圆锥曲线第二定义解析
解圆锥曲线问题多种常用方法

解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by ax 。
(2))0,0(12222>>=-b a by ax 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by ax(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =共线时,距离和最小。
圆锥曲线中第二定义的三类用法(共10张PPT)

第二定义
第二定义:椭圆或双曲线中的一点P,满足条件
PF2 PD
e
(式右x 准线a2对应右焦点),其中PF2 称作焦半径,准线公
c
第二定义
例:在平面直角坐标系
xoy
中双曲线
x2 3
y2
1
的右准线与它的两条渐近线分别交于点P,Q,
其中 焦点是 ,F1, F2 ,则四边形 的面积是_______.
x2 a2
y2 b2
1 的左焦点 ,交椭圆于A,B 两点,且有 | AF | 3 | B F | ,求椭圆的离心率.
解析:AF, B F 为左焦点上的焦半径,所以过A,B 两点
分别作垂直于准线的直线且和准线交于D,E 两点,
从B 点作 BH AD .
因为| AF | 3 | B F | ,设 BF m ,则 AF 3m
是右 ,根
据第二定义
PF2 PD
e
,解得
PF2
5 4
PD
5
所以
|
PM
|
4 5
|
PF2
|
PM
PD
因此当P,M,D三点共线时 PM PD 取得最小值,最小
值为从 M到右准线的距离 MH, MH 6 16 14 55
第二定义
本次课重点需要注意三点 :
(1)是第二定义的用法; (2)是注意例2这个题目的常规做法,此外下次课会给出这种例题的常用结论; (3)需要注意焦半径的取值范围,这个范围是求离心率取值范围题目中常用的
在 RT PF1F2 中,满足 PF12 所以在 RT PF1F2 中,SPF1F
1
圆锥曲线的几个定义

圆锥曲线的几个定义
1) 当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2) 当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3) 当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。
4) 当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。
5) 当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。
6) 当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。
7)当平面与二次锥面的两侧都不相交,且过圆锥顶点,结果为一点。
(完整版)圆锥曲线的定义、方程和性质知识点总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
第2讲 圆锥曲线第二定义与焦半径公式(解析版)

第2讲圆锥曲线第二定义与焦半径公式参考答案与试题解析一.选择题(共5小题)1.已知点P 是双曲线22184x y -=上的动点,1F ,2F 为该双曲线的左右焦点,O 为坐标原点,则12||||||PF PF OP +的最大值为()A.B .2CD【解答】解:由题意,分子最大且分母最小时,即P 在顶点处取得最大值,不妨取顶点,0),则12||||||PF PF OP +=,故选:D .2.已知双曲线222:1(0)4x y C a α-=>的右支上的点0(P x ,0)y 满足121||3||(PF PF F =,2F 分别是双曲线的左右焦点),则00(cy c x +为双曲线C 的半焦距)的取值范围是()A.)+∞B .[2,25)2C.252D .[2,【解答】解:由双曲线的第二定义可知10||PF ex a =+,20||PF ex a =-, 右支上的点0(P x ,0)y 满足12||3||PF PF =,0003()2ex a ex a ex a ∴+=-⇒=,由c e a=,解得202a x c=,P 在右支上,可得202a x a c= ,可得12ca< ,即12e < ,则22220022201164(1)422x c c y e x a a e+=+-=+-,令2e t =,14t < ,可得2202011611613244()4222c y e t t x e t t+=+-=+-=+-而132()()2f t t t=+在(1,4]递减,132()[62t t +∈,332,2002522c y x ∴+<,故选:B .3.