渣油加氢

合集下载

渣油加氢操作规程

渣油加氢操作规程

渣油加氢操作规程渣油加氢是一种常见的炼油工艺,用于将渣油转化为高质量的燃料和化工产品。

本文将介绍渣油加氢的操作规程,包括操作步骤、条件控制和安全注意事项等。

一、操作步骤1. 原料准备:将渣油送入加氢装置前,需要先对渣油进行预处理,包括除杂、脱盐和脱硫等工序,以保证原料的质量和稳定性。

2. 加氢反应器:将经过预处理的渣油送入加氢反应器,与催化剂接触进行反应。

反应器内通常采用固定床或浮动床反应器,通过控制反应器的温度、压力和催化剂的循环,使渣油中的硫、氮和金属等杂质被去除,并将重负荷的分子链断裂和重排,生成低硫、低氮、低金属含量的产品。

3. 分离和提取:经过加氢反应后,产物需要进行分离和提取。

常用的分离方法包括闪蒸、蒸馏、萃取和吸附等。

通过这些分离方法,可以将产物中的油品、液化气和重油等组分分离出来,并进行后续的处理和利用。

4. 产品处理:根据不同的需求,对产品进行进一步的处理。

例如,对燃料油进行脱色、脱臭和脱硫,提高产品质量;对液化气进行脱水、脱酸和脱硫,减少对设备的腐蚀和磨损。

二、条件控制1. 温度控制:加氢反应需要在一定的温度范围内进行,通常在300-450摄氏度之间。

温度过低会导致反应速率慢,温度过高则会引起催化剂的失活和热力学反应的副产物生成。

2. 压力控制:加氢反应需要一定的压力条件,通常在10-30兆帕之间。

高压可以促进反应速率和产物质量的提高,但同时也会增加设备成本和操作难度。

3. 催化剂选择:催化剂是加氢反应的核心,对反应效果起着决定性的影响。

选择合适的催化剂可以提高反应效率和产物质量,同时也需要注意催化剂的稳定性和寿命。

4. 氢气供应:加氢反应需要大量的氢气供应,通常通过压缩空气或氢气制备装置供应。

氢气的纯度和供应稳定性对反应效果和设备安全具有重要影响。

三、安全注意事项1. 加氢反应是一种高温、高压的化学过程,需要严格控制操作条件和设备安全性。

操作人员应穿戴好防护装备,严格遵守操作规程,确保人身安全。

渣油加氢技术

渣油加氢技术

渣油加氢技术
渣油加氢可以处理不易轻质化并难于加工的高含硫含氮以及胶质、沥青质含量高、粘度大、残炭高、重金属含量高的劣质渣油原料;
如果采用一般的延迟焦化或重油催化裂化等重油加工工艺,不但产品液收低,而且质量差,加工难度大;
不仅提高了轻油收率,改善产品质量,而且减轻了环境污染.
渣油加氢的原料(常渣或减渣)依次经过脱金属、脱硫和脱氢以及裂解三段串联加氢处理过程。

经过加氢处理后,未转化渣油中的重金属和残炭含量明显降低,且粘度大大下降,有利于下游装置的进一步加工;
渣油加氢脱硫率一般可达90%以上,脱氮率达70%左右,镍和钒的脱除率达85%左右,残炭脱除率达60%以上.
产品质量好。

低凝柴油产品的十六烷值可达50,安定性好;VGO的氮含量和金属含量较低,有助于提高催化裂化的转化率.
灵活性大。

生产轻质油品,VGO做催化裂化料,未转化渣油是低硫燃料油或掺渣催化裂化料;
固定床加氢过程是应用最多,技术最成熟的工艺,原料适用范围为金属含量<200PPm,残碳<20%,转化率<50%
( 3号白矿油、3号白油、2731油墨溶剂油、150号溶剂油、6号抽提溶剂油)。

