科尔摩根Seidel无刷伺服电机SM系列英文手册

合集下载

爱森 Мо尔尔速度调节器198736说明书

爱森 Мо尔尔速度调节器198736说明书

Eaton 198736Eaton Moeller® series Rapid Link - Speed controllers, 2.4 A, 0.75 kW, Sensor input 4, AS-Interface®, S-7.4 for 31 modules, HAN Q4/2, STO (Safe Torque Off)General specificationsEaton Moeller® series Rapid Link Speed controller1987364015081967940157 mm 270 mm 220 mm 3.42 kg CEIEC/EN 61800-5-1 UL 61800-5-1 RoHS UL approvalProduct NameCatalog NumberEANProduct Length/Depth Product Height Product Width Product Weight Certifications Catalog Notes can be switched over from U/f to (vector) speed control Connection of supply voltage via adapter cable on round or flexible busbar junction Diagnostics and reset on device and via AS-Interface Four fixed speeds integrated PTC thermistorDiagnostics and reset on device and via AS-Interface Parameterization: drivesConnectParameterization: KeypadParameterization: drivesConnect mobile (App) Parameterization: FieldbusKey switch position HANDSelector switch (Positions: REV - OFF - FWD)IGBT inverterPC connectionKey switch position AUTOControl unitInternal DC linkTwo sensor inputs through M12 sockets (max. 150 mA) for quick stop and interlocked manual operationThermo-click with safe isolationFour fixed speedsKey switch position OFF/RESETPTC thermistor monitoringSTO (Safe Torque Off)IP65NEMA 121st and 2nd environments (according to EN 61800-3)IIISpeed controllerASIAS-Interface profile cable: S-7.4 for 31 modulesC1: for conducted emissions onlyC2, C3: depending on the motor cable length, the connected load, and ambient conditions. External radio interference suppression filters (optional) may be necessary.2000 VAC voltageCenter-point earthed star network (TN-S network)Phase-earthed AC supply systems are not permitted.Vertical15 g, Mechanical, According to IEC/EN 60068-2-27, 11 ms, Half-sinusoidal shock 11 ms, 1000 shocks per shaftResistance: According to IEC/EN 60068-2-6Resistance: 57 Hz, Amplitude transition frequency on accelerationResistance: 10 - 150 Hz, Oscillation frequencyResistance: 6 Hz, Amplitude 0.15 mm Above 1000 m with 1 % performance reduction per 100 m Max. 2000 m-10 °C40 °C-40 °C70 °CFeatures Fitted with:Functions Degree of protectionElectromagnetic compatibility Overvoltage categoryProduct categoryProtocolRadio interference classRated impulse withstand voltage (Uimp) System configuration typeMounting position Shock resistance Vibration AltitudeAmbient operating temperature - min Ambient operating temperature - max Ambient storage temperature - min Ambient storage temperature - max< 95 %, no condensation In accordance with IEC/EN 50178Adjustable, motor, main circuit 0.2 - 2.4 A, motor, main circuit < 10 ms, On-delay < 10 ms, Off-delay 97 % (η)2.5 A3.5 mA120 %Maximum of one time every 60 seconds 380 V480 V380 - 480 V (-10 %/+10 %, at 50/60 Hz)U/f controlSensorless vector control (SLV) BLDC motorsSynchronous reluctance motors PM and LSPM motors 0 Hz500 HzFor 60 s every 600 s At 40 °C3.6 AClimatic proofingCurrent limitationDelay timeEfficiency Input current ILN at 150% overload Leakage current at ground IPE - max Mains current distortion Mains switch-on frequencyMains voltage - min Mains voltage - max Mains voltage toleranceOperating mode Output frequency - min Output frequency - max Overload current Overload current IL at 150% overload45 Hz66 Hz0.75 kW400 V AC, 3-phase480 V AC, 3-phase0.1 Hz (Frequency resolution, setpoint value)200 %, IH, max. starting current (High Overload), For 2 seconds every 20 seconds, Power section50/60 Hz8 kHz, 4 - 32 kHz