已知点P 是双曲线22221(0,0)x y a b a b-=>>上的动点,1F ,2F 分别是其左、右焦点,O 为坐标原点,若12||||||PF PF OP +的最大值是,则此双曲线的离心率是()AB.2C .32D .2【解答】解:不妨设P 为右支上的一点,(,)P x y 其中x a ,1||PF ex a =+,2||PF ex a =-,||OP ==∴12||||)||PF PF x a OP +==∴当x a =时,取得最大值,∴=,∴e =故选:B .4.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则当||||AB DE +取得最小值时,四边形ADBE 的面积为()A .32B .16C .24D .8【解答】解:因为AB DE ⊥,要使||||AB DE +最小,而||||AB DE + 由抛物线的对称性可得A 与D ,B 与E 关于x 轴对称,所以可得直线DE 的斜率为1,又过抛物线的焦点(1,0),所以直线DE 的方程为:1y x =-,214y x y x=-⎧⎨=⎩,整理可得2440y y --=,124y y +=,124y y =-,所以可得||8DE ===,所以11883222ABCD S DE AB =⋅=⨯⨯=四边形.故选:A .5.过椭圆22143x y +=的右焦点F 作两条相互垂直的直线分别交椭圆于A ,B ,C ,D 四点,则11||||AB CD +的值为()A .18B .16C .1D .712【解答】解:由椭圆22143x y +=,得椭圆的右焦点为(1,0)F ,当直线AB 的斜率不存在时,:1AB x =,则:0CD y =.此时||3AB =,||4CD =,则11117||||3412AB CD +=+=;当直线AB 的斜率存在时,设:(1)(0)AB y k x k =-≠,则1:(1)CD y x k=--.又设点1(A x ,1)y ,2(B x ,2)y .联立方程组22(1)3412y k x x y =-⎧⎨+=⎩,消去y 并化简得2222(43)84120k x k x k +-+-=,∴221212228412,3434k k x x x x k k -+==++,2212(1)||34k AB k +∴=+,由题知,直线CD 的斜率为1k-,同理可得2212(1)||43k CD k +=+.∴22117(1)7||||12(1)12k AB CD k ++==+为定值.故选:D .二.填空题(共3小题)6.已知P 是椭圆22:184x y C +=上的动点,1F ,2F 分别是其左右焦点,O 是坐标原点,则12||||||PF PF PO - 的取值范围是[.【解答】解:设P 的坐标为(,)m n 椭圆22:184x y C +=中,28a =,24b =,2c ∴==,得椭圆的准线方程为2a x c=±,即4x =±作出椭圆的右准线,设P 在右准线上的射影为Q ,连结PQ ,根据圆锥曲线的统一定义,得2||||PF e PQ =,2||||)22PF e PQ m ∴==-=,同理可得1||2PF=,||PO =,∴12))||||22||m PF PF PO +--= 点(,)P m n 在椭圆22184x y +=上,得22184m n +=,∴2224(1482m m n =-=-,由此可得12||||||PF PF PO -= ,得22122||||4()8||PF PF m m PO -=+ ,2[0m ∈ ,2]a 即2[0m ∈,8],得224[08m m ∈+,2],∴12||||[||PF PF PO -∈,.故答案为:[7.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则11||||AB DE +的值为14.【解答】解:根据题意可得,抛物线24y x =的焦点坐标为(1,0)F ,准线方程为1x =-,设直线1:(1)(0)l y k x k =-≠, 直线1l ,2l 互相垂直,∴直线2l 的斜率为1k -,即得21:(1)l y x k=--,设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,4(E x ,4)y ,则分别将直线1l ,2l 的方程与抛物线方程联立组成方程组可得,22222(1)(24)04y k x k x k x k y x=-⎧⇒-++=⎨=⎩;21(1)4y x k y x⎧=--⎪⎨⎪=⎩⇒2222121(4)0x x k k k -++=由韦达定理可得,212224k x x k ++=,2342241k x x k ++=,由抛物线性质可知,抛物线上的点到焦点的距离等于到准线的距离,∴2212222444||112k k AB x x k k ++=+++=+=,2234224||112441k DE x x k k +=+++=+=+,∴2221111||||44444k AB DE k k +=+=++.故答案为:14.8.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||4||AB DE +的最小值为36.