积分对称性定理
二重积分积分区域的对称性

情形一:积分区域关于坐标轴对称定理4设二元函数在平面区域连续,且关于轴对称,则1)当(即就是关于得奇函数)时,有、2)当(即就是关于得偶函数)时,有、其中就是由轴分割所得到得一半区域.例5 计算,其中为由与围成得区域。
解:如图所示,积分区域关于轴对称,且即就是关于得奇函数,由定理1有、类似地,有:定理5设二元函数在平面区域连续,且关于轴对称,则其中就是由轴分割所得到得一半区域。
例6 计算其中为由所围。
解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、定理6设二元函数在平面区域连续,且关于轴与轴都对称,则(1)当或时,有、(2)当时,有其中为由轴与轴分割所得到得1/4区域。
9例7 计算二重积分,其中: 、解:如图所示,关于轴与轴均对称,且被积分函数关于与就是偶函数,即有,由定理2,得其中就是得第一象限部分,由对称性知,,故、情形二、积分区域关于原点对称定理7 设平面区域,且关于原点对称,则当上连续函数满足1)时,有2)时,有、例8 计算二重积分,为与所围区域、解:如图所示,区域关于原点对称,对于被积函数,有,有定理7,得、情形三、积分区域关于直线对称定理8 设二元函数在平面区域连续,且,关于直线对称,则1);、2)当时,有、3)当时,有、例9 求,为所围、解:积分区域关于直线对称,由定理8,得,故、类似地,可得:定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有;(2)当,则有、例10 计算,其中为区域:, 、解:如图所示,积分区域关于直线对称,且满足,由以上性质,得:、注:在进行二重积分计算时,善于观察被积函数得积分区域得特点,注意兼顾被积函数得奇偶性与积分区域得对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分得解答大大简化。
二重积分的性质

二重积分的性质性质1 设α与β为常数,则()(),,d Df x yg x y αβσ⎡⎤+⎣⎦⎰⎰ ()(),d ,d D Df x yg x y ασβσ=+⎰⎰⎰⎰性质2 设闭区域D 可以分为两个闭区域1D 与2D ,则()()()12,d ,d ,d D D D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰ 性质3 1d Dσσ=⎰⎰,其中σ表示D 的面积.性质4 若在D 上有()(),,f x y g x y ≤,则有由于()()(),,,f x y f x y f x y -≤≤, 特别地, ()(),d ,d D Df x yg x y σσ≤⎰⎰⎰⎰ 又有()(),d ,d D D f x y f x y σσ≤⎰⎰⎰⎰性质5 设M 与m 分别是(),f x y 在D 上的最大值和最小值, σ是D 的面积,则有(),d D m f x y M σσσ≤≤⎰⎰ 估值不等式性质6 (中值定理) 设(),f x y 在闭区域D 上连续,则在 D 上至少存在一点(),ξη,使得()(),d ,D f x y f σξησ=⎰⎰二元函数的奇偶性:若(,)(,)f x y f x y -=-,称),(y x f 关于x 为奇函数; 若),(),(y x f y x f -=-,称),(y x f 关于y 为奇函数; 若),(),(y x f y x f =-或),(),(y x f y x f =-,称f 关于x 或y 为偶函数.二重积分的对称性定理:1、设积分区域D 关于x 轴对称,则 ()()()()()()10,,,d 2,d ,,D D f x y f x y f x y f x y f x y f x y σσ⎧-=-⎪=⎨-=⎪⎩⎰⎰⎰⎰1D 为D 的对称部分中的一半.二重积分的对称性定理:2、设积分区域D 关于y 轴对称,则 ()()()()()()10,,,d 2,d ,,D D f x y f x y f x y f x y f x y f x y σσ⎧-=-⎪=⎨-=⎪⎩⎰⎰⎰⎰1D 为D 的对称部分中的一半.二重积分的对称性定理:3、设D 关于原点对称,则 ()()()()()()10,,,d 2,d ,,D D f x y f x y f x y f x y f x y f x y σσ⎧--=-⎪=⎨--=⎪⎩⎰⎰⎰⎰ 1D 为D 的对称部分中的一半.二重积分的对称性定理:4、设D 关于直线y =x 对称,则()(),d ,d D D f x y f y x σσ=⎰⎰⎰⎰二重积分的对称性定理:5、设1D 与2D 关于直线y =x 对称,则()()12,d ,d D D f x y f y x σσ=⎰⎰⎰⎰例 设区域D 是422≤+y x ,求()31d D xy σ+⎰⎰ 解 D 关于x 轴对称,3xy 关于y 为奇函数, 则3d 0D xy σ=⎰⎰, 3(1)d D xy σ+=⎰⎰d Dσ=⎰⎰4π例 设D 是三角形闭区域, 三顶点各为(1,0),(1,1),=1I 4()d Dx y σ+⎰⎰, =2I()d D x y σ+⎰⎰, =3I 2()d D x y σ+⎰⎰, 则1I 、2I 、3I 的大小顺序如何?解 在D 上,1x y +>, (2,0), o xy121D42()()()x y x y x y +>+>+, 由此得 231I I I <<.。
对称性在积分计算中的应用

㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。
积分的对称性问题

例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4
二重积分的对称性定理

能用此性质。
的奇偶性两者兼得时才的对称性与被积函数注意:仅当积分域对称,则关于直线如果轴的上半平面部分。
在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积同时为关于原点对称,如果积分域轴的右半平面部分。
在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域轴的上半平面部分。
在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域二重积分的对称性定理
),(),(),(.4),(),(,),(2),(),(,0),(,),(.3),(),(),(2),(),(0),(),(.2),(),(),(2),(),(0),(),(.1112211y x f D d x y f d y x f x y D x D D y x f y x f y x f d y x f y x f y x f y x f d y x f y x y x f D y D D y x f y x f x f d y x f y x f y x f x f d y x f x y x f y D x D D y x f y x f y f d y x f y x f y x f y f d y x f y y x f x D D D
D D D D D D ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰===--⎪⎩
⎪⎨⎧-=--==-⎪⎩
⎪⎨⎧-=-==-⎪⎩
⎪⎨⎧-=-=***σ
σσσσσσσ。
积分对称性定理

关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。
(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。
(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。
(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。
3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。
对称性在积分中应用

对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。
1对称性在二重积分中的应用

定义 2:若二元函数 f (x, y)的定义域 D 关于 x
轴对称,且满足 f (x, y) f (x, y)
(或 f (x, y) f (x, y)),则称 f (x, y) 关于y
为奇(偶)函数.
定义 3:若二元函数 f (x, y) 的定义域 D 关于
直线 y 对x称,且满足 f (x, y) f ( y,, x)
解:由 e ydxdy etdudt exdydx
x2 y2 R2
u2 t2 R2
y2 x2 R2
exdxdy x2 y2 R2
计算
(ex e y )dxdy
x2 y2 R2
解: 由 e ydxdy exdxdy
x2 y2 R2
x2 y2 R2
故 (ex e y )dxdy exdxdy e ydxdy
片的质量M.
解:根据二重积分的物理意义,M e|x||y|dxdy. D
由于积分区域 D 关于x 轴,y 轴都对称,且
数关于 x, y 都是偶函数,根据推论1.1得
被积函
y
1
D
y 1 x
M e|x||y| dx d y 4 exy dx d y
D1DD1源自1 1x1 O1x
4 d x exy d y 4.
y
定理 1’
D1 D
若有界闭区域 D 关于 x 轴对称,f (x, y) O
x
在区域 D 上连续, 则
f
(x,
y)
dx
d
y
0
当 f (x, y) 关于y 为奇函数时
D
2 f (x, y)dxdy
D1 当 f (x, y) 关于 y 为偶函数时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于积分对称性定理
1、 定积分:
设)(x f 在[],a a -上连续,则
()()()()-0
0,d 2d ,a a
a
f x x f x x f x x f x x ⎧⎪
=⎨⎪⎩⎰
⎰为的奇函数,为的偶函数.
2、 二重积分:
若函数),(y x f 在平面闭区域D 上连续,则
(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分
()()()()1
0,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪
=⎨⎪⎩⎰⎰⎰⎰为的奇函数,
为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。
(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分
()()()()2
0,
,,d d 2,d d ,
,D
D f x y x f x y x y f x y x y f x y x ⎧⎪
=⎨⎪⎩⎰⎰
⎰⎰为的奇函数,为的偶函数.
其中:2D 为D 满足0x ≥的右半平面区域。
(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即
