网络计划的优化:费用优化.ppt
网络计划优化案例费用优化

网络计划优化案例费用优化在一个建设项目中,有多个任务需要按照一定的顺序执行,而每个任务的执行需要一些资源投入,比如人力、材料、设备等,同时每个任务的执行时间也是不同的。
为了充分利用资源、缩短项目总工期,并降低项目成本,需要对网络计划进行优化。
首先,我们需要绘制网络计划图,将各个任务按照任务执行的前后关系连接起来,形成一个网络计划。
网络计划图可以清晰地显示每个任务的持续时间、紧前任务和紧后任务等信息。
然后,我们可以利用关键路径法来确定项目的关键路径。
关键路径是指影响整个项目工期的一条路径,即在该路径上的任务不能延迟,否则将导致整个项目工期延长。
确定了关键路径后,我们可以对这条路径上的任务进行优化,以缩短项目总工期。
接下来,我们可以利用资源平衡法来对项目的资源分配进行优化。
资源平衡法是指在满足任务时间要求的前提下,合理调整任务执行时间,以实现资源的合理利用和最小化费用的目标。
具体操作可以参考以下步骤:1.根据任务执行所需的资源量和资源使用限制,计算每个任务执行所需的资源量。
2.制定资源分配策略,即确定每个任务每个时间段所需的资源量。
3.按照资源分配策略,结合网络计划图,制定资源分配计划。
4.对资源分配计划进行优化,调整任务执行时间,以实现资源的合理利用和最小化费用的目标。
在进行资源分配优化时,需要注意以下几点:1.合理利用资源:根据资源的供需情况,尽量避免资源的浪费或过度使用。
2.优化资源分配计划:根据项目实际情况,灵活调整资源分配计划,以达到最小化费用的目标。
3.控制项目总工期:通过调整任务执行顺序和时间,缩短项目总工期,降低项目成本。
4.风险评估与控制:在优化资源分配计划的过程中,要充分考虑项目风险,制定相应的风险评估与控制措施。
通过以上的优化措施,我们可以最大限度地缩短项目总工期,并降低项目成本。
但是需要注意的是,在进行优化时,需要充分考虑项目实际情况,并量化和评估各个因素的影响,以确保优化方案的可行性和有效性。
费用优化.ppt

3
280 18(15)
(②,16)
5
(③,34)
200
11
6
(⑤,45)
压缩时间: △t1=15天-11天=4天 增加费用: △s1=200元/天×4天=800元 (3) 此时关键线路有两条:
1-2-3-5-6和1-2-4-6
例题
(①,16)
350 16(14)
2
250 16(13)
1
(②,32)
(①,16)
350 16(14)
2
250 16(13)
(②,32)
4
100 13(12)
1
150 14(13)
3
280 18(15)
(②,16)
5
(③,34)
200 15(11)
6
(⑤,49)
费用优化的方法和步骤
• 步骤
按正常持续时间计算工程总直接费 计算各项工作的直接费率
找出网络计划中的关键线路并求出计算工期
费用优化的定义
• 1、费用优化的定义
费用优化又称时间成本优化,是寻 求最低成本时的最优工期安排,或按要 求工期寻求最低成本的计划安排过程。
工期与费用的关系
• 2、工期与费用的关系
费用的 组成
直接费
间接费
工期与费用的关系
• 2、工期与费用的关系
直接工程费 直接费
费用的
措施费
组成
间接费
工期与费用的关系
找出网络计划中的关键线路并求出计算工期
在网络计划中找出费率(或组合费率)最低的一项 (或一组)关键工作作为缩短持续时间的对象
确定可缩短的持续时间 否
计算相应增加的直接费用
计算间接费用及其他损益,并求总费用增加额
费用优化PPT课件