【解答】解:抛物线2:4C y x =的焦点(1,0)F ,准线方程为1x =-,设直线1l 的方程为(1)y k x =-,0k ≠,联立方程组24(1)y xy k x ⎧=⎨=-⎩,则2222(42)0k x k x k -++=,设1(A x ,1)y ,2(B x ,2)y ,可得12242x x k+=+,由抛物线的定义可得1224||24AB x x k=++=+,由12l l ⊥,可将上式中的k 换为1k-,可得2||44DE k =+,则221||4||204(4)2036AB DE k k +=+++= .当且仅当2k =±时,上式取得等号,则||4||AB DE +的最小值为36.故答案为:36.三.解答题(共6小题)9.已知斜率为k 的直线l 与椭圆22:143x y C +=交于A ,B 两点,线段AB 的中点为(1M ,)(0)m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.【解答】解:(1)设1(A x ,1)y ,2(B x ,2)y , 线段AB 的中点为(1,)M m ,122x x ∴+=,122y y m+=将A ,B 代入椭圆22:143x y C +=中,可得2211222234123412x y x y ⎧+=⎪⎨+=⎪⎩,两式相减可得,121212123()()4()()0x x x x y y y y +-++-=,即12126()8()0x x m y y -+-=,12126384y y k x x m m-∴==-=--点(1,)M m 在椭圆内,即211,(0)43m m +<>,解得302m <<∴3142k m =-<-.①(2)由题意得(1,0)F ,设3(P x ,3)y ,则1231110x x x -+-+-=,1230y y y ++=,由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP = .于是1||22x FA =- .同理2||22xFB =- .所以121||||4()32FA FB x x +=-+= ,故||||2||FA FB FP += ,即||FA ,||FP ,||FB成等差数列.设改数列的公差为d ,则1212||||||||||2d FB FA x x =-=-= ②将34m =代入①得1k =-.所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故122x x +=,12128x x =,代入②解得||28d =.所以该数列的公差为28或28-.10.已知斜率为k 的直线l 与椭圆22:198x y C +=交于A 、B 两点,线段AB 的中点为(1M ,)(0)t t >.(Ⅰ)证明:13k <-;(Ⅱ)设F 为C 的右焦点,Q 为C 上的一点,且0FQ FA FB ++= ,证明:||FA ,||FQ,||FB成等差数列.【解答】(本小题满分12分)证明:(Ⅰ)设1(A x ,1)y ,2(B x ,2)y ,则有221122221(1)981(2)98x y x y ⎧+=⋯⋯⎪⎪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⎨⎪+=⋯⋯⎪⎩(2分)(1)-(2)得12121212()()()()098x x x x y y y y +-+-+=.122x x += ,122y y t +=.∴12122()2()098x x t y y --+=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分)∴121289y y k x x t-==--.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分)由题设可知点(1,)M t 在椭圆内,∴21198t +<,解得803t <<,∴818319983k t =-<-=- .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(Ⅱ) 0FQ FA FB ++=,M 为AB 的中点,∴2FQ FM =-,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)(1,)M t ,(1,2)Q t ∴-.点(1,2)Q t -在椭圆上,∴214198t +=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)又403t t >∴=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分)由(Ⅰ)知89k t =-,所以23k =-.