理论力学第三章 4-5解析

合集下载

理论力学第三章刚体力学课件

理论力学第三章刚体力学课件
理论力学
电子科技大学物理电子学院 付传技
Email:fcj@
1
第三章 刚体力学
刚体也是一个理想模型,它可以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
17
我们分别用Ox1x2x3(或Oxyz)和Ox1x2 x3(或Oxyz) 来标志空间坐标系和本体坐标系,它们的单位矢量
分别为e和e( =1, 2,3或x, y, z)。
本体系相对于空间系的取向可以用其单位矢量e1, e2,e3在空间系中的9个方向余弦来描写:
cos(e , e ) e e a (=1, 2,3)
或a a (行行正交)a a (列列正交)
这些关系通常叫做正交条件。满足正交条件 的矩阵叫正交矩阵,相应的变换称为正交变换。
22
根据Kronec ker 符号 对指标的交换的对称性
可知,9个正交条件实际上只有6个独立(3个对角 ,3个非对角),所以独立的方向余弦数目为
9-6=3
23
2)Aˆ的行列式为1.即 det Aˆ 1ˆ 证:对正交条件两端取行列式,并注意到 det AˆT det Aˆ,得 det Aˆ 1ˆ 因为不转动(恒等变换)为连续转动的一种 特例,它所对应的变换矩阵为单位阵,所以 只能取正号。
8
4)定点转动
定点转动的独立变量有三个,其中两个 确定转动轴的方向,一个确定其它点绕轴转 动的角度。
9
Euler定理
定点运动刚体的任何位移都可以通过 绕过该定点某轴的一次转动来实现。
10
5)一般运动(Chasles定理)

理论力学第三章刚体力学

理论力学第三章刚体力学
d dt
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )

r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件

(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1

理论力学 第三章 平面力系

理论力学 第三章 平面力系

FBl cos M 0

M 20 k N m FB 4.62 kN l cos 5 m cos 30
FA FB 4.62kN

目录
第三章 平面力系\力的平移定理
3.3 力的平移定理
作用于刚体上的力,可平行移动到刚体内任一指定点,但必须 在该力与指定点所决定的平面内同时附加一力偶,此附加力偶的矩 等于原力对指定点之矩。 平面一般力系向一点简化的理论基础是力的平移定理。
设平面汇交力系F1、F2、…、Fn中各力在x、y轴上的投影分 别为Xi、Yi,合力FR在x、y轴上的投影分别为XR、YR,利用公式
F Fx Fy Xi Yj
分别计算式FR=F1+F2+…+Fn=ΣF 等号的左边和右边,可得 FR = XR i+YR j 以及 F1+F2+…+Fn=(X1i+Y1j)+(X2i+Y2j)+…+(Xni+Ynj) =(X1+X2+…+Xn)i+(Y1+Y2+…+Yn)j 比较后得到 X R X1 X 2 X n X YR Y1 Y2 Yn Y 目录
返回
第三章 平面力系
如图(a)所示水坝,通常取单位长度坝段进行受力分析,并将坝 段所受的力简化为作用于坝段中央平面内的一个平面力系[图(b)]。
返回
第三章 平面力系
第三章 平面力系
3.1 平面汇交力系的合成与平衡 3.2 平面力偶系的合成与平衡 3.3 力的平移定理 3.4 平面一般力系向一点简化 3.5 平面一般力系的平衡方程及其应用
第三章 平面力系\平面力偶系的合成与平衡

理论力学第三章

理论力学第三章

M
F'
F
二、空间力偶等效定理
空间力偶的等效条件是:作用在同一刚体上的两个力偶, 如果力偶矩矢相等,则两力偶等效。
理论力学 中南大学土木工程学院 24
理论力学
中南大学土木工程学院
25
理论力学
中南大学土木工程学院
26
三、空间力偶系的合成与平衡
1、合成
力偶作用面不在同一平面内的力偶系称为空间力偶系。 空间力偶系合成的最后结果为一个合力偶,合力偶 矩矢等于各分力偶矩矢的矢量和。即:
8
[例]图示起重机吊起重物。起重杆的A端用球铰链固定在地面上,B端用 绳CB和DB拉住,两绳分别系在墙上的C点和D点,连线CD平行于x轴。 已知CE=EB=DE,角a =30o ,CDB平面与水平面间的夹角∠EBF= 30o, 重物G=10kN。如不计起重杆的重量,求起重杆所受的力和绳子的拉力。 解:1、取杆AB与重物为研究 对象,受力分析如图。
空间力系向点O简化得到一空间汇交力系和一空间 力偶系,如图。
z O
F1 y F2 z M2 z F'1 Mn F'2 y
Fn x

M1 x
O F'n

MO
F'R
O y
x
( i 1,, 2 ,n )
Fi Fi M i M O ( Fi ) ri Fi
M M cos( M,k ) z M
27
理论力学
中南大学土木工程学院
[例]工件如图所示,它的四个面上同时钻五个孔,每个孔所受的切削力偶 矩均为80N· m。求工件所受合力偶的矩在x,y,z轴上的投影Mx,My,Mz, 并求合力偶矩矢的大小和方向。