adjustable, fPWM, Power section, Main circuitAC voltageCenter-point earthed star network (TN-S network)Phase-earthed AC supply systems are not permitted.1 HP≤ 0.6 A (max. 6 A for 120 ms), Actuator for external motor brakeAdjustable to 100 % (I/Ie), DC - Main circuit10 kAType 1 coordination via the power bus' feeder unit, Main circuit 24 V DC (-15 %/+20 %, external via AS-Interface® plug)AS-InterfacePlug type: HAN Q4/2Specification: S-7.4 (AS-Interface®)Number of slave addresses: 31 (AS-Interface®)Max. total power consumption from AS-Interface® power supply unit (30 V): 190 mA C3 ≤ 25 m, maximum motor cable length C2 ≤ 5 m, maximum motor cable length C1 ≤ 1 m, maximum motor cable lengthMeets the product standard's requirements.Meets the product standard's requirements.Rated frequency - minRated frequency - maxRated operational power at 380/400 V, 50 Hz, 3-phase Rated operational voltageResolutionStarting current - maxSupply frequencySwitching frequencySystem configuration type Assigned motor power at 460/480 V, 60 Hz, 3-phase Braking currentBraking torqueRated conditional short-circuit current (Iq)Short-circuit protection (external output circuits) Rated control voltage (Uc)Communication interfaceConnectionInterfacesCable length10.2.2 Corrosion resistance10.2.3.1 Verification of thermal stability of enclosures10.2.3.2 Verification of resistance of insulating materials tonormal heatMeets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.Rapid Link 5 - brochureDA-SW-Driver DX-CBL-PC-3M0DA-SW-drivesConnect - installation helpDA-SW-USB Driver PC Cable DX-CBL-PC-1M5DA-SW-USB Driver DX-COM-STICK3-KITDA-SW-drivesConnectDA-SW-drivesConnect - InstallationshilfeMaterial handling applications - airports, warehouses and intra-logisticseaton-bus-adapter-rapidlink-speed-controller-dimensions.epseaton-bus-adapter-rapidlink-speed-controller-dimensions-002.eps eaton-bus-adapter-rapidlink-speed-controller-dimensions-003.eps eaton-bus-adapter-rapidlink-speed-controller-dimensions-004.epsETN.RASP5-2400A31-4120010S1.edzIL034085ZUrasp5_v25.stpramo5_v25.dwgGeneration change from RA-SP to RASP 4.0Generation change RAMO4 to RAMO5Generation change from RA-MO to RAMO 4.0Configuration to Rockwell PLC for Rapid LinkGeneration Change RA-SP to RASP5Generation Change RASP4 to RASP5DA-DC-00004612.pdfDA-DC-00003964.pdfDA-DC-00004184.pdfDA-DC-00004613.pdf10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internalelect. effects10.2.4 Resistance to ultra-violet (UV) radiation10.2.5 Lifting10.2.6 Mechanical impact10.2.7 Inscriptions10.3 Degree of protection of assemblies10.4 Clearances and creepage distances10.5 Protection against electric shock10.6 Incorporation of switching devices and components 10.7 Internal electrical circuits and connections10.8 Connections for external conductors10.9.2 Power-frequency electric strength10.9.3 Impulse withstand voltage10.9.4 Testing of enclosures made of insulating material 10.10 Temperature rise BrochureDisegnieCAD modelIstruzioni di installazione mCAD modelNote per l'applicazione Report di certificazioneEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. Tutti i diritti riservati. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmediaIs the panel builder's responsibility. The specifications for the switchgear must be observed.Is the panel builder's responsibility. The specifications for the switchgear must be observed.The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.10.11 Short-circuit rating10.12 Electromagnetic compatibility10.13 Mechanical function。