两种工艺条件下渣油加氢产物对比研究

两种工艺条件下渣油加氢产物对比研究

两种工艺条件下渣油加氢产物对比研究渣油加氢是一种常用的炼油工艺,通过在高温高压下将渣油与氢气反应,可以将渣油中的硫、氮和重金属等杂质去除,同时还能产生高质量的石油产品。

在不同的工艺条件下进行渣油加氢反应可能会得到不同的产物,本文将对两种工艺条件下渣油加氢产物进行对比研究。

第一种工艺条件下,温度较低,压力较高。

在这种条件下,渣油分子间的相互作用比较弱,反应速率相对较慢,容易产生副反应。

此时产物主要包括轻质石油产品,如石脑油、溶剂油等。

这些产品具有较低的沸点和较高的通用价值,能够满足一些特定的需求,比如汽油和溶剂等。

然而,由于温度较低,渣油中的硫、氮和重金属等杂质去除效果较差,这些杂质仍然存在于产物中。

第二种工艺条件下,温度较高,压力较低。

在这种条件下,渣油分子间的相互作用比较强,反应速率相对较快,容易产生主反应。

此时产物主要包括重质石油产品,如柴油、润滑油等。

这些产品具有较高的沸点和较低的通用价值,适用于一些特定的需求,比如发动机的燃料和机械设备的润滑剂等。

另外,在温度较高的条件下,渣油中的硫、氮和重金属等杂质可以被更彻底地去除,降低了产物中的杂质含量。

综上所述,两种工艺条件下的渣油加氢产物有所区别,在温度和压力上的差异导致了不同的反应速率和产物组成。

对于温度较低、压力较高的工艺条件,产物主要是轻质石油产品,有较低的沸点和较高的通用价值;而对于温度较高、压力较低的工艺条件,产物主要是重质石油产品,有较高的沸点和较低的通用价值。

此外,温度较高的条件下,对渣油中的杂质去除效果更好,降低了产物中的杂质含量。

因此,在实际生产中需要根据具体需求和炼油工艺的特点选择适当的工艺条件进行渣油加氢反应,以达到理想的产物质量和经济效益。

渣油加氢工艺流程

渣油加氢工艺流程

渣油加氢工艺流程渣油加氢工艺是一种将高硫、高含蜡的渣油通过加氢反应降低硫含量和提高产品质量的工艺。

该工艺的主要流程包括预处理、加氢反应和分离三个步骤。

首先是预处理步骤。

在这一步骤中,渣油经过加热后进入预加热器,以达到合适的反应温度。

然后,预加热后的渣油进入加工器,在这个设备中与一定量的催化剂进行接触。

接触时间的长短和温度的高低可以根据实际需求进行调整。

在接触过程中,催化剂能够去除渣油中的杂质,如硫、氮和有机蜡,从而减少对后续催化剂的影响,并提高反应效率。

接下来是加氢反应步骤。

预处理后的渣油进入加氢反应器,与高效加氢催化剂接触,进行加氢反应。

在加氢反应中,渣油中的硫、氮和重蜡等杂质会与催化剂发生作用,从而被还原、分解或结构改变,生成较少含硫、含氮和较轻的石蜡等反应产物。

加氢反应的条件通常包括反应温度、压力和催化剂的加载量。

较低的反应温度和较高的压力可以提高催化剂的活性,加速杂质的去除。

此外,催化剂的特性也会对反应结果产生一定影响。

最后是分离步骤。

在加氢反应后,反应物进入分离器进行相应的处理。

分离过程主要通过不同组分的沸点差异实现,包括气液分离和液液分离。

液相分离主要是通过凝固和冷凝的方式,使较重的组分凝结成液体,而较轻的组分则通过冷凝回收。

气相分离则利用分析和纯化设备,对气体中的各种组分进行分别处理,从而得到高纯度的产品。

总的来说,渣油加氢工艺流程包括预处理、加氢反应和分离三个步骤。

通过预处理可以去除渣油中的杂质,提高反应效率;加氢反应则通过与催化剂的作用,将渣油中的硫、氮和重蜡等杂质转化为较少含硫、含氮和较轻的石蜡等反应产物;最后的分离步骤则通过不同组分的沸点差异,将反应产物进行分离和纯化,得到高质量的产品。