第三章理论力学

第三章理论力学

因此,其平衡的解析条件为:
F
x
0
x
F
y
0
y
F
z
0
z
M
0
M
0
M
0
------ 平衡方程
共六个方程,可以求解空间任意力系中的六个未知约束力. 3、空间任意力系的两种特殊情况: 1)空间平行力系的平衡方程
Fy F cos

方向:+、-号;
Fz F cos
2)间接投影法(二次投影法) 如果只已知与一根轴的夹 角 ,则通常的做法是:先将 该力向z 轴及其垂面分解(与 垂面的夹角为 90 ),而位于 垂面内的分力,其平面几何关
系比空间几何关系要容易寻找得多,因此只要在该垂面内
找出其与该平面内的两根轴之一的夹角(与另一根轴的夹

第三章
空间力系
注意:本章不作为重点,主要介绍一些基本概念、基本原理 和一些基本方法的应用,但不作为重点练习;个别需 要掌握的内容设有标注,望大家掌握.

一、空间力系:当力系中各分力的作用线分布于 三维空间时,该力系称为空间力 系. 二、空间力系又可根据力系中各分力的作用线的 分布情况划分为:空间汇交力系、空间力偶 系、空间平行力系和空间 任意力系. 三、本章研究的主要问题:力系的简化、合成及 平衡问题.
M x ( F ) M x ( Fx ) M x ( Fy ) M x ( Fz ) Fz y Fy z M y ( F ) M y ( Fx ) M y ( Fy ) M y ( Fz ) Fx z Fz x M z (F ) M z (Fx ) M z (Fy ) M z (Fz ) Fy x Fx y

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )

理论力学---第三章 空间力系

理论力学---第三章 空间力系

B
P
Fz 0 : F cos P 0
E
C
D FD
F

C

z
A y
F
x
P
12
B

3.2 力对点的矩和力对轴的矩

3.2.1 力对点的矩以矢量表示-力矩矢 空间力对点的矩的作用效果取决于: MO(F)
z B F
(1)力矩的大小 (2)转向 (3)力矩作用面方位。
h 这三个因素可用一个矢量 M O (F ) 表示。 x 矢量的方位:与作用平面法线 大小: M O (F ) Fh

例1 重为P的物体用杆AB和位于同一水平面的绳索AC与AD支承,如图。
= 45° 已知:P=1000N,CD=AC=AD,E为CD中点,
不计杆重;求绳索的拉力和杆所受的力。 解:以铰A为研究对象,受力如图。
E
C

D
A
Fx 0 : FC sin FD sin 0
Fy 0: FC cos FD cos F sin 0
齿轮的啮合角(螺旋角) β 和压力角 ,试求力 Fn 沿 x,y 和 z 轴的分力。

6
解: 将力Fn向 z 轴和Oxy 平面投影
Fz Fn sin ,
将力Fxy向x,y 轴投影
Fxy Fn cos
Fx Fxy sin Fn cos sin Fy Fxy cos Fn cos cos
z Fz F B Fy
M z (F ) M O (Fxy ) M O (Fx ) M O ( Fy )
xFy yFx