科尔摩根伺服说明书

科尔摩根伺服说明书

CD S YNQ N ETQ UICK S TART G UIDERevision No: 7Date: 22 December 20041. General1.1 Safety InformationOnly qualified personnel are permitted to transport, assembly, commission, and maintenance this equipment. Properly qualified personnel are persons who are familiar with the transport, assembly, installation, commissioning and operation of motors, and who have the appropriate qualifications for their jobs. The qualified personnel must know and observe the following standards and regulations:IEC 364 resp. CENELEC HD 384 or DIN VDE 0100 IEC report 664 or DIN VDE 0110National regulations for safety and accident prevention or VBG 4 •Read all available documentation before assembly and commissioning. Incorrect handling of products in this manual can result in injury and damage to persons and machinery. Strictly adhere to the technical information on the installation requirements.• It is vital to ensure that all system components are connected to earth ground. Electrical safety is impossible without a low-resistance earth connection.•The SERVOSTAR® product contains electro-statically sensitive components that can be damaged by incorrect handling. Discharge any electrical shock potential from you before touching the product. Avoid contact with high insulating materials (artificial fabrics, plastic film, etc.). Place the product on a conductive surface.• During operation keep all covers and cabinet doors shut. Otherwise, there are deadly hazards that could possibility cause severe damage to health or the product.• In operation, depending on the degree of enclosure protection, the product can have bare components that are live or have hot surfaces. Control and power cables can carry a high voltage even when the motor is not rotating. • Never pull out or plug in the product while the system is live. There is a danger of electric arcing and danger to persons and contacts.•After powering down the product, wait at least ten minutes before touching live sections of the equipment or undoing connections (e.g., contacts, screwed connections). Capacitors can store dangerous voltages for long periods of time after power has been switched off. To be safe, measure the contact points with a meter before touching.When these symbols are seen in this manual, be alert to the potential for personal injury. Follow the recommended precautions and safe operating practices included with the alert symbols. Safety notices in this manual provide important information. Read and be familiar with these instructions before attempting installation, operation, or maintenance. The purpose of this section is to alert users to possible safety hazards associated with this equipment and the precautions that need to be taken to reduce the risk of personal injury and damage to the equipment. Failure to observe these precautions could result in serious bodily injury,damage to the equipment, or operational difficulty. The safety-alert symbols are:Warning Alerts users to potential physical danger or harm. Failure to follow warning notices could result in personal injury or death.Caution Directs attention to general precautions, which if not followed, could result in personal injuryand/or equipment damage.Note Highlights information critical to your understanding or use of the product.1.2 Limited WarrantyIncludes software provided by KollmorgenSeller warrants that the Goods sold hereunder are free from defects in material and workmanship for the product warranty period of each item of Goods (Product Warranty Periods are listed below). Seller warrants its Good(s) only to the originalpurchaser (the “Customer”), and in the case of original equipment manufacturers or distributors, only to their original consumer (the “Customer”). There are no warranties whatsoever on Goods built or acquired, wholly or partially, to a buyer’s designs or specificationsThis express warranty is in lieu of and exclude all other warranties, express or implied, by operation or law or otherwiseincluding THE WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (WHETHER KNOWN TO SELLER OR NOT), all other such warranties being hereby expressly disclaimed by Seller and waived by Buyer. Written notice of claimed defects shall have been given to Seller within the period set forth in the schedule below, and within thirty (30) days from the date any such defect is first discovered.广州科沃—工控维修的120 www.gzkowo.com1.2.1 Product Warranty SchedulesBrand Products Warranty Period Kollmorgen Standard Brush-type Motors,Electronics and Accessories12 months from date of manufactureKollmorgen Standard Brushless Motors, Electronicsand Accessories24 months from date of manufactureKollmorgen Standard Step Motors, Stepper Controlsand Accessories12 months from date of manufactureKollmorgen Custom Motion Systems or componentsof any type To be negotiated on a case-by-case basis, and set forth in the order.Pacific Scientific All Products 24 months from date of manufactureSuperior All Products 12 months from date of manufactureThe Goods or parts claimed to be defective must be returned to Seller, accompanied by a Return Material Authorization (RMA) issued by Seller’s facility responsible for supplying Goods, with transportation prepaid by Customer, with written specifications of the claimed defect.If a warranty claim is valid, Seller shall pay reasonable one-way costs of transportation of the defective Goods from either the original