∴直线l 的方程为42(1)33y x -=--,即223y x =-+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分)由直线l 的方程与椭圆方程联立,得22223198y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消y 化简得2230x x --=,解得11x =-,23x =.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)从而得8(1,)3A -,(3,0)B ,又8(1,0),(1,)3F Q -,∴10||3FA ==,8||3FQ = ,||2FB = .⋯⋯⋯⋯⋯⋯⋯(11分)∴||FA ,||FQ ,||FB成等差数列.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分)11.已知1F 、2F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,且离心率12e =,点P 为椭圆上的一个动点,△12PF F 的内切圆面积的最大值为43π.(1)求椭圆的方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,满足向量1F A 与1F C 共线,1F B 与1F D共线,且0AC BD =,求||||AC BD + 的取值范围.【解答】解:(1)由几何性质可知,当,△12PF F 的内切圆面积的最大值时,即,12PF F S 取最大值,且121()22PF F max S c b bc == ,由243r ππ=,解得3r =,又由△12PF F 的周长为22a c +定值,∴223bc a c =+,又12c e a ==,可得2a c =,即b =,2c ∴=,b =4a =,故椭圆方程为2211612x y +=,(2)①当直线AC 和BD 中有一条垂直x 轴时,||||6814AC BD +=+=,②当直线AC 的斜率存在但不为0时,设AC 的方程为:(2)y k x =+,由22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616480k x k x k +++-=,代入弦长公式得,2224(1)||34k AC k +=+ ,同理由221(2)11612y x kx y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消去y ,代入弦长公式得2224(1)||34k BD k +=+ ,2222222168(1)168||||11(34)(43)121(1)k AC BD k k k k +∴+==+++-++,令21(0,1)1t k =∈+,则212(12t t -++∈,49]4,由①②可知||||AC BD + 的取值范围是96[7,14].12.已知椭圆22221(0)x y a b a b +=>>经过点)2-,且椭圆的离心率12e =,过椭圆的右焦点F 作两条互相垂直的直线,分别交椭圆于点A 、B 及C 、D .(Ⅰ)求椭圆的方程;(Ⅱ)求证:11||||AB CD +为定值;(Ⅲ)求9||||16AB CD +的最小值.【解答】解:()I 由12c e a ==,得2214c a =,222244()a c a b ∴==-,2234a b ∴=.(1),⋯(1分)由椭圆过点知,223314a b+=.(2)⋯(2分)联立(1)、(2)式解得24a =,23b =.⋯(3分)故椭圆的方程是22143x y +=.⋯(4分)11()||||II AB CD +为定值712⋯(5分)证明:椭圆的右焦点为(1,0)F ',分两种情况.1︒当直线AB 的斜率不存在时,:1AB x =,则:0CD y =.此时||3AB =,||4CD =,117||||12AB CD +=;⋯(6分)2︒当直线AB 的斜率存在时,设:(1)(0)AB y k x k =-≠,则1:(1)CD y x k=--.又设点1(A x ,1)y ,2(B x ,2)y .联立方程组22(1)3412y k x x y =-⎧⎨+=⎩,消去y 并化简得2222(43)84120k x k x k +-+-=,∴2122843k x x k +=+,212241243k x x k -=⋯+ (7分)∴12|||AB x x ==-==2212(1)43k k +=+,⋯(8分)由题知,直线CD 的斜率为1k-,同理可得2212(1)||43k CD k +=⋯+(9分)所以2211777||||12(1)12k AB CD k ++==+为定值.⋯(10分)(Ⅲ)解:由()II 知117||||12AB CD +=,∴912911||||(||||)()16716||||AB CD AB CD AB CD +=++⋯(11分)9||1225||16()716||||CD AB AB CD =++122521(7164+= ,⋯(12分)当且仅当9||||16||||CD AB AB CD =,即3||||4AB CD =,即||3AB =,||4CD =时取等号⋯(13分)∴9||||16AB CD +的最小值为214.