渣油加氢工艺在石油化工行业中具有重要的应用价值,能够有效改善石油产品的质量,并满足环保要求。

渣油加氢 (2)

渣油加氢 (2)

渣油加氢概述渣油加氢是一种在石油炼制过程中常用的加工技术,通过将重质渣油与氢气进行反应,可以将其中的硫、氮、金属等杂质去除,降低渣油的硫含量,提高产品的质量。

本文将介绍渣油加氢技术的原理、应用及优势。

技术原理渣油加氢是一种催化加氢反应,通过将渣油与催化剂和氢气接触,在一定温度和压力下进行反应,以去除其中的杂质。

加氢反应通常在加氢反应器中进行,反应器内填充有催化剂,渣油和氢气从反应器的顶部进入,经过催化剂的作用,硫、氮等杂质与氢气反应生成相应的气体或液体产物。

应用领域渣油加氢广泛应用于炼油行业,特别是重油加工领域。

以下是渣油加氢的一些常见应用领域:1. 规模化炼油厂在大型炼油厂中,渣油加氢常被视为一项必要的工艺流程,用于处理原油中的重渣和杂质。

通过渣油加氢,可以改善产品的质量、提高炼油的生产效率,并减少对环境的污染。

2. 焦化厂焦化厂主要通过高温分解重油,生成焦炭和焦油。

焦油中含有大量的杂质,如硫、氮等,这些杂质不仅会降低焦油的价值,还对环境造成污染。

渣油加氢技术可以用于焦化厂的焦油加工过程中,去除焦油中的杂质,提高焦油的质量。

3. 石油化工厂在石油化工厂中,渣油加氢被用于处理重油、渣油等原料,以减少其中的硫和金属等杂质。

处理后的产品可以用于生产润滑油、燃料油等各种石油化工产品。

优势渣油加氢技术具有以下优势:•提高产品质量:通过去除渣油中的硫、氮、金属等杂质,可以提高产品的质量,满足市场需求。

•减少环境污染:渣油中的杂质会在燃烧过程中产生大量的氮氧化物、硫氧化物等有害物质,渣油加氢可以减少大气污染物的排放,保护环境。

•提高生产效率:渣油加氢可以改善炼油过程中的产物分布,减少渣油的生成,提高生产效率。

•降低设备腐蚀:渣油中的硫和金属等杂质容易导致设备腐蚀,渣油加氢可以去除这些杂质,延长设备的使用寿命。

总结渣油加氢是石油炼制过程中常用的一种加工技术,通过去除渣油中的硫、氮和金属等杂质,提高产品质量、减少环境污染并提高生产效率。

渣油加氢技术

渣油加氢技术

(第十章第四、五节)
渣油加氢工艺反应器类型
固定床 渣油+H2
移动床
生成油+H2 催化剂
沸腾床
浆液床
生成油+H2
生成油+H2&#油 催化剂 +H2
渣油 催化剂 +H2
渣油+H2+催化剂
几种渣油加氢工艺技术特点
工艺类型
可加工原料油: Ni+V, ppm 残炭值,%
反应压力, MPa 反应温度, ℃ 体积空速, h-1 主要反应类别 渣油转化率, %
H HH
H2(+H2S) NixSy
Ni-X
催化剂使用寿命(t)与MOC的关系
催化剂使用寿命(t) ≈催化剂容金属能力(MOC)
催化剂级配的作用
渣油Ni+V含量与催化剂耗量的关系
14.00 7.00 3.50 m3原料油/kg催化剂 1.75
0.35 脱硫率/%
催化剂活性与寿命的平衡
催化剂级配