destination or the location where defect occurred, whichever is closest to Seller’s facility. Under no circumstances shall Seller be liable for removal of Seller’s Goods from Buyer’s equipment or re-installation into Buyer's equipment.No person, including any agent, distributor, or representative of Seller, is authorized to make any representation or warranty on behalf of Seller concerning any goods manufactured by Seller, except to refer purchasers to this warranty.1.2.2 GeneralIndemnityBuyer agrees to hold Seller harmless from any and all liability, and to pay all costs and attorney’s fees, for injury or damage to persons or property caused in any manner by Goods covered by the order while in possession or under the control of Buyer or Buyer’s successor in interest.1.2.3 Use As DirectedThe following guidelines describe the restrictions for proper use of the SERVOSTAR CD SynqNet system: • The amplifiers are components built into electrical equipment or machines and can only be commissioned as integral components of such equipment.• The servo amplifiers are to be used only on earthed three-phase industrial mains supply networks (TN-system, TT-system with earthed neutral point).• The servo amplifiers must not be operated on power supply networks without an earth or with an asymmetrical earth.• If the servo amplifiers are used in residential areas, or in business or commercial premises, the user must implement additional filter measures.• The servo amplifiers are only intended to drive specific brushless synchronous servomotors from Kollmorgen with closed-loop control of torque, speed, and position. The rated voltage of the motors must be at least as high as theDC-link voltage of the servo amplifier.• The servo amplifiers may only be operated in a closed switchgear cabinet, taking into account the ambient conditions defined in the environmental specifications.Kollmorgen guarantees the conformance of the servo amplifiers with the standards for industrial areas stated in this manual only if Danaher Motion Kollmorgen delivers the components (motors, cables, amplifiers etc).1.2.4 SoftwareWarrantyComputer software programs that may be included in material or Goods sold to Buyer have been designed to perform a given set of tasks as defined in the documentation provided and are offered AS IS. It is Buyer’s responsibility to determine if the features of the software programs are suitable for Buyer’s requirements and must confirm that the software programs operate correctly. Buyer understands that such software programs are of such complexity that they may have inherent defects and that Seller makes no warranty that all software features will perform correctly as supplied. For Seller’s software utilizing automation servers, improper reading and writing data to the automation server can cause the automation server software to malfunction and may cause the automation server and/or the program writing to the automation server to crash. Improperly reading and writing data to an automation server may cause the device controlled by that automation server to malfunction. Seller shall not be responsible for damage to any device or damage caused by any device due to the improper reading and/or writing of data to an automation server.1.2.5 Limitation of liabilityNOTWITHSTANDING ANYTHING TO THE CONTRARY, SELLER SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES INCLUDING LOST PROFITS ARISING OUT OF THE PERFORMANCE, DELAYED PERFORMANCE OR BREACH OF PERFORMANCE OF THIS ORDER REGARDLESS WHETHER SUCH LIABILITY BE CLAIMED IN CONTRACT, EQUITY, TORT OR OTHERWISE. SELLER’S OBLIGATION ISLIMITED SOLELY TO REPAIRING OR REPLACING (AT ITS OPTION AND AS SET FORTH IN SECTION 10 AND SECTION 11), AT ITS APPROVED REPAIR FACILITY, ANY GOODS OR PARTS WHICH PROVE TO SELLER’S SATISFACTION TO BE DEFECTIVE AS A RESULT OF DEFECTIVE MATERIALS OR WORKMANSHIP, IN ACCORDANCE WITH SELLER’S STATED WARRANTY. IN NO EVENT SHALL SELLER’S LIABILITY EXCEED THE TOTAL PURCHASE PRICE SET FORTH IN THIS ORDER.number1.3 Part1.4 Where to get supportDanaher Motion is committed to quality customer service. Our goal is to provide the customer with information and resources as soon as they are needed. In order to serve in the most effective way, contact your local sales representative for order status and delivery information, product information and literature, and application and field technical assistance. If you are unaware of your local sales representative, please contact us at:Email: sep@Specify “SynqNet Support” in the subject line.1.5 Manual Download LocationComplete product manuals can be downloaded from the Danaher Motion website, at -> Customized Products -> Drives -> CD SynqNet2. Unpacking and InspectionOpen the box and remove all the contents. Check to ensure there is no visible damage to any of the equipment.Electronic components in this amplifier are design-hardened to reduce static sensitivity. However, properprocedures should be used when handling to avoid damage to equipment.Remove all packing material and equipment from the shipping container. Be aware that some connector kits and other equipment pieces may be quite small and can be accidentally discarded if care is notobserved when unpacking the equipment. Do not dispose of shipping materials until the packing list hasbeen checked.Upon receipt of the equipment, inspect components to ensure that no damage has occurred in shipment. If damage is