费用 (元)
4
2000
20
8Hale Waihona Puke 001060008
4500
22
14000
18
9200
16
10300
10
5000
费率
250 100 125 125 143 58 57 62 6
工程项目进度计划的调整
2
12
4
30
6
6
18
36
18
1
30
3
30
5
解:第一步:将网络计划绘制成时标网络计划:
125
FF=48
12(8)
125
12(8)
250
125
2
6(4) 18(10)
FF=6
FF=48
1
100
30(20)
143
3
36(22)
58 30(18)
4
FF=6
5
57 18(16)
62 18(10)
T1=84 6
8
工程项目进度计划的调整
第三步:压缩1-3工作6天,利用2-3工作的时差6天,1-2 工作、2-3工作转化为关键工作。工期压缩6天,直接费用 增加684 +100元/天×6天=1284元。见下图:
125
12(8)
250
125
2
6(4) 18(10)
1
100
24(20)
FF=42
143
3
36(22)
58 30(18)
4
FF=6
5
57 18(16)
62 18(10)
T2=78 6
9
工程项目进度计划的调整
《运筹学》胡运权清华版-9-03网络计划的优化

44
20
18 19 2
15
0
10
9 5
5
1
0
(人数)
按时差将工作排序
(天数)
0 1 2 3 4 5 6 7 8 9 10 11
9
6
7
5
1
1
2
3
5
6
3
44
20
18
15
10
5 0
(人数)
19 工作2 (1,2) , 总时差0,编为1#
工作0 (1,49) , 总时差1,编为2# 工作(1,6) , 总时5 差7,编为1 3#
24
18 6 T=64(天)
18
③ 总直接费用 478+10×1=488(百元)
间接费用 180 -33=147(百元)
总费用
488 +147=635(百元)
第二次调整
①,
1246 1346
同时缩短
(1,3), (1,2) 同时缩小 2.5+1=3.5 可选方案: (1,3), (2,4) 同时缩小 1+2=3
按时差将工作排序
(天数)
0 1 2 3 4 5 6 7 8 9 10 119 Nhomakorabea6
7
5
1
1
2
3假设:已进行5中非关键工作 6
3
4 不4允许中断
工作(1,4) , 总时差1,编为1#
20
19 20
18
工作(2,3) , 总时差0,编为2#
15
10
9
工作(1,6) ,5总时差5,编为3#
5
1
0
第二次调整结果
总费用
634.4(百元)
网络计划技术-费用优化例题(施工组织设计课件)

第四章 网络计划技术-费用优化
例 某工程任务的网络计划如图4.72所示。箭线上方括号外 为正常时间直接费,括号内为最短时间直接费,箭线下方括 号外为正常持续时间,括号内为最短持续时间。假定平均每 天的间接费(综合管理费)为100元,试对其进行费用优化。
第四章 网络计划技术-费用优化
第一步,列出原始数据表,并计算各工作的费用率(见表)。
工作 正常工期ຫໍສະໝຸດ 最短工期相差费用率△Ci- 费用与时间
代号 时 间 直接费 时 间 直接费 时 间 费用 j(元/天) 变化情况
1-2 16 900 12 1220 4
320
80
1-3 18 1500 10 2500 8 1000
125
2-4 12 1000 6 2200 6 1200
T2 = 66 - 9 = 57(天) C2 = 11840 + 9×100 = 12740(元) 这时关键线路已变成2条(见图4.76)。
第四章 网络计划技术-费用优化
第四章 网络计划技术-费用优化
循环三: 从图4.76可以看得到,关键线路已变为2条:①→②→⑤→⑥→⑦; ①→③→⑤→⑥→⑦ 关键工作为:①-②,②-⑤,⑤-⑥,①-③,③-⑤,⑥-⑦。 其压缩方案为: 方案一:缩短⑤-⑥工作,每天增加费用240元,可缩短10天。 方案二:缩短①-②、①-③工作,每天平均增加费用205元,可缩 短4天。 方案三:缩短①-②、③-⑤工作,只能缩短1天,每天平均增加费 用180天。 方案四:缩短②-⑤、①-③工作,必须缩短4天,每天平均增加费 用200元。
在本例中,循环一:在正常持续时间原始网络计划图(图4.73)中,
关键工作为①-③、③-⑤、⑤-⑥、⑥-⑦,在表4.8中可以看到:⑥
网络计划技术费用优化