最高温度
1
25 10 13 10 14 100
装置套数
12 5
1
16 5 7 5
7
58
沸腾床
500 600 1230 125 0 0 0 145 2600
所占比例,% 19 23 47
500
0
6 100
装置套数
44
6
100
0
1
16
占世界渣油加氢总能力:固定床=82%;沸腾床=18%
固定床渣油加氢在炼厂中的作用
复杂 成熟
较复杂 开发中
中等
较高
中等
不同渣油加氢工艺产品性质比较

渣油加氢文档

渣油加氢文档

渣油加氢概述渣油加氢是一种炼油过程,通过将重质渣油与氢气反应,以降低硫、氮等杂质含量,提高产品质量。

这一技术在炼油行业中被广泛应用,能够将低质量的渣油转化为高价值的燃料油、润滑油和化工原料。

加氢工艺渣油加氢的关键是加氢反应,通过将渣油与氢气在催化剂的催化下进行反应,使其中的硫、氮等杂质得以去除。

加氢工艺主要包括以下几个步骤:1.加氢反应器:渣油与氢气首先进入加氢反应器,在适宜的温度和压力条件下进行反应。

加氢反应器内通常包含多层催化剂床,以实现高效的反应转化。

2.催化剂:催化剂在渣油加氢过程中起到了关键的作用。

常用的催化剂材料包括镍钼、镍钨、铜锌等,它们能够促进反应的进行,并降低反应的活化能,提高反应的选择性和转化率。

3.去硫:渣油中的硫是一种主要的杂质,会影响产品的质量和环境效应。

通过加氢反应,硫化物会与氢气反应生成硫化氢,然后通过各种设备去除硫化氢,从而实现去硫的效果。

4.去氮:渣油中的氮也是一种重要的杂质,它会影响产品的稳定性和可加工性。

加氢反应可以将氮化物转化为氨气,然后通过适当的方法去除氨气,以实现去氮的效果。

产品及应用渣油加氢可以生产出多种高价值产品,主要包括以下几类:1.燃料油:通过渣油加氢处理后的产品可以作为燃料油使用,具有较高的热值和较低的硫含量,可以用于发电、加热等领域。

2.润滑油:渣油加氢处理后的产品可以进一步提炼,得到纯净的润滑油,用于各种机械设备的润滑,提高设备的使用寿命。

3.化工原料:渣油加氢产生的一些中间产物可以作为化工原料使用,用于生产塑料、橡胶、合成纤维等产品。

优势和应用前景渣油加氢作为一种先进的炼油技术,具有以下几个优势:1.降低环境污染:渣油中的硫、氮等杂质会在燃烧过程中生成有害气体,通过渣油加氢处理,可以显著降低产品中的硫、氮含量,减少环境污染。

2.资源回收利用:渣油通常被认为是炼油过程中的副产品,通过渣油加氢处理,可以将这些低价值的渣油转化为高价值产品,实现资源的回收利用。

渣油加氢技术应用现状及发展前景

渣油加氢技术应用现状及发展前景

渣油加氢技术应用现状及发展前景
渣油加氢技术应用现状及发展前景
一、概述
渣油加氢技术是一种工艺,通过使用加氢催化剂,把渣油中的碳氢键分解,使其转变为低硫、低烃的高质量润滑油产品。

渣油加氢技术是国内外石油化工企业能源结构调整和节能减排的重要途径。

由于渣油中含有大量的挥发性烃,可以高效地提高加氢反应酮价;渣油中还有大量高分子物质可以使加氢反应催化剂更加有效。

二、应用现状
1、流程类别:由于渣油的特殊性,目前主要利用的技术有反应焓差流程、串行渗透流程、平行渗透流程等,广泛应用于各类渣油加氢反应系统。

2、应用领域:渣油加氢技术应用范围广泛,主要应用于轻质>重质低碳烃渣油的加氢反应系统。

三、发展前景
1、技术改进:今后,渣油加氢技术将在技术上持续改进,提高渣油加氢效率,减少成本,广泛应用于各类石油化工企业。

2、更好的节能和环保技术:今后,渣油加氢技术将不断完善,开发出更加有效的节能和环保技术,为企业提供更多可选择的技术方案。

3、系统控制技术:在未来,适用于渣油加氢系统的系统控制技术也将不断改进,以满足更多客户的需求。

四、总结
渣油加氢技术的使用越来越广泛,它的应用领域也在日益扩大,可以
有效地节能减排,改善企业的经济效益和环境状况。

未来,渣油加氢
技术的技术改进和应用将继续发展,更好的节能减排技术将不断完善,更好的系统控制技术也将满足客户的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