detected, notify the carrier immediately. Check all shipping material for connector kits, documentation, diskettes, CD-ROM, or other small pieces of equipment.3. Installation Instructions3.1 GeneralThese installation steps are designed to lead you through the proper installation and setup of a SERVOSTAR CD SynqNetsystem. They were developed with the assumption that you have a fundamental understanding of basic electronics, computers, mechanics, and proper safety practices. However, you do not have to be an expert in motion control to install and operate thedrive system. It is recommended that you read the entire manual completely before attempting installation or operation.High voltage can present dangerous and hazardous conditions if not performed by a qualified electrician. Be certain to follow all national and local codes during installation.1. Open the box(es) and remove all the contents. Check to ensure there is no visible damage to any of the equipment.2. Mount the SERVOSTAR CD SynqNet to the back panel. Refer to the appropriate Outline Dimensions in this manual. Metal-to-metal contact is important for electrical noise control!3. Wire the SERVOSTAR CD SYNQNET according to the appropriate System Wiring Diagram.4. Connect solid earth ground to frames of all components.5. Wire the main power (115/230 VAC). Wire the 24 volt supply to the connector at the top of the drive.6. Wire user I/O at connector C3: At a minimum, 24 volts must be brought in to the enable circuit. Be certain that connector C3 is inserted correctly.7. Wire the motor and feedback. Refer to the Feedback Wiring Diagram for additional information. 8. Wire Regen Resistor kit, if applicable. 9.Verify that all wiring is correct.10. Verify that earth grounds are connected. 11. Verify all electrical and safety codes are met.12. Connect the SynqNet cable between the Motion Controller and connector C4.3.2 GroundingSystem grounding is essential for proper performance of the drive system. A ground bus bar may be used as a single point ground for the system. Safety grounding should be provided to all pieces of the system from a “star point." In addition to the safety grounding, a high frequency ground must be provided that connects the back panel to the enclosure and, ultimately, to earth ground. The objective is to provide an extremely low impedance path between the filters, drives, power supplies, and earth ground. This high frequency ground is accomplished with the use of a flat braid or copper bus bar. It is important not to rely on a standard wire for the high frequency ground. In general, a wire has an inductance of 8nH-per-inch, regardless of diameter. At higher frequencies, this unwanted inductance between grounds equates to limited filter performance. When connecting high frequency grounds, use the shortest braid possible.3.3 BondingThe proper bonding of shielded cables is imperative for minimizing noise emissions and increasing immunity levels of the drive system. Its effect is to reduce the impedance between the cable shield and the back panel. Kollmorgen recommends that all shielded cables be bonded to the back panel.Power input wiring does not require shielding (screening) if the power is fed to the cabinet (enclosure) via metallized conduit. If metallized conduit is not implemented into the system, shielded cable is required on the power input wires and proper bonding technologies should be implemented.The motor and feedback cables should have the shield exposed as close to the drive as possible. This exposed shield is bonded to the back panel using either non-insulated metallic cable clamps or cable bonding clamps offered by Phoenix Contact (and others).3.4 CEFilteringThe SERVOSTAR drive system (drive, motor) has been designed to meet the CE standards. It is imperative for you to apply proper bonding and grounding techniques, described earlier in this section, when incorporating EMC noise filtering components for the purpose of meeting this standard.Noise currents often occur in two types. The first is conducted emissions that are passed through ground loops. The quality of the system grounding scheme inversely determines the noise amplitudes in the lines. These conducted emissions are of a common-mode nature from line to neutral (or ground). The second is radiated high-frequency emissions usually capacitively coupled from line-to-line and are differential in nature.To properly mount the filters, the enclosure should have an unpainted metallic surface. This allows for more surface area to be in contact with the filter housing and provides a lower impedance path between this housing and the back plane. The back panel, in turn, has a high frequency ground strap connection to the enclosure frame or earth ground.3.4.1 InputPowerThe Kollmorgen SERVOSTAR CD SynqNet electronic system components require EMI filtering in the input power leads to meet the conducted emission requirements for the industrial environment. This filtering blocks conducted-type emissions from exiting onto the power lines and provides a barrier for EMI on the power lines.Care must be taken to adequately size the system. The type of filter is based on the voltage and current rating of the system and whether the incoming line is single or three-phase. One input line filter is used for multi-axis control applications. These filters are mounted as close to the incoming power as possible so noise is not capacitively coupled into other signal leads and cables. Similarly, care should be taken when routing wires from the load side of the filter to the BUS Module. These lines may be noisy and should be separated from other sensitive cabling to avoid unwanted coupling of noise. Several manufacturers of these filters are listed below. They should be able to recommend the best filter design for most typical motor control applications. Kollmorgen has also provided specific filters recommendations that adequately attenuate the conducted noise to levels well below the CE limits. The implementation of the EMI filter should be done in accordance with the following guidelines: • Filter should be mounted on the same panel as the drive.