六年级数学下册第五单元数学广角鸽巢问题集体备课教案

合集下载

第五单元数学广角《鸽巢问题》教学设计六年级下册数学人教版

第五单元数学广角《鸽巢问题》教学设计六年级下册数学人教版

第五单元数学广角《鸽巢问题》教学设计六年级下册数学人教版教学内容《鸽巢问题》是六年级下册数学人教版第五单元数学广角的教学内容。

本节课主要引导学生利用抽屉原理(鸽巢原理)解决生活中的实际问题,通过观察、分析、推理等方法,让学生理解并掌握抽屉原理,并能灵活运用抽屉原理解决相关的数学问题。

教学目标1. 知识与技能:理解并掌握抽屉原理,能灵活运用抽屉原理解决生活中的实际问题。

2. 过程与方法:通过观察、分析、推理等方法,培养学生的逻辑思维能力和解决问题的能力。

3. 情感、态度和价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

教学难点理解并掌握抽屉原理,能灵活运用抽屉原理解决实际问题。

教具学具准备1. 教具:多媒体教学设备、PPT课件、教鞭等。

2. 学具:练习本、笔、尺子等。

教学过程1. 导入:通过一个有趣的故事引入新课,激发学生的兴趣。

2. 新课:讲解抽屉原理,通过实例演示和讲解,让学生理解并掌握抽屉原理。

3. 活动一:分组讨论,让学生在实际问题中运用抽屉原理,培养学生的合作意识和解决问题的能力。

4. 活动二:让学生独立完成练习题,巩固所学知识。

6. 作业布置:布置课后作业,让学生在实际生活中运用抽屉原理解决问题。

板书设计1. 《鸽巢问题》2. 抽屉原理3. 实例演示4. 练习题5. 课后作业作业设计1. 完成课后练习题,巩固所学知识。

2. 观察生活中的实际问题,运用抽屉原理解决问题,并记录下来。

课后反思本节课通过故事导入、实例演示、分组讨论等活动,让学生在轻松愉快的氛围中学习抽屉原理,并能在实际问题中灵活运用。

在教学过程中,注重培养学生的合作意识和解决问题的能力,激发学生对数学的兴趣。

但在教学过程中,也存在一些不足之处,如课堂气氛调控不够到位,部分学生参与度不高;课堂练习时间分配不够合理,部分学生完成练习题的时间较长。

在今后的教学中,需要针对这些问题进行改进,提高教学效果。

教学难点理解并掌握抽屉原理,能灵活运用抽屉原理解决实际问题。

六年级数学《数学广角——鸽巢问题》教案

六年级数学《数学广角——鸽巢问题》教案

六年级数学《数学广角——鸽巢问题》教案1. 教学目标知识目标:-学生能够理解鸽巢问题的基本概念和原理。

-学生能够掌握应用鸽巢问题解决实际问题的基本方法。

能力目标:-培养学生分析问题和解决问题的能力。

-提高学生的逻辑思维能力和推理能力。

情感态度价值观目标:-激发学生对数学的兴趣,培养主动学习、探究的精神。

-培养学生严谨、细致的学习态度。

2. 教学内容具体内容:-鸽巢问题的定义和基本原理。

-典型鸽巢问题的解法和应用。

-实际生活中鸽巢问题的案例。

重点:-鸽巢问题的基本原理。

-应用鸽巢问题解决实际问题的基本方法。

难点:-理解鸽巢问题的抽象概念。

-灵活运用鸽巢原理解决实际问题。

3. 教学方法-讲授法:用于解释鸽巢问题的基本概念和原理。

-讨论法:引导学生分组讨论实际案例,培养合作精神。

-案例分析法:通过具体案例分析,加深理解。

-多媒体教学:利用PPT、视频等多媒体资源,丰富教学手段。

4. 教学资源-教材:《小学六年级数学》(人教版)。

-教具:黑板、粉笔、投影仪。

-多媒体资源:PPT课件、相关视频。

5. 教学过程6. 课堂管理-组织小组讨论时,明确分工,确保每个学生都参与讨论。

-维持课堂纪律,鼓励学生积极发言,及时表扬。

-激励学生提出问题和解题思路,培养主动学习的习惯。

7. 评价与反馈-课堂小测验:用于检测学生对基本概念和原理的理解。

-课后作业:布置相关练习题,巩固所学知识。

-期末考试:考察学生对鸽巢问题的综合应用能力。

-反馈:及时批改作业和测验,给予学生具体反馈和指导。

8. 教学反思-课后反思教学过程中的优点和不足,记录学生反馈。

-总结教学经验,调整教学策略,优化教学内容和方法。

-针对学生的不同需求和学习情况,进行个性化辅导,提高教学效果。

通过以上的教案设计,希望能有效引导学生理解和掌握鸽巢问题,提升他们的数学素养和实际应用能力。

六年级数学下册教案《 5 数学广角—鸽巢问题》人教版

六年级数学下册教案《 5 数学广角—鸽巢问题》人教版

六年级数学下册教案《5 数学广角—鸽巢问题》人教版一、教学内容1. 知识点•学习如何利用鸽巢原理解决一些实际问题。

2. 能力目标•学生能够理解鸽巢原理的基本概念,并能够应用该原理解决简单问题。

