物生产成本的主要因素、结晶法拆分外消旋混合物、结晶法拆分非对映异构体、对映异构体的动力学拆分、手性合成子与手性辅剂、手性源的组成和应用、不对称合成的定义和发展、不对称合成反应类型。
5、中试放大与工艺规程
中试放大的研究方法、中试放大的研究内容、物料衡算的理论基础、确定物料衡算的计算基准、物料衡算的计算步骤、工艺规程的主要作用、制订工艺规程的原始资料和基本内容、工艺规程的制定和修订。
6、化学制药与环境保护
环境保护的重要性、我国防治污染的方针政策、化学制药厂污染的特点和现状、防治污染的主要措施、废水的处理、废气的处理、废渣的处理。
7、奥美拉唑的生产工艺原理
掌握奥美拉唑的结构、合成路线的分析和选择、奥美拉唑与中间体的生产工艺原理及过程。
8、塞来克西的生产工艺原理
掌握塞来克西的结构、合成路线的分析和选择、塞来克西与中间体的生产工艺原理及过程。
9、生育酚的生产工艺原理
掌握生育酚的结构、混合生育酚的生产工艺原理及过程。
10、左氧氟沙星的生产工艺原理
掌握左氧氟沙星的结构、合成路线的分析和选择、左氧氟沙星与中间体的生产工艺原理及过程。
11、萘普生的生产工艺原理
掌握萘普生的结构、合成路线的分析和选择、萘普生与中间体的生产工艺原理及过程。
12、卡托普利的生产工艺原理
掌握卡托普利的结构、合成路线的分析和选择、卡托普利与中间体的生产工艺原理及过程。
(二)有机化学部分考试内容:
1. 烃类化合物
掌握各种烃类化合物的同分异构现象及命名方法;掌握烷烃的构象:透视式和纽曼投影式的写法及各构象之间的能量关系;掌握烷烃的化学性质及自由基取代反应历程及各类自由基的相对稳定性;掌握轨道的杂化(sp3、sp2、sp杂化)基本概念;掌握烯烃的亲电加成反应历程、碳正离子的稳定性和Markovnikov 规则;理解自由基加成反应历程及烯烃的制备方法。
掌握共轭二烯烃的1,2-加成和1,4-加成反应;末端炔烃的酸性和炔化物的生成、加成反应、氧化反应、聚合反应;脂环化合物的立体异构现象、环己烷及其衍生物的构象(船式构象、优势构象、e-键、a-键)、多脂环化合物。
2. 有机化合物立体化学及波谱分析
掌握手性碳原子、手性分子、光学活性、比旋光度。
对映异构体和手性分子;对映异构体的物理性质—光学活性;对映异构体构型的表示法(D/L法、R/S法);掌握紫外光谱、红外光谱、核磁共振氢谱的基本原理和应用;能对较简单的红外光谱和核磁共振氢谱的谱图进行解析。
了解质谱的基本原理、质谱在有机化合物结构测定中的应用。
3. 芳香烃、卤代烃及醇、酚及醚类化合物
掌握芳香烃、卤代烃及醇、酚、醚的分类和命名;掌握苯的结构及共振
论的基本要点,理解Hückel规则;苯及其衍生物的反应:亲电取代反应、氧化反应、加成反应、伯奇(Birch)反应;苯环环上取代基的定位效应和规律:两类定位基、苯环上取代反应定位规律的解释、定位规律的应用;掌握代烯烃的亲核取代反应历程(S N1、S N2)、消除反应历程(E1、E2)、Grignard试剂、有机锂化合物。
掌握醇的酸性和碱性、醇的氧化、醇成酯的反应、卤化作用、醇的脱水反应;掌握醚的物理性质和反应:佯盐的生成、醚键的断裂、克来森(Claisen)重排、环氧化合物的反应;醚的合成法。
4. 醛、酮、醌
了解醛和酮的分类、同分异构及命名;醛和酮的化学性质——亲核加成反应(加HCN、加NaHSO3、加ROH、与氨极其衍生物的加成、与Grignard试剂的加成、与炔烃的加成、与Wittig试剂的反应);α-氢的反应(卤代反应、缩合反应、Mannich反应);醛和酮的氧化和还原反应(氧化反应、坎尼扎罗反应、还原反应);α,β-不饱和醛、酮的化学性质(1,4-亲电加成、1,4-亲核加成)。
5. 羧酸、羧酸衍生物及取代羧酸
掌握羧酸衍生物的分类及命名,羧酸的结构;羧酸的制备方法;羧酸衍生物的化学性质——酰基上的亲核取代反应(水解、醇解、氨解)及其反应机理;还原反应;与Grignard反应;酰胺氮原子上的反应(酰胺的酸碱性、脱水反应、Hofmann降解反应)。
掌握羟基酸的制备方法(卤代酸水解、羟基腈水解、Refomatsky反应)、羟基酸的化学性质——酸性、脱水反应、α-羟基酸的分解。
乙酰乙酸乙酯的制备方法(Claisen酯缩合);乙酰乙酸乙酯的化学性质——酮式-烯醇式互变异构、酸式分解和酮式分解;掌握乙酰乙酸乙酯及丙二酸二乙酯在有机合成上的应用。
6. 氨和其它含氮化合物
掌握胺的分类、命名和光谱性质;2.掌握胺的化学性质;3、掌握胺的制备;4、掌握芳香族重氮化反应及其重氮盐的性质。
7. 杂环化合物、碳水化合物
掌握杂环化合物的分类和命名;掌握五元杂环化合物的结构和化学性质;掌握吡啶的结构和化学性质,了解一些含六元杂环化合物的用途。
掌握葡萄单糖的结构;掌握单糖的化学性质;掌握双糖的两种可能连接方式和蔗糖的结
构,了解一些重要双糖的结构;了解多糖的结构及其应用。
糖类化合物的分类;葡萄糖的结构(开链式、氧环式、Haworth式、构象式、开链式-氧环式的互变异构);单糖的化学性质——氧化、还原、成脎反应、成苷反应、成酯和成醚反应;二糖(蔗糖、麦芽糖、纤维二糖)的结构与性质;多糖(淀粉、纤维素)的结构与性质。
8. 氨基酸、多肽、蛋白质和核酸
掌握氨基酸的结构、构型、性质,了解氨基酸的分类和命名;掌握肽的结构和肽键,了解多肽结构的测定和端基分析;掌握蛋白质的分类、结构和性质;了解构成核酸的单体——核苷酸的结构,掌握核酸的结构和生物功能。
氨基酸的制备方法(α-卤代酸的氨解、Gabrial合成法、Strecker合成法);氨基酸的化学性质——两性和等电点、羧基的反应、氨基的反应、与水合茚三酮的反应。
肽和蛋白质的结构。
二、试卷的题型和比例
制药工艺学课程部分的题型包括基本概念题及应用题。
基本概念题分为选择题和判断题两类(约占35分);应用题包括简单题和分析讨论题两类(约占50分)。
有机化学课程部分的题型包括选择题、简答题、完成反应式、推测结构及合成题五类。
其中选择题和简答题主要涉及基本概念、基本知识、基本理论、基本性质、基本规律等,约占25分;完成反应式(填空方式,包括中间产物、最终产物、试剂和重要反应条件,内容涉及基本反应),约占20分;推测结构及合成题约占20分。
三、考试形式及时间
考试形式均为笔试,考试时间为三小时(满分150分)。