• Filter should be mounted as close as possible to incoming cabinet power.• When mounting the filter to the panel, remove any paint or material covering. Use an unpainted metallic back panel, if possible.• Filters are provided with an earth connection. All ground connections are tied to ground.• Filters can produce high leakage currents. Filters must be earthed before connecting the supply!• Filters should not be touched for a period of 10 seconds after removing the supply.The following table shows recommended line filters:Drive Model # Recommended EMI Line FilterKollmorgen Part #Lx03 Filter Concepts SF7Schaffner FN258-7/07 n/aA-96776-001Lx06 Filter Concepts SF15Schaffner FN258-16/07 N/aA-96776-002Lx10 SchaffnerFN258-16/07A-96776-002 Lx20The filters called out in the table on the previous page are used on a one-to-one corresponedence withthe drive. If drives are paralled off one filter, it needs to be sized.Drives can be ganged off one EMI filter as shown in the Filter and Bonding Diagrams.3.4.2 Motor Line FilteringMotor filtering may not be necessary for CE compliance of SERVOSTAR systems. However, this additional filtering increasesthe reliability of the system. Poor non-metallic enclosure surfaces and lengthy, unbonded (or unshielded) motor cables thatcouple noise line-to-line (differential) are just some of the factors that lead to the necessity of motor lead filtering.Motor lead noise may be either common-mode or differential. The common-mode conducted currents occur between eachmotor lead and ground (line-to-neutral). Differential radiated currents exist from one motor lead to another (line-to-line). Thefiltering of the lines feeding the motor provide additional attenuation of noise currents that enter surrounding cables andequipment I/O ports in close proximity.Differential mode currents commonly occur with lengthy motor cables. As the cable length increases, so does its capacitanceand its ability to couple noise from line-to-line. While every final system is different and every application of the product causesa slightly different emission profile, it may become necessary to use differential mode chokes to provide additional noiseattenuation to minimize the radiated emissions. The use of a ferrite core (placed at the drive end) on each motor lead (shown inthe diagram below), attenuates differential mode noise and lower frequency (30-60 MHz) broadband emissions to withinspecifications. Kollmorgen recommends a Fair-Rite P/N 2643665702 (or equivalent) ferrite core. You should wrap each motorlead through the core several times, as shown in the next figure.Never wrap a ground lead through a core.To MotorCommon ModeFilteringDifferential Mode FilteringCommon mode currents occur from noise spikes created by the PWM switching frequency of the drive. The use of a ferrite or iron-powder core toroid, as shown in the figure above, places common mode impedance in the line between the motor and the drive. The use of a common mode choke on the motor leads may increase signal integrity of encoder outputs and associated I/O signals. The following is a list of toroidal and ferrite cores used to make common mode chokes:3.4.3 I/O FilteringI/O filtering, while not a necessity for CE compliance, may be desired (depending on system installation, application, andintegration with other equipment). It may be necessary to place ferrite cores on I/O lines to avoid unwanted signals entering and disturbing the drive system or other associated equipment. The following chart lists some ferrite parts that may be used for I/O filtering and noise attenuation. These parts are ideal for providing an in-line common mode impedance for I/O linesThe following figure illustrates the use of multiple turns through a clamp-on core. The more turns created, the more impedance is added to the line. Avoid putting the shield in a clamp-on core. It is undesirable to place an impedance inline with the shield. The use of ribbon cable may be common in many cabinets. Some ferrite clamps are designed just for ribbon cable use.4. WiringDiagram4.1 Wiring4.1.1 300V Model: 3A, 6A, 10AY4.1.2600V Model and 20A 300V ModelH I G H V O L T A G E M A Y E X I S T U P T O 5 M I N U T E SA F T E R I N P U T V O L T A G E I S R E M O V E D .Y R E F E R I N S T A L L A T I O N A N D T R O U B L E S H O O T I N GT O Q U A L I F I E D P E R S O N N E L O N L Y .