3. 情感目标•培养学生的逻辑思维能力和解决问题的能力,增强他们的数学学习兴趣。

二、教学重点与难点1. 教学重点•教导学生如何应用鸽巢原理解题。

2. 教学难点•帮助学生理解鸽巢原理的概念和具体应用。

三、教学准备•教师准备预先设计的教学案例,确保案例的问题具有挑战性和实际意义。

•准备相关教学素材,如黑板、彩色粉笔等。

四、教学过程第一步:导入•引导学生回顾鸽巢原理的概念,并提出一个简单的问题引起学生思考:如果有6个鸽巢和10只鸽子,那么至少会出现几只鸽子在同一个鸽巢中?第二步:讲解•通过讲解鸽巢原理的基本概念和公式,帮助学生理解鸽巢原理的具体应用场景。

第三步:示例分析•以教师设计的案例为例,指导学生利用鸽巢原理解决问题,并让学生逐步理解解题思路和方法。

第四步:练习•让学生进行练习,巩固所学知识并提升解决问题的能力。

第五步:总结•引导学生总结本节课学到的知识和技巧,强化学习成果。

五、课堂作业•布置作业:设计几道鸽巢原理相关的问题,要求学生独立完成并写出解题过程。

六、教学反思•教师应针对教学过程中学生的反应和表现,及时反思自己的教学方法和内容设计,不断优化教学效果。

以上是关于六年级数学下册教案《5 数学广角—鸽巢问题》的教学内容,希望本节课能够帮助学生更好地理解鸽巢原理,并能够灵活运用该原理解决实际问题。

六年级数学下册教案《5 数学广角——鸽巢问题》-人教版

六年级数学下册教案《5 数学广角——鸽巢问题》-人教版

六年级数学下册教案《5 数学广角——鸽巢问题》-人教版
一、教学目标
1.了解鸽巢问题的背景和基本概念。

2.能够应用鸽巢原理解决问题。

3.培养学生的逻辑思维能力和数学推理能力。

二、教学重点
1.鸽巢问题的理解和应用。

2.培养学生的数学解决问题的能力。

三、教学难点
1.学生在实际问题中如何运用鸽巢原理解决问题。

2.培养学生的数学思维能力。

四、教学准备
1.课件:包含鸽巢问题的相关案例和解题步骤。

2.教材:人教版六年级数学下册相关教材。

3.黑板和粉笔。

五、教学过程
1. 导入
老师先通过引入一个具体的例子,引发学生对鸽巢问题的兴趣和思考,如:一个篮球队在比赛中的换人问题。

2. 学习
1.介绍鸽巢问题的背景和定义。

2.分析案例,引导学生学习鸽巢原理的具体应用方法。

3. 练习
1.给学生几个小问题,让他们通过鸽巢原理解答。

2.教师指导学生讨论解题思路,鼓励学生积极思考。

4. 拓展
让学生围绕日常生活中的例子,进一步拓展鸽巢问题的应用,激发学生的求知欲。

5. 总结
老师对本节课的知识点进行总结,并鼓励学生多多练习,巩固所学内容。

六、课堂反馈
教师设计练习题目,学生积极回答,并进行错题讲解。

七、布置作业
布置相关作业,要求学生运用鸽巢原理解决几个问题。

八、课后反思
教师及时对本节课的教学效果进行评估,对课堂教学进行反思,为下一节课的教学准备。

以上就是本节课的教学内容,希望学生能够认真对待,并在实际生活中灵活运用鸽巢原理解决问题。

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。

教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门实行反复推理。

教学准备:课件。

教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

方法三:用“假设法”证明。

通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

六年级下册数学教案《5《数学广角—鸽巢问题》人教版

六年级下册数学教案《5《数学广角—鸽巢问题》人教版

六年级下册数学教案《5《数学广角—鸽巢问题》人教版一. 教材分析《数学广角—鸽巢问题》是人教版六年级下册数学教材中的一章,主要介绍了鸽巢问题的相关知识。

本节课的内容主要包括理解鸽巢问题的含义、掌握鸽巢问题的解题方法以及运用鸽巢问题解决实际问题。

通过本节课的学习,学生能够培养逻辑思维能力,提高解决实际问题的能力。

二. 学情分析六年级的学生已经具备了一定的数学基础,对于图形的认识和简单的逻辑推理已经有了一定的掌握。

但是,对于鸽巢问题的理解和应用还需要进一步的引导和培养。

因此,在教学过程中,需要注重学生的参与和实践,激发学生的学习兴趣,提高学生的解决问题的能力。

三. 教学目标1.理解鸽巢问题的含义,掌握鸽巢问题的解题方法。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生的学习兴趣,培养学生的合作意识。