压缩工期时注意
压缩关键工作旳连续时间;
不能把关键工作压缩成非关键工作; 选择直接费用率或其组合(同步压缩 几项关键工作时)最低旳关键工作进 行压缩,且其值应≤间接费率。
例题:已知某工程计划网络如图,整个工程计
划旳间接费率为0.35万元/天,正常工期 时旳间接费为14.1万元。试对此计划进 行费用优化,求出费用至少旳相应工期。
正常
3
0.2 10(5)
连续 时间
直接 费用
率
6
最短 连续 时间
第二次:选择工作①-②,压缩1天,
成为9天; 工期变为29天,①-③、③-⑤也变为关
键工作。
0.2 9(6)
1
0.5 7(4)
0.35 2
8(6)
0.1 4
8(5)
0.3 5
12(9)
正常
3
0.2 10(5)
连续 时间
直接 费用
率
6
最短 连续 时间
3.5.2 费 用 优 化
直接费用率Ci j
CCi j DNi j
CNi j DCi j
C (直接费)
CC (最短时间
直接费)
临界点
CN (正常时间
直接费)
DC(最短连 续时间)
正常点
DN(正常连 续时间)
D(时间)
工作连续时间与直接费旳关系示意图
• 例:某工作旳直接费用率为30元/天,当把
(2)计算各工作旳直接费用率ΔCi-j
0.2 0.5 0.35 0.1 0.2 0.3
(3)压缩工期; 第一次:选择工作④-⑤,压缩7天,
成为8天;
0.2 10(6)
运筹学-5网络计划的优化

§8.5网络计划的优化 Ch8 Network Programming Optimization of Network 2020年6月20日星期六 Page 9 of 10
1.时间优化 2.资源优化 3.时间与资源同时优化 4.费用优化 5.网络图与甘特图并用 6.掌握用QSB软件计算网络参数
时间资源优化 【例】现有65人要完成下例工程
工序 d f g h k
作业时间(天) 20 18 30 15 25
需要人数 58 22 42 39 26
总时差 0 47 0 20 0
§8.5网络计划的优化 Ch8 Network Programming Optimization of Network 2020年6月20日星期六 Page 2 of 10
极限时间
正常时间
最低成本日程
§8.5网络计划的优化 Ch8 Network Programming Optimization of Network 2020年6月20日星期六 Page 4 of 10
极限时间的工序直接费用-正常时间的工序直接费用
直接费用率g=
正常时间-极限时间
b,45
P295
c,10
【例】教材P300
正常情况下
采取各种措施后
工序 正常时 工序的直 极限时 工序直接费用
间(天) 接费用(元) 间(天)
(元)
缩短一天工期增加的直 接费用(费用变动率g,
元/天)
a
60
10000 60
10000
0
b
45
4500 30
6300
120
c
10
2800 5
4300
网络计划优化案例费用优化