(S4.2 ConnectorPin-Out4.2.1 C1:RS232Pin no Function Description Comments1 N.C.2 RxD Receive3 TxD Transmit4 N.C.5 DGND Ground Must be connected in order to equalizepotential between controller and drive.6 N.C.7 N.C.8 N.C.9 N.C.4.2.2 C2:FeedbackPin Resolver Encoder SineEncoder1 SineHigh A A2 SineLow /A /A3 Shield Shield Shield4 CosineHigh B B5 CosineLow /B /B6 Shield Shield Shield7 E5V Return E5V Return8 E5V Return E5V Return9 H1B EnDat/Data10 H2B EnDat/Clock11 H3B12 Shield Shield Shield13 Thermostat High Thermostat High Thermostat High14 Shield Shield Shield15 Ref. High Out Index Index16 Ref. Low Out /Index /Index17 Shield Shield Shield18 E5V Supply E5V Supply19 E5V Supply E5V Supply20 E5V Supply E5V Supply21 Shield Shield Shield22 H1A EnDatData23 H2A EnDatClock24 H3A25 Thermostat Low Thermostat Low Thermostat Low4.2.3 C3: Front-Panel I/OPin no Function Description Comments1 Shield Shield2 Analogin+3 Analogin-Differential analog input ±10Vdc4 AGND Analogground5 Fault relay Fault relay dry contact6 Fault relay Fault relay dry contact 1 AmpNo polarity7 CREF Common rail for Digital inputsand outputs8 Enable RemoteEnable Wired to DSP, sampled at 62.5µsec 9 CW Positivelimit 5-24V; Wired to SynqNet FPGA 10 CCW Negativelimit 5-24V; Wired to SynqNet FPGA 11 HOME Homeinput 5-24V; Wired to SynqNet FPGA12 Brake+ Brake relay positive terminal13 Brake- Brake relay negative terminal Dry-contact for brake control 1 Amp4.2.4 C4: SynqNet INPin no RJ45 In1 TD2+2 TVDD3 TD2-4 RD2+5 TVDD6 RD2-7 NC8 DGND4.2.5 C5: SynqNet OUTPin no RJ45 Out1 TD1+2 TVDD3 TD1-4 RD1+5 TVDD6 RD1-7 NC8 DGND4.2.6 ExtendedI/OPin no Function Description Comments1 Analogin+14 Analogin-Differential analog input ±10Vdc2 AGND Analogground15 IN4 Digital Input #4 5V – 24V, Bi- polarWired to SynqNet FPGA3 IN5 Digital Input #5 5V – 24V, Bi-polarWired to SynqNet FPGA16 IN6 Digital Input #6 5V – 24V, Bi- polarWired to SynqNet FPGA4 IN7 Digital Input #7 5V – 24V, Bi- polarWired to SynqNet FPGA17 Common IN4 to IN7 Common IN4 to IN7 Common for Inputs 4 to 75 IN8 Digital Input #8 5V – 24V, Bi- polarWired to SynqNet FPGA18 IN9 Digital Input #9 5V – 24V, Bi- polarWired to SynqNet FPGA6 IN10 Digital Input #10 5V – 24V, Bi- polarWired to SynqNet FPGA19 IN11 Digital Input #11 5V – 24V, Bi- polarWired to SynqNet FPGA7 Common IN8 to IN11 Common IN8 to IN11 Common for Inputs 8 to 1120 OUT2 Digital output #2 Open collectorWired to SynqNet FPGA8 OUT3 Digital output #3 Open collectorWired to SynqNet FPGA21 Out common 2 to 3 Out common 2 to 3 Common user ground for OUT2 and OUT39 OUT4 Digital output #4 Open collectorWired to SynqNet FPGA22 OUT5 Digital output #5 Open collectorWired to SynqNet FPGA10 Out common 4 to 5 Out common 4 to 5 Common user ground for OUT4 and OUT523 Diff_IO_1+ Differential RS422 I/O (high) 11 Diff_IO_1- Differential RS422 I/O (low) Direction (In or Out) programmable through SynqNet .24 Diff_IO_2+ Differential RS422 I/O (high) 12 Diff_IO_2- Differential RS422 I/O (low) Direction (In or Out) programmable through SynqNet .25 DIV_BY_N Fast output, used for Divide-by-Nsignal Open collector, with internal pull-up that may be dis-assembled.13 DGND Digital Ground The DGND is the common for the outputcollector of this output. The input stage DGNDat the user end has to be connected to thisDGND.4.2.7 C8: Secondary EncoderPin Function 1 A Input + (High) 2 A Input - (Low)3 DC Common4 B Input + (High)5 B Input - (Low)6 Shield Connection7 E5V Supply8 Index +9 Index -4.3Filtering and Bonding DiagramNote 5Bonding of motor cables. The use of armored (screened) motorcables bonded as close to the drive as possible are essential for CE compliance and stronglyrecommended to better the overall performance and reliability of the system.Note 6for CE compliance. As with the motor cables, the feedback cables should be bonded to the back panel. This bonding does twothings. First, it cuts down radiation from the drive, which may be in the form of high frequency energy resulting from internal processor clocks. Second, it providesimmunity for the drive. Since the feedback device is located internal to the motor, it is going to pick up some noise currents and transmit bonding directs the currents from the shield of the feedback cable to back panel ground. This reduces the amount of noise entering the drive.Note 7AC power lines that must be routed past other lines (such as motor cables or I/O lines) should cross at a 90º angle. This minimizes the coupling effect. Additionally, the power lines should be routed as close to the back panel aspossible. Any noise currents on the lines are capacitively coupled to the ground plane and not to other lines.Note 8Control (I/O) signals should be kept separate from all power and motor cables, if possible. Keep control wiring as short as possible and use screened wire. Bonding is also recommended but not required for CE compliance. A separation distance of 20 cm. (8 in.) is sufficient in most cases. Where control cables must cross power cables, they should cross at a 90ºangle.Note 9Motor cables and feedback cables exiting the cabinet going to the motor should be separated as much as possible. Ideally, the use of separate conduits provides good isolation, which can limit coupling of noise from motor to feedback cables.Note 1Input power enters enclosure from metal conduit. Thiseliminates the need for shielded input power cable.Note 2Single point ground. A bus bar (ground bus) is an excellent way to achieve this.Note 3High frequency ground between non-conductive back panel and enclosure. Also, a high frequency ground is required between the enclosure and earth ground.Note 4EMI filter grounding. Safetygrounds must be provided on the filters. Hazard potentials exist even when the power is off because of the capacitors internal to the filters.。