理论力学第3章 力系的平衡

理论力学第3章 力系的平衡

基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。

说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。

B 点。

过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。

qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
此力系向 A点简化
d'
滚阻力偶与主动力偶(Q,F)相平衡
①滚阻力偶M随主动力偶(Q , F)的增大而增大;
② 0 M Mmax
有个平衡范围;
滚动 摩擦 ③ M max 与滚子半径无关;
④滚动摩擦定律: M max d N,d 为滚动摩擦系数。
23
滚动摩擦系数 d 的说明:
①有长度量纲,单位一般用mm,cm;
tg m m tg
20
同理:
再求使物体不致下滑的 Qmin 图(2)
解得:
Qmin
sin f cos cos f sin
G G1tgf
f
tg
G
tg(
m
)
平衡范围应是
Qmin QQmax
21
3.4.5 滚动摩阻
X 0,QF 0 Y 0,P N 0 M A 0,Qr0(不成立)
Q与F形成主动力偶使前滚
例1:均质杆AB,重为P,A端放于粗糙的水平面上,B
端用无重细绳拉住,且使A、B、C三点在同一铅锤平
面内。今测得杆的A端将要向左滑动的趋势,、角
已知,求杆与地面间的摩擦系数。
c
B
A
分析:
1、取分离体,画受力图 y
T
B
2、建立图示坐标系
3、列平衡方程
N
P
X 0, F T sin 0 Y 0, N P T cos 0 A
FRm
f FN
Fmax
tan f
Fmax FN
fs FN FN
fs
由此可得重要结论:
最大全反力 FRm=FN+Fmax
tan f
Fmax FN
摩擦角的正切=静摩擦因数
摩擦锥
以支承面的法线为轴作出的以2f 为顶角的圆锥。
摩擦锥的性质
摩擦角更能形象的说明有摩擦时的平衡状态。
物体平衡时有 0≤F≤Fmax
解: 通过比较达到临界滑动和临界滚动所需的水平力来判断。 1.取轮子为研究对象。 2.受力分析如图。
3.列平衡方程。
Fx 0 ,
Fy 0 ,
MA 0 ,
FP Ff 0 FN W 0
M r,max FP R 0
讨论滑动: 临界时 Ff =Fmax= fsFN FP1=Ff = fs FN = fs W = 0.2 × 10 =2 kN
②自锁条件:
当 m时,永远平衡(即自锁)
m
10
● 两个重要结论 ① 如果作用于物体的主动力合力的作用线在摩擦锥内, 则不论这个力多大,物体总能平衡。
这种现象称为自锁。 FP
f
FR
● 两个重要结论 ② 如果作用于物体的主动力合力的作用线在摩擦锥外, 则不论这个力多小,物体都不能保持平衡。
f
FP
FR
2、状态: ①静止: F P (P F 不固定值)
②临界:(将滑未滑)
Fmax f N (f — 静滑动摩擦系数)
③滑动: F ' f ' N (f '—动摩擦系数)
所以增大摩擦力的途径为:①加大正压力N, ②加大摩擦系数f3
3、静摩擦力特征
大小: 0 F Fmax
X 0 (平衡范围)满足
19
解:①先求使物体不致于上滑的Qmax 图(1)
由 X 0, Qmax cos Gsin Fmax 0
Y 0, N Qmax sin Gcos 0
补充方程: Fmax f N
解得:
Qmax
G1tgftgf
G
tg tg m 1 tg m tg
Gtg( m )
应用三角公式:
tg(
m
)
tg 1 tg
方向: 与物体相对滑动趋势方向相反
定律: 库伦 只与材料和表面情况有关, 与接触面积大小无关。)
4
二、动滑动摩擦力:
大小: F' f 'N (无平衡范围)
动摩擦力特征: 方向: 与物体运动方向相反
定律: F' f 'N (f '只与材料和表面情况有关,与接 触面积大小无关。)
F
x
____
mB
0, P
AB cos
2
N
AB cos
____
F AB sin
0
补充方程 F fN
联立解方程组求得 : f
sin
cos 2tg sin
[例2] 已知: =30º,G =100N,f =0.2 求:①物
体静止时, 水平力Q的平衡范围。②当水平力Q = 60N时,物 体能否平衡?
②与滚子和支承面的材料的硬度和温度有关。
③ d 的物理意义见图示。
根据力线平移定理,将N和M合成一个力N' , d'
N'=N
dM N'
M dN'dN
d d
纯滚动条件
24
例3 匀质轮子的重量 W =10 kN,半径 R= 0.5 m;已知 轮子与地面的滚阻系数δ= 0.005m,摩擦因数 fs=0.2, 问轮子 是先滚还是先滑?
讨论滚动: 临界时 M r=Mr,max= δ FN
§3-4 考虑摩擦时的平衡问题
3.4.1 工程中的摩擦现象
摩擦
滑动摩擦 滚动摩擦
静滑动摩擦 动滑动摩擦
静滚动摩擦 动滚动摩擦
平衡必计摩擦
干摩擦
摩擦 湿摩擦
2
3.4.2 滑动摩擦力
一、静滑动摩擦力 1、定义:相接触物体,产生相对滑动(趋势)时,其接触面
产生阻止物体运动的力叫滑动摩擦力。 ( 就是接触面对物体作用的切向约束反力)
则有
tan
F FN
≤ Fmax FN
tan f
F FN
≤ Fmax FN
0≤ ≤ f
所以物体平衡范围0≤F≤Fmax也可以表示为0≤ ≤ f。
性质:当物体静止在支承面时,支承面的全反力的偏角
不大于摩擦角。
四、自锁
①定义:当物体依靠接触面间的相互作用的摩擦 力 与正
压力(即全反力),自己把自己卡 紧,不会松开 (无论外力多大),这种现象称为自锁。
③自锁应用举例
摩擦系数的测定:OA绕O 轴转动使物块刚开始下滑时测出
角,tg =f , (该两种材料间静摩擦系数)
tgm
Fmax N
f N N
f
13
斜面自锁条件
f
螺纹自锁条件
f
3.4.4 考虑滑动摩擦时的平衡问题 仍为平衡问题,平衡方程照用,求解步骤与 前面基本相同。 几个新特点 1 画受力图时,必须考虑摩擦力; 2 严格区分物体处于临界、非临界状态; 3 因 0 Fs Fmax ,问题的解有时在一个范围内。
对多数材料,通常情况下
fd fs
3.4.3 摩擦角与自锁现象
全反力
摩擦角
最大全反力FR对法向反力FN的偏角f 。
FR FN
FRm
f FN
F
Fmax
全反力 FR=FN+F
tan F
FN
最大全反力: FRm=FN+Fmax
tan f
Fmax FN
摩擦角
最大全反力FRm对法向反力FN的偏角f 。
相关文档
最新文档