⋯(14分)13.已知椭圆22122:1(0)x y C a b a b +=>>的长轴长为4,离心率为12,一动圆2C 过椭圆1C 右焦点F ,且与直线1x =-相切.(1)求椭圆1C 的方程及动圆圆心轨迹2C 的方程;(2)过F 作两条互相垂直的直线,分别交椭圆1C 于P ,Q 两点,交曲线2C 于M ,N 两点,求四边形PMQN 面积的最小值.【解答】解:(1)由已知可得2222423112a a b a c c c e a =⎧=⎧⎪⇒⇒=-=⎨⎨===⎩⎪⎩,则所求椭圆方程221:143x y C +=.由已知可得动圆圆心轨迹为抛物线,且抛物线C 的焦点为(1,0),准线方程为1x =-,则动圆圆心轨迹方程为22:4C y x =.(2)当直线MN 的斜率不存在时,||4MN =,此时PQ 的长即为椭圆长轴长,||4PQ =,从而11||||44822PMQN S MN PQ =⋅=⨯⨯=.设直线MN 的斜率为k ,则0k ≠,直线MN 的方程为:(1)y k x =-,直线PQ 的方程为1(1)y x k=--,设1(M x ,1)y ,2(N x ,2)y ,3(P x ,3)y ,4(Q x ,4)y ,由2(1)4y k x y x=-⎧⎨=⎩,消去y 可得2222(24)0k x k x k -++=,由抛物线定义可知:2221222244||||||1124k MN MF NF x x k k +=+=+++=+=+,由221(1)143y x k x y ⎧=--⎪⎪⎨⎪+=⎪⎩,消去y 得222(34)84120k x x k +-+-=,从而234212(1)|||34k PQ x x k +=-=+,∴222224211412(1)(1)||||(4)24223434PMQN k k S MN PQ k k k k ++=⋅=+=++,令21k t +=,0k > ,则1t >,则22222221242424211||||34(1)(0,3)2123(1)4(1)3213PMQN t t S MN PQ t t t t t t t t t =⋅===--+∈-+-----,所以2248213PMQN S t t =>--,所以四边形PMQN 面积的最小值为8.14.平面直角坐标系xOy 中,已知F 为椭圆22221x y a b+=的右焦点,且24a b +=,过F 作两条互相垂直的直线交椭圆分别于A 、B 与C 、D .以F 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求椭圆的极坐标方程与1||AB 的代数表达式;(Ⅱ)求11||||AB CD +的取值范围.【解答】解:由已知24b a =-,(Ⅰ)设(,0)F c,2222a a c b p c c c c -=-===c e a a==,以右焦点F 为极点,x 轴正半轴为极轴,建立极坐标系,则椭圆的极坐标方程为1cos ep e ρθ=+,即22cos ab ac c ρθ=+,其中c =设(A A ρ,)θ,则(B B ρ,)θπ+,222||1cos 1cos()1cos 1cos 1A B ep ep ep ep ep AB e e e e e cos ρρθπθθθθ∴=+=+=+=++++--,2211||2e cos AB ep θ-=,即22221||2a c cos AB ab θ-=;(Ⅱ)由(Ⅰ)得,22222222(112||||22a c cos a c cos AB CD ab ab πθθ-+-+=+2222222222222222422222(4)a c cos a c sin a c a b a a ab ab ab ab a a θθ---+-+=+===-.24a b += ,222240c a b a a ∴=-=+->,且4a <,4a <<.记f (a )242(4)a a a a -+=-,则f '(a )22(4)(34)2(4)a a a a +-=-,当142a -<<时,f '(a )0>,f (a )为增函数,则f (a)1(8+∈,)+∞,即11||||AB CD +∈,)+∞.。
圆锥曲线——椭圆(基础知识)

圆锥曲线——椭圆①基础知识:一、 第一定义:平面内 的轨迹叫椭圆。
其中 叫做椭圆的焦点(F 1 F 2)。
叫做椭圆的焦距(|F 1 F 2|)。
★思考:|PF 1|+|PF 2|=|F1F2|时的轨迹是什么?|PF 1|+|PF 2|<|F1F2|时呢?二、 第二定义:平面内 的轨迹叫椭圆。
其中定直线为: 定点为: 定值为: 范围:(0<e <1)。
三、标准方程。
椭圆的标准方程为: 或 (a>b>0)。
注意:标准方程说表示的椭圆及中心在坐标原点、长短轴在坐标轴上的椭圆。
如何判断焦点所在坐标轴:看分母、焦点在分母大的那一轴。
例如:x 24+y 23=1 ,两个分母分别为:4、3 。
∵4>3 又∵4是X 项的分母 ∴焦点在X 轴上。