≯4.0
≯13.0 ≯130 ≯5.0

新氢:新氢纯度≮90v%;CO+CO2< 30µg/g(其中CO < 10µg/g);氯含量< 1.0µL/L。
FRIPP
渣油加氢设计 渣油加氢设计
渣油加氢工艺控制
• • • • • • 一反入口氢分压 催化剂体积空速 反应器入口氢油体积比 循环氢纯度 反应温度 总压降 ≮16.0MPa 0.18h-1 ≮600:1 ≮85v% 380℃ 1.58/2.88
渣油加氢尾油指标
项目 CCR,m% S,m% H,m% N,µg/g Ni+V,µg/g 饱和烃,m% 指标 ≯ 4.5
≯ 0.3 ≮12.4 ≯ 1800 ≯ 14 ≮59
FRIPP
渣油加氢设计 渣油加氢设计
渣油加氢催化剂 • 渣油加氢处理催化剂共四大类9个牌号, 其中保护剂4个牌号(FZC-11A, FZC-12A, FZC-13A,FZC-103E)共计61.01t;脱金 属催化剂2个牌号(FZC-28A, FZC-204) 共 计242.143t,脱硫催化剂2个牌号(FZC-33 【改进型】,FZC-34【改进型】) 共计 178.31t,脱氮残炭转化催化剂1个牌号 (FZC-41A) 共计234.425t (Mo-Ni)
FRIPP
渣油加氢设计 渣油加氢设计
渣油加氢物料平衡
项目 入方
收率 原料油 化学耗氢 合计 100 1.31 101.31 2.95 0.23 0.67
出方
H2S NH3 C1~C4
C5 ~175℃石脑油 3.04 加氢尾油 C5+ 合计 94.74 97.78 101.31
FRIPP
渣油加氢设计 渣油加氢设计
FRIPP
渣油加氢工艺流程 渣油加氢工艺流程
渣油加氢流程
• 最终反应产物经过换热降温后进入热高压分离 器进行气液分离。热高分油进入热低压分离器 进行闪蒸分离。热高分气分别与反应进料、混 合氢换热后,进入热高分气空冷器,经冷却后 进入冷高压分离器进行气、油、水三相分离。 冷高分气体(循环氢)经循环氢脱硫塔脱除 H2S,并经循环氢压缩机升压后,循环回反应 部分。
FRIPP
渣油加氢需配合事项
• 需配合事项: 需配合事项: • 1、设备:大机组试车 、设备: • 2、电气:单机试运 、电气: • 3、仪表:仪表联校 、仪表: • 4、公用工程:公用工程管线吹扫;提供保质保量的能 、公用工程:公用工程管线吹扫; 源 • 5、化验:硫化期间硫化氢分析;开工期间产品质量分 、化验:硫化期间硫化氢分析; 析。
FRIPP
渣油加氢
• 渣油加氢脱硫催化剂: 渣油加氢脱硫催化剂:
– 提高催化剂的容金属能力 – 进一步提高脱硫性能和脱金属及脱残炭性能 – 提高催化剂的孔径和孔容
FRIPP
加氢催化剂选用
FCC渣油原料加氢处理 FCC渣油原料加氢处理
• 脱残炭催化剂: 脱残炭催化剂:
– 提高催化剂的脱残炭和脱硫性能 – 提高催化剂的抗积炭能力 – 提高催化剂的容杂质能力 – 提高催化剂的孔容和孔径
FRIPP
渣油加氢首次开车
• 首次开工主要步骤: 首次开工主要步骤: • 1、大机组调试 、 • 2、三查四定;仪表联校 、三查四定; • 3、冲洗、吹扫 、冲洗、 • 4、单机试车 、 • 5、水联运 、
FRIPP
渣油加氢首次开车