四. 教学重难点1.鸽巢问题的理解和应用。

2.学生对于实际问题的解决能力的培养。

五. 教学方法1.情境教学法:通过生活实例的引入,激发学生的学习兴趣,引导学生主动参与。

2.合作学习法:通过小组合作,培养学生之间的沟通和合作能力。

3.实践操作法:通过学生的实际操作,培养学生的动手能力和解决问题的能力。

六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解鸽巢问题。

2.教学素材:准备一些实际的例子,用于引导学生理解和应用鸽巢问题。

3.学具:准备一些鸽巢模型或者图片,方便学生进行实际操作。

七. 教学过程1. 导入(5分钟)教师通过一个实际的生活实例引入鸽巢问题,例如:“假如有一个鸽巢,里面可以放10只鸽子,现在有12只鸽子,我们要想办法让这12只鸽子都有地方放。

”让学生思考并讨论如何解决这个问题。

2. 呈现(10分钟)教师通过课件或者黑板,呈现鸽巢问题的定义和相关的解题方法。

引导学生理解鸽巢问题的本质,并掌握解题的基本思路。

3. 操练(10分钟)教师给出一些具体的鸽巢问题的例子,让学生分组进行讨论和解决。

六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)

六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)

六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)一、教学目标1.知识与能力:–学生能够理解“鸽巢问题”的概念;–学生能够运用排除法解决“鸽巢问题”相关问题;–学生能够在实际生活中应用“鸽巢问题”解决问题。

2.过程与方法:–引导学生积极思考,提高解决问题的能力;–利用小组合作,培养学生的合作意识和团队精神;–结合情境讨论,激发学生学习兴趣。

3.情感态度与价值观:–培养学生细心观察问题、逻辑思维和创新能力;–培养学生团队合作精神,培养学生积极探究、创造的态度。

二、教学重难点1.教学重点:–学习掌握“鸽巢问题”的概念;–学生能够灵活应用排除法解决问题。

2.教学难点:–学生能够在实际问题中应用“鸽巢问题”解决问题。

三、教学准备1.教师准备:–教案、多媒体课件、草稿纸等。

2.学生准备:–铅笔、橡皮、教科书等。

四、教学过程1.导入(5分钟)–引导学生回顾上一堂课的内容,为本节课的学习做铺垫。

2.新课呈现(15分钟)–通过多媒体课件或教科书引入“鸽巢问题”的概念,呈现问题情境,激发学生兴趣。

3.讲解与示范(20分钟)–针对“鸽巢问题”展开讲解,解释相关概念,通过示范进行解题演示,引导学生理解解题思路。

4.练习与讨论(30分钟)–分组进行练习,让学生通过小组合作解决问题,在讨论中发现解题方法的不同之处,运用排除法思维解决问题。

5.拓展应用(15分钟)–老师引导学生思考真实生活中可能遇到的“鸽巢问题”,激发学生对数学的实际应用兴趣,提高解决问题的能力。

6.总结与作业布置(5分钟)–总结本节课的重点内容,布置相关作业,巩固学生对“鸽巢问题”的理解和应用能力。

五、教学板书•鸽巢问题–概念:一个有限的集合如果要被划分成许多个部分,但是部分的总数比集合的总数还要多,那么必然存在至少一个部分包含了2个以上的元素;–解题方法:排除法。

六、教学反思通过本节课的教学,学生对“鸽巢问题”有了更深入的理解。

但在教学过程中,发现部分学生在排除法应用上存在困难,需要在后续课程中加强相关训练。

(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计

(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计

(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计一. 教材分析新人教版六年级数学下册第五单元“数学广角——鸽巢问题”,主要让学生理解并掌握鸽巢问题的原理及应用。

本节课通过生活中的实例,引导学生探究和发现规律,培养学生的逻辑思维能力和解决实际问题的能力。

二. 学情分析六年级的学生已经具备了一定的数学基础,思维活跃,具有较强的探究欲望。

但在解决实际问题时,部分学生可能会受到生活经验的影响,难以把握问题的本质。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们逐步理解和掌握鸽巢问题的解决方法。