四、参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数)四、椭圆的简单几何性质。
①、范围。
以焦点在X 轴的椭圆为例:∵ x 2a 2+y 2b 2=1(a >b >0) ∴x 2a 2≤1 y 2b2≤1 ∴|x|≤a |y|≤b 即:-a ≤x ≤a -b ≤y ≤b②、对称性。
关于X 、Y 轴成轴对称。
关于原点成中心对称。
③、顶点。
坐标轴和椭圆的四个交点:A 1 、A 2 、B 1 、B 2。
长轴:|A 1A 2| 短轴:|B 1B 2|连接B 、F 。
构成RT △OBF |OB|=b |OF|=c |BF|=a ∴ a 2=b 2+c 2(重要的性质) ④、离心率。
椭圆的离心率:e=ca(0<e <1) e 越大越扁 e 越小越近圆。
⑤、扩展。
通径:过焦点且垂直于长轴。
焦半径:椭圆上一点到椭圆焦点的连线。
焦半径公式:若M (x 0,y 0) |MF 1|=a+ex 0 |MF 2|=a-ex 0★规律及其解题方法提炼:1.椭圆中任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .2.过焦点弦的所有弦长中,垂直于长轴的弦是最短的弦,而且它的长为 把这个弦叫椭圆的通径.3.求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0<e <1).BOF4.从一焦点发出的光线,经过椭圆(面)的反射,反射光线必经过椭圆的另一焦点.5.过椭圆外一点求椭圆的切线,一般应用判别式Δ=0求斜率,也可设切点后求导数(斜率).6.求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:(1)中心是否在原点,(2)对称轴是否为坐标轴.★解题技巧①、求椭圆的标准方程。
高中数学圆锥曲线复习(二)——双曲线

圆锥曲线复习(二)---—双曲线一.双曲线的定义第一定义:平面内与两个定点21,F F 距离的差的绝对值等于|)|2(221F F a a <的点的轨迹。
第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数)1(>e 的动点的轨迹。
2双曲线的标准方程及几何性质标准方程 )0,0(12222>>=-b a b y a x )0,0(12222>>=-b a b x a y图形性质 焦点F 1(-)0,c ,F 2()0,c F 1(),0c -,F 2(),c o焦距 | F 1F 2|=2c222c b a =+范围R y a x ∈≥,|| R x a y ∈≥,||对称 关于x 轴,y 轴和原点对称 顶点 (-a ,0)。
(a ,0) (0,—a )(0,a ) 轴 实轴长2a ,虚轴长2b 离心率)1(>=e ac e 准线 c a x 2±=ca y 2±= 渐近线0=±bya x 0=±ayb x 到焦点的,c a =-最近距最远距无b Rt ∆焦渐距,第二个二、常见的结论:(1)与双曲线22221x y a b -=共同的焦点的双曲线22221x y a k b k-=-+(2)与双曲线22221x y a b-=(a>0,b>0),有共同渐近线的双曲线系方程为λ=-2222by a x (a 〉0,b>0,λ≠0), 当 λ>0 时,所求双曲线的焦点与已知的在同一坐标轴上 当 λ〈0 时,所求双曲线的焦点与已知的在同一坐标轴上 (3)等轴双曲线的性质:离心率为2,渐近线方程为y=±x 等轴双曲线可以设为x 2-y 2=λ≠0(4)双曲线形状与e 的关系:b k a ===,e 越大,即渐开阔,即双曲线的离心率越大,它的开口就越阔。
三、求双曲线标准方程常用的方法是待定系数法或定义法(强调取一支还是两支)。
圆锥曲线-基本定义-第二定义

学术正刊 圆锥曲线 基本定义
高中 2 LeO 著 第二定义
定义3.0(圆锥曲线第二定义):平面内到定点与定直线的距离的比为常数e(e >0)的点的轨迹,称之为圆锥曲线。
定义3.1(圆锥曲线焦点):称这个定点为圆锥曲线的焦点。
定义3.2(圆锥曲线准线):称这条定直线为圆锥曲线的准线。
定义3.3(圆锥曲线离心率):称这个常数e 为圆锥曲线的离心率。
定义3.4(圆锥曲线焦准距):焦点到其对应准线的距离称之为圆锥曲线的焦准距。
图1 图2
解:如图1,给定离心率e 和焦准距p ,建立直角坐标系,将焦点定于坐标原点,准线垂直横轴。
设P 点坐标P (x,y ),根据“圆锥曲线第二定义”有:
|PF |PD =e ⋯〈1〉 代入坐标,解得:
√x 2+y 2
x +p =e ⋯〈2〉 〈2〉式化简得:
(1−e 2)∙x 2−2e 2px +y 2−e 2p 2=0⋯〈3〉
〈3〉式即为圆锥曲线的统一方程。
如图2,当离心率取不同值时,得到对应三种不同的圆锥曲线:
{e ∈(0,1), 1−e 2>0,表示椭圆;