• 首次开工主要步骤: 首次开工主要步骤: • 5、催化剂装填 、 • 6、氮气置换、气密 、氮气置换、 • 7、催化剂干燥 、 • 8、氢气气密 、 • 9、催化剂硫化 、 • 10、钝化,切换设计进料 、钝化,
FRIPP
渣油加氢催化剂 渣油加氢催化剂
• FCC渣油原料加氢处理大多采用固定床工艺技术,所加工的原料 渣油原料加氢处理大多采用固定床工艺技术, 渣油原料加氢处理大多采用固定床工艺技术 油主要有减压渣油(VR)和常压渣油 和常压渣油(AR),并可掺炼部分 油主要有减压渣油 和常压渣油 , 并可掺炼部分VGO、 、 CGO、DAO、糠醛抽出油 、 催化柴油 、 催化回炼油甚至油浆等 。 、 、 糠醛抽出油、催化柴油、催化回炼油甚至油浆等。 • 原料油密度大,粘度高,硫、氮、胶质、沥青质、重金属含量高。 原料油密度大,粘度高, 胶质、沥青质、重金属含量高。 进料Ni+V含量通常要求≯130ppm。 进料 含量通常要求≯ 。 含量通常要求 • 原料油中携带的焦粉和机械杂质以及所含有的 、 Na、Ca、Ni、 原料油中携带的焦粉和机械杂质以及所含有的Fe、 、 、 、 V等金属杂质会部分沉积在催化剂颗粒间隙中,导致反应器催化 等金属杂质会部分沉积在催化剂颗粒间隙中, 等金属杂质会部分沉积在催化剂颗粒间隙中 剂床层压力降升高,装置被迫停工。 剂床层压力降升高,装置被迫停工。 • 为了满足装置长周期运转的需要,需要采用多台反应器,设置多 为了满足装置长周期运转的需要,需要采用多台反应器, 个催化剂床层,级配装填加氢保护剂 脱金属催化剂属催化剂、脱硫催化 剂和脱氮脱残炭催化剂 。
循环氢中硫化氢 浓度,v%
1000(2h),500 4/0 (进VGO) (3h)/-0/-0/-8/8 8/8
FRIPP
渣油加氢开停工
• 停工主要步骤: 停工主要步骤: • 1、降温降量、切进料 、降温降量、 • 2、热氢带油,分馏退油 、热氢带油, • 3、反应系统氮气置换 、 • 4、分馏系统吹扫 、
FRIPP
渣油加氢工艺
2011年 2011年7月29日 29日
FRIPP
目录
• 渣油加氢催化剂 • 渣油加氢工艺流程简介 • 渣油加氢设计数据 • 开停工 • 首次开车 • 相互配合内容 • 建设期安装
FRIPP
渣油加氢催化剂
FRIPP
渣油加氢催化剂
主催化剂的选择 • 高压 、 低空速下处理重劣质原料 , 深度脱硫 ( 精制蜡 高压、低空速下处理重劣质原料,深度脱硫( 油硫含量小于0.1% ) 脱氮及芳烃饱和, 油硫含量小于 % m)、 脱氮及芳烃饱和, 选用加氢 活性高的Mo-Ni型催化剂 型催化剂; 3936 FF-36 活性高的Mo-Ni型催化剂; • 中等压力 、 高空速下处理劣质原料 , 以脱硫 、 脱氮为 中等压力、高空速下处理劣质原料,以脱硫、 主要目的,选用Mo-Ni-Co型催化剂; 型催化剂; FF-14 FF-24 主要目的,选用 型催化剂 • 中等压力 、 高空速下处理劣质原料 , 以脱硫为主要目 中等压力、高空速下处理劣质原料, 选用W-Ni型催化剂(循环氢脱硫);FF-18 型催化剂( 的,选用 型催化剂 循环氢脱硫) • 低压 、 高空速下处理性质较好的原料油 , 非深度脱硫 低压、高空速下处理性质较好的原料油, 和脱氮,选用Mo-Co型催化剂。 型催化剂。 FDS-4 和脱氮,选用 型催化剂
FRIPP
渣油加氢催化剂 渣油加氢催化剂
颗粒尺寸
孔径
活性