二、费用优化示例已知某工程双代号网络计划如图7所示,图中箭线下方括号外数字为工作的正常时间,括号内数字为最短持续时间;箭线上方括号外数字为工作按正常持续时间完成时所需的直接费,括号内数字为工作按最短持续时间完成时所需的直接费.该工程的间接费用率为万元/天,试对其进行费用优化.图7 初始网络计划1根据各项工作的正常持续时间,用标号法确定网络计划的计算工期和关键线路,如图8所示.计算工期为19天,关键线路有两条,即:①—③—④—⑥和①—③—④—⑤—⑥.(①,4)(①,8)(④,15)(③,13)图8 初始网络计划中的关键线路2计算各项工作的直接费用率:△C1-2=∕4-2=万元∕天△C1-3=∕8-6=万元∕天△C1-2=∕4-2=万元∕天△C2-3=万元∕天△C2-4=万元∕天△C3-4=万元∕天△C3-5=万元∕天△C4-5=万元∕天△C4-6=万元∕天△C5-6=万元∕天3计算工程总费用:①直接费总和:Cd=++++++++=万元;②间接费总和:Ci=×19=万元;③工程总费用:Ct = Cd+Ci=+=万元.4通过压缩关键工作的持续时间进行费用优化优化过程见表1:1第一次压缩从图8可知,该网络计划中有两条关键线路,为了同时缩短两条关键线路的总持续,有以下四个压缩方案:①压缩工作B,直接费用率为万元/天;②压缩工作E,直接费用率为万元/天;③同时压缩工作H和工作I,组合直接费用率为:+=万元/天;④同时压缩工作I和工作J,组合直接费用率为:+=万元/天.在上述压缩方案中,由于工作E的直接费用率最小,故应选择工作E为压缩对象.工作E的直接费用率万元/天,小于间接费用率0,8万元/天,说明压缩工作E可使工程总费用降低.将工作E的持续时间压缩至最短持续时间3天,利用标号法重新确定计算工期和关键线路,如图9所示.此时,关键工作E被压缩成非关键工作,故将其持续时间延长为4天,使成为关键工作.第一次压缩后的网络计划如图10所示.图中箭线上方括号内数字为工作的直接费用率.(①,8)(④,14)图9 工作E压缩至最短时的关键线路(③,12)(①,4)图10 第一次压缩后的网络计划2第二次压缩从图3-44可知,该网络计划中有三条关键线路,即:①—③—④—⑥、①—③—④—⑤—⑥和①—③—⑤—⑥.为了同时缩短三条关键线路的总持续时间,有以下五个压缩方案:①压缩工作B,直接费用率为万元/天;②同时压缩工作E和工作G,组合直接费用率为+=万元/天;③同时压缩工作E和工作J,组合直接费用率为:+=万元/天;④同时压缩工作G、工作H和工作J,组合直接费用率为:++=万元/天;⑤同时压缩工作I和工作J,组合直接费用率为:+=万元/天.在上述压缩方案中,由于工作E和工作J的组合直接费用率最小,故应选择工作E和工作J作为压缩对象.工作E和工作J的组合直接费用率万元/天,小于间接费用率万元/天,说明同时压缩工作E和工作J可使工程总费用降低.由于工作E的持续时间只能压缩1天,工作J的持续时间也只能随之压缩1天.工作E和工作J的持续时间同时压缩1天后,利用标号法重新确定计算工期和关键线路.此时,关键线路由压缩前的三条变为两条,即:①—③—④—⑥和①—③—⑤—⑥.原来的关键工作H未经压缩而被动地变成了非关键工作.第二次压缩后的网络计划如图11所示.此时,关键工作E的持续时间已达最短,不能再压缩,故其直接费用率变为无穷大.(①,8)(③,14)图11 第二次压缩后的网络计划3第三次压缩从图11可知,由于工作E不能再压缩,而为了同时缩短两条关键线路①—③—④—⑥和①—③—⑤—⑥的总持续时间,只有以下三个压缩方案:①压缩工作B,直接费用率为万元/天;②同时压缩工作G和工作I,组合直接费用率为+ =万元/天;③同时压缩工作I和工作J,组合直接费用率为:+=万元/天.在上述压缩方案中,由于工作I和工作J的组合直接费用率最小,故应选择工作I和工作J作为压缩对象.工作I和工作J的组合直接费用率万元∕天,小于间接费用率万元∕天,说明同时压缩工作I和工作J可使工程总费用降低.由于工作J的持续时间只能压缩1天,工作I的持续时间也只能随之压缩1天.工作I和工作J的持续时间同时压缩l天后,利用标号法重新确定计算工期和关键线路.此时,关键线路仍然为两条,即:①—③—④—⑥和①—③—⑤—⑥.第三次压缩后的网络计划如图12所示.此时,关键工作/的持续时间也已达最短,不能再压缩,故其直接费用率变为无穷大.(①,4)(③,11) Array (①,8)(③,14)图12 第三次压缩后的网络计划4第四次压缩:从图3-46可知,由于工作E和工作/不能再压缩,而为了同时缩短两条关键线路①—③—④—⑥和①—③—⑤—⑥的总持续时间,只有以下两个压缩方案:①压缩工作B,直接费用率为万元/天;②同时压缩工作G和工作I,组合直接费用率为+=万元∕天.在上述压缩方案中,由于工作B的直接费用率最小,故应选择工作B作为压缩对象.但是,由于工作B的直接费用率万元∕天,大于间接费用率万元/天,说明压缩工作B会使工程总费用增加.因此,不需要压缩工作B,优化方案已得到,优化后的网络计划如图13所示.图中箭线上方括号内数字为工作的直接费.(①,4)(①,8)(③,14)(③,11)图13 费用优化后的网络计划5计算优化后的工程总费用①直接费总和:Cd0=++++++++= 万元;②间接费总和:Ci0=×16=万元;③工程总费用:Ct0 = Cd0+ CiO= +=万元.优化表表1。