e =1, 1−e 2=0,表示抛物线;e ∈(1,∞),1−e 2<0,表示双曲线。
三种圆锥曲线分别对坐标系进行适当平移后,可得三种圆锥曲线的标准方程。
证毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线第二定义
圆锥曲线的第二定义(平面内到定点与到定直线距离的比为常数e的点的轨迹)是圆锥曲线概念的重要组成部分。
揭示了圆锥曲线之间的内在联系,它不仅是研究圆锥曲线图象和性质的基础,而且在很多数学问题的求解过程中,具有不可低估的特殊功能。
一、导向功能
圆锥曲线第二定义对许多问题的求解,具有明显的导向作用,优先考虑第二定义,有助于启迪思路,理顺解题线索。
例1:椭圆x225+y29=1上有一点P,如果它到左准线的距离为52,那么P到右焦点的距离是。
[分析]解题之前一定要认真审题,对有关曲线上一点到焦点、准线距离的问题,首先联想到圆锥曲线的第二定义。
[解]设P到左准线距离为PM
由椭圆第二定义PF1PM=e
∴PF1=ePM=45×52=2
又∵PF1+PF2=2a=10
∴PF2=8
例2:F2是椭圆x2a2+y2b2=1(a>b0)的右焦点,P(x0,y0)是椭圆上任一点,则PF2的值为:
A. ex0-a
B. a-ex0
C. ex0-a
D.e-ax0
[分析]针对题中要求PF2的值,且各选项中含有e,从椭圆第二定义入手,问题不攻自破。
[解]设点P(x0,y0)到椭圆右准线x=a2c的距离为PN,则PN=a2c-x0 根据椭圆第二定义
PF2=ePN=e(a2c-x0)=a-ex0,故选B。
二、简化功能
巧用圆锥曲线的第二定义,可以简化复杂的变形与讨论,使问题简捷获解。
例3:过抛物线y2=4x的焦点的一条直线交抛物线于A、B两点,若线段的中点的横坐
标为3,则AB= 。
[分析]若按求焦点,设直线方程、联立方程组求AB过程繁琐,因此从定义出发。
[解]过A、B两点向准线引垂线AM、BN
设AB中点为C(3,y0),过C向准线引垂线CH,
则CH是直角梯形ABNM的中位线。
∴AM+BN=2CH
抛物线y2=4x的焦点为F(1,0),准线为x=-1
所以有AB=AF+BF=AM+BN=2CH=2(3+1)=8
例4:已知椭圆方程为x2b2+y2a2=1(ab0),求与这个椭圆有公共焦点的双曲线,使得以它们的交点为顶点的四边形面积最大,并求相应的四边形的顶点坐标。
[分析]本题若通过解椭圆与双曲线联立的二元二次方程组求交点将十分麻烦。
[解]如图:设所求双曲线为x2α2-y2β2=-1,
依题意c2=a2-b2=α2+β2(c为半焦距),两个焦点为F1、F2,
则PF1是椭圆的焦半径,又是双曲线的焦半径。
设椭圆与双曲线在第一象限的交点为P(x1,y1),则
PF1=e PK=e1 PK1
∴PF1=caa2c-y1=cβy1-β2c
∴a-cy1a=cy1β-β= y1=aβc
代入椭圆或双曲线方程得x1=bαc,
于是以它们四个交点为顶点的四边形面积为:
S=4(abαβc2)≤2ab (α2+β2) c2=2ab
当且仅当α=β=c 2 = 2(a2-b2)2时,Smax=2ab
故所求双曲线方程为x2-y2= -(a2-b2)2
由对称性,四个顶点的坐标分别为:
( 2b2, 2a2),(- 2b2, 2a2),(- 2b2, -2a2), (2b2,- 2a2)
三、显隐转化功能
从圆锥曲线的第二定义出发,分析题目的结构特征,有助于挖掘隐含在题目中的条件,从而使问题化隐为显,促成问题的快速解决。
例5:已知椭圆x24+y23=1内有一点P(1,-1),F为右焦点,椭圆上有一点M,使MP+2MF 值最小,求点M的坐标。
[分析]按常规思路,设M(x,y)求出右焦点F(1,0)
则MP+2MF= (x-1)2+(y+1)2+ 2 (x-1)2+y2
由此表达式求最小值是比较困难的,联想椭圆方程中隐含的特征量,发现式中的2即1e,故2MF即为1eMF
[解]由椭圆第二定义MFMN= e
MN= MFe
当MN与PM共线,即过P作准线x=a2c的垂线
这条线与椭圆的交点就是所求的点M
此时M(2 63,-1)
四、联络功能
对于一些需综合运用各种数学思想方法和解题技巧的数学问题,圆锥曲线的第二定义,可在其中起到桥梁作用,使解题思路连贯畅通。
例6:已知双曲线x225-y2144=1的左右焦点分别为F1和F2,能否在双曲线的左支上找到一点P,使PF1是P到左准线的距离d与PF2的等比中项?若能,求出P的坐标,若不能,说明理由。
[分析]这是一道存在性探索问题,解题思路一般是:先假设存在,然后在合理的计算、推理或求解过程中做出准确的判断。
圆锥曲线第二定义起到了条件联络转化的作用。
[解]根据题意:PF12=dPF2,即PF2PF1=PF1d= e
∴PF2= ePF1
∵PF2-PF1=2a=10 c=13 e=135
∴13PF15-PF1=10 PF1=254 PF2=654 ∴PF1+PF2=452 又F1F2=26
从而PF1+PF2F1F2矛盾
∴符合条件的点P不存在。