FRIPP
渣油加氢
渣油加氢处理装置长周期运转关键: 渣油加氢处理装置长周期运转关键:
• 提高催化剂的脱金属和容金属等杂质能力,即 提高催化剂的脱金属和容金属等杂质能力, 催化剂体系要提供足够的容杂质的空间; 催化剂体系要提供足够的容杂质的空间; • 使沥青质等大分子物质进入催化剂孔道内部进 行反应。 行反应。
FRIPP
渣油加氢设计
渣油加氢原料
项目 处理量,万吨/年 密度(20℃),g/cm3 C,m%H H,m% S,m% N,µg/g CCR,m% Ni+ V,µg/g C7不溶物,m%
混合进料 190 0.9827 85.90 10.69 3.10 3200 12.25 111.13 3.96
限定值
FRIPP
渣油加氢工艺流程 渣油加氢工艺流程
渣油加氢工艺控制
• 反应温度控制:通过调节进入反应进料加热炉的燃料气流量来调 节反应器上段床层温度(即反应器入口温度);通过调节进入冷 氢箱的冷氢流量来调节反应器下段床层温度。 • 1.2.2反应压力控制:通过调节新氢机的负荷来调节补入反应系统 的新氢量,从而调节反应系统的压力。 • 1.2.3氢油比控制:(1)通过调节循环氢压缩机的转速来调节循环 氢的循环量从而控制氢油比;(2)通过排放尾氢提高循环氢的氢 浓度来提高氢油比。 • 1.2.4催化剂床层飞温控制:(1)降低反应器入口温度;(2)增 加冷氢量;(3)降低反应系统压力;(4)切断原料油。
FRIPP
渣油加氢开停工
• • 催化剂硫化 对于FZC系列催化剂而言,其在氧化态下与纯 (不含 系列催化剂而言, 对于 系列催化剂而言 其在氧化态下与纯H2(不含H2S) ) 接触,容易造成催化剂永久性失活。如果热H2温度超过 ℃, 温度超过300℃ 接触,容易造成催化剂永久性失活。如果热 温度超过 催化剂失活在几个小时内就可发生。如果热H2温度在 ℃~ 温度在160℃ 催化剂失活在几个小时内就可发生。如果热 温度在 300℃之间,造成催化剂失活所需要的时间就可延长。如果热 ℃之间,造成催化剂失活所需要的时间就可延长。如果热H2 温度低于160℃,则长时间循环,也不会造成催化剂失活。 温度低于 ℃ 则长时间循环,也不会造成催化剂失活。 催化剂预硫化过程中,循环氢中未检测到H2S以前,催化剂床层 以前, 催化剂预硫化过程中,循环氢中未检测到 以前 最高温度不得超过230℃。 最高温度不得超过 ℃ 催化剂预硫化过程中, 催化剂预硫化过程中,所有催化剂床层的最大温升不得高于 15℃。 ℃ 催化剂预硫化过程中,控制循环氢中的H2纯度不低于 纯度不低于85v%。 催化剂预硫化过程中,控制循环氢中的 纯度不低于 。 催化剂预硫化过程中,不管发生什么紧急情况, 催化剂预硫化过程中,不管发生什么紧急情况,都将反应温度 降到150℃以下,以保护催化剂。 降到 ℃以下,以保护催化剂。
相关文档
最新文档