三. 教学目标1.让学生理解鸽巢问题的概念,掌握鸽巢问题的解决方法。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生合作交流、积极思考的良好学习习惯。

四. 教学重难点1.重点:理解鸽巢问题的原理,学会用鸽巢问题解决实际问题。

2.难点:如何引导学生发现生活中的鸽巢问题,并运用所学知识解决。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现和提出问题,激发学生学习兴趣。

2.启发式教学法:引导学生独立思考、合作交流,培养学生解决问题的能力。

3.实践操作法:让学生在实际操作中感受和理解鸽巢问题的应用,提高学生的动手能力。

六. 教学准备1.准备相关的生活实例和问题,以便在教学中引导学生探究。

2.准备课件和教学素材,以便进行生动的教学展示。

3.准备鸽巢问题的相关练习题,以便进行课堂巩固和拓展。

七. 教学过程1.导入(5分钟)利用一个生活实例,如公园里的鸽子巢穴,引出鸽巢问题。

提问:“如果有10只鸽子,而只有5个巢穴,那么至少有一个巢穴里有2只或以上的鸽子吗?”让学生思考并回答。

2.呈现(10分钟)呈现更多的鸽巢问题实例,引导学生观察和分析问题。

如:“一个班级有30个学生,如果有5个小组,那么至少有一个小组有7个或以上的学生吗?”学生进行讨论,让学生尝试找出问题的规律。

3.操练(10分钟)让学生分组进行练习,运用所学知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五单元数学广角——鸽巢问题单元备课一、教材分析:本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。

和以往的义务教育教材相比,这部分内容是新增的内容。

本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。

在数学问题中,有一类与“存在性”有关的问题。

在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。

这类问题依据的理论我们称之为“抽屉原理”。

“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。

“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。

但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。

因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。

教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。

能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。

所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。

六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。

教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

二、教学目标:1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

学会与人合作,并能与人交流思维过程和结果。

3、情感态度与价值观:(1)积极参与探索活动,体验数学活动充满着探索与创造。

(2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体验学数学、用数学的乐趣。

(3)通过“鸽巢原理”的灵活应用,感受数学的魅力。

(4)理解知识的产生过程,受到历史唯物注意的教育。

三、教学重点:应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。

四、教学难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

五、教学措施:1、让学生经历“数学证明”的过程。

可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。

通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。

通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

2、有意识地培养学生的“模型”思想。

当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。

教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。

这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

3、要适当把握教学要求。

“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。

因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。

例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。

因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。

六、课时安排:3课时鸽巢问题------------------------------------------------------------------------------- ------1课时“鸽巢问题”的具体应用-----------------------------------------------------------------1课时练习课-----------------------------------------------------------------------------------------1课时第1课时教学课题:鸽巢问题教学内容:教材第68-69页例1、例2,及“做一做”,及第71页练习十三的1-2题。

教学目标:1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。

教学难点:找出“鸽巢问题”解决的窍门进行反复推理。

教具准备:多媒体课件。

教学过程:一、创设情境,导入新知老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。

师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。

-------出示课题二、合作交流,探究新知1、教学例1(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

方法三:用“假设法”证明。

通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

(4)认识“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。

如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔……小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。

(5)归纳总结:鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。

2、教学例2(课件出示例题2情境图)思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。

为什么呢?(二)如果有8本书会怎样呢?10本书呢?学生通过“探究证明→得出结论”的学习过程来解决问题(一)。

(1)探究证明。

方法一:用数的分解法证明。

把7分解成3个数的和。

把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

方法二:用假设法证明。

把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。

如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。

(2)得出结论。

通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。

(1)用假设法分析。

8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

(2)归纳总结:综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。

鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

三、巩固新知,拓展应用1、完成教材第70页的“做一做”。

学生独立思考解答问题,集体交流、纠正。

2、完成教材第71页练习十三的1-2题。

学生独立思考解答问题,集体交流、纠正。

四、课堂总结1、通过今天的学习你有什么收获?2、回归生活:你还能举出一些能用“鸽巢问题”解释的生活中的例子吗?五、作业第2课时教学课题:“鸽巢问题”的具体应用教学内容:教材第70页例3,及“做一做”,及第71页练习十三的3-4题。

教学目标:1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。

教学难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。

教具准备:多媒体课件教学过程:一、创设情境、引入新课:师:一天晚上,有一个小女孩正要从抽屉里拿袜子。

抽屉里有黑白两种颜色的袜子各10双。

突然停电了。

小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?学生思考、发言。

师:学习了这节课我们就能解决类似的问题了。

------出示课题二、合作交流,探究新知(一)出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?1、学生提出猜想。

相关文档
最新文档