),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分
()()()()2
0,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪
=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.
其中:1D 为D 在0≥y 上半平面的部分区域。
(4)如果积分区域D 关于直线x y =对称,则二重积分
()()y x x y f y x y x f D
D
d d ,d d ,⎰⎰⎰⎰=.(二重积分的轮换对称
性)
(5)如果积分区域D 关于直线y x =-对称,则有
1
0,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-⎧⎪
=⎨--=⎪⎩⎰⎰⎰⎰当时当时
利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。
3、三重积分:
(1)若()z y x f ,,为闭区域Ω上的连续函数,空间有界闭区域Ω关
于xoy 坐标面对称,1Ω为Ω位于xoy 坐标面上侧0≥z 的部分区域,则有
()()()()1
0,,,,,d d d 2,,d d d ,,,f x y z z f x y z x y z f x y z x y z f x y z z ΩΩ⎧⎪
=⎨⎪⎩⎰⎰⎰⎰⎰⎰为的奇函数,为的偶函数. 注:),,(z y x f 是z 的奇函数:),,(),(z y x f z y x f -=-
),,(z y x f 是z 的偶函数:),,(),(z y x f z y x f =-
同样,对于空间闭区域Ω关于yoz xoz ,坐标面对称也有类似的性质。
4、
曲线积分(第一类)
(1)若分段光滑平面曲线L 关于y 轴对称,且()y x f ,在L 上为连续函数,1L 为L 位于y 轴右侧的弧段,则
()()()()1
0,,,d 2,d ,,L
L f x y x f x y s f x y s f x y x ⎧⎪=⎨
⎪⎩⎰
⎰为的奇函数,为的偶函数.
(2)若分段光滑平面曲线L 关于x 轴对称,且()y x f ,在L 上为连续函数,1L 为L 位于x 轴上侧的弧段,则
()()()()1
0,,,d 2,d ,,L L f x y y f x y s f x y s f x y y ⎧⎪=⎨
⎪⎩⎰⎰为的奇函数,为的偶函数. (3)若L 关于直线x y =对称,则
ds
x y f ds y x f L
L
⎰⎰=),(),(
其中(3)式也称为第一类曲线积分的轮换对称性。
5、第二类曲线积分
(1)设分段光滑的平面曲线L 关于x 轴对称,且L 在x 轴的上半部分1L 与在下半部分的2L 方向相反,
则
()()()()1
0,,,d 2,d ,
,L L P x y y P x y x P x y x P x y y ⎧⎪
=⎨⎪⎩⎰⎰是关于的偶函数,
是关于的奇函数.
(2)设分段光滑的平面曲线L 关于y 轴对称,且L 在y 轴的右半部分1L 与在左半部分的2L 方向相反
则
()()()()1
0,,,d 2,d ,,L L P x y x P x y x P x y x P x y x ⎧⎪
=⎨⎪⎩⎰⎰是关于的偶函数,是关于的奇函数.
对于积分(),L
Q x y dy ⎰也有类似地结论。
上述结论可推广到空间曲线的情
形.
6、 第一类曲面积分:
若曲面∑关于xoy 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑位于xoy 上侧0≥z 的部分曲面,则
()()()()1
0,,,,,d 2,,d ,,,f x y z z f x y z S f x y z S f x y z z ∑∑⎧⎪
=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数. 曲面关于xoz yoz ,坐标平面对称也有类似的性质。
7、第二类曲面积分的对称性
设函数),,(,),,(,),,(z y x R z y x Q z y x P 在分片光滑的曲面∑上连续, (1)设分片光滑的曲面∑关于xoy 坐标面对称,且∑在xoy 上半空间的部分曲面1∑取上侧,在xoy 下半空间的部分曲面2∑取定下侧,则
()()()()1
0,,,,,d d 2,,d d ,,,R x y z z R x y z x y R x y z x y R x y z z ∑∑⎧⎪
=⎨⎪⎩⎰⎰⎰⎰关于是偶函数,
关于是奇函数. (2)设分片光滑的曲面∑关于yoz 坐标面对称,且∑在yoz 前半空间的部分曲面1∑取前侧,在yoz 后半空间的部分曲面2∑取后侧,则
()()()()1
0,,,,,d d 2,,d d ,,,P x y z x P x y z x y P x y z y z P x y z x ∑∑⎧⎪
=⎨⎪⎩⎰⎰⎰⎰关于是偶函数,
关于是奇函数. (3)设分片光滑的曲面∑关于xoz 坐标面对称,且∑在xoz 右半空间的部分曲面1∑取右侧,在xoz 左半空间的部分曲面2∑取左侧,则
()()()()1
0,,,,,d d 2,,d d ,,,Q x y z y Q x y z x y Q x y z y z Q x y z y ∑∑⎧⎪
=⎨⎪⎩⎰⎰⎰⎰关于是偶函数,
关于是奇函数. (4)若积分曲面∑关于z y x ,,具有轮换对称性,则
()()()()()(),,d d ,,d d ,,d d 1,,d d ,,d d ,,d d 3P x y z y z P y z x z x P z x y x y
P x y z y z P y z x z x P z x y x y ∑
∑
∑
∑
===++⎰⎰⎰⎰⎰⎰⎰⎰。