科尔摩根AKD2G伺服驱动器选型指南说明书

科尔摩根AKD2G伺服驱动器选型指南说明书

AKD 2G 伺服驱动器AKD 2G 是AKD伺服驱动器。

除了功率密度更大外,AKD2G 功能,因此更加简单易用。

AKD2G Servo on a Chip 计算引擎,该引擎可同时对2个轴和最多28个I/O进行控制。

在开发的过程中,我们为AKD2G A K D 2G 伺服驱动器A K D2 G伺服驱动器AKD 2G伺服驱动器AKD2G具有无可比拟的连接性基础型号科尔摩根AKD2G的基础型号拥有上文所述的所有性能,并且经优化可通过科尔摩根的Smart Feedback或HIPERFACE DSL与单连接器电机连接。

该型号还可提供16个I/O、160x128像素图形显示器、移动式SD卡和各种运动总线选件。

扩展I/O型号扩展I/O型号基于基础型号进行了I/O扩展。

该型号配备有针对传统反馈或双环运行的15针D-sub;另外还配备额外的12个I/O,总计28个I/O。

这些型号的外形尺寸与基础型号相同。

SafeMotion监视器 (SMM)扩展I/O型号可选配SMM。

SMM可将某些I/O转换为“安全”I/O,并使驱动器能够与FsoE主机安全连接。

同样,这些型号的外形尺寸也与基础型号相同。

双轴AKD2G 480 Vac(图示带选配的反馈和I/O扩展)双轴AKD2G 240 Vac(图示带选配的SMM、反馈和I/O扩展)Safety overA K D 2G 驱动器的连接器布局图AKD2G 驱动器的连接器布局图全彩 (RGB) 背光器,160 x 128像素可选运动总线:»EtherCAT»FSoE »CANopen 接地同时还安装了屏蔽装置交流电源(输入和输出):120/240 Vac, 240/480 Vac可选的反馈端口(15针 “D-sub”):»双环反馈 »传统反馈• 旋转变压器• A-QUAD-B • EnDAT • BiSS • sin/cos 等»EEO (编码器仿真)模拟输入模拟输出数字输入(灌电流),其中2路为高速型数字输出(拉电流)继电器输出,24V @ 2A 双通道STOI/O 扩展的驱动器提供: (I/O):I/O 扩展:前视图底视图针对单混合电缆接口进行了优化: »电机功率 »制动器 »反馈移动式存储器(标准SD 卡)第二电机» » »24Vdc 逻辑电源输入*SMM = 可选的SafeMotion 监视器**I/O 数表示标准I/O 和扩展I/O 的总和安全地址设置(包含在SMM 选项中)安全选件 »安全制动器 »安全反馈带SMM*和I/O 扩展的驱动器提供:模拟输入模拟输出数字输入(灌电流),其中2路为高速型“开路”数字输出,作为无电势的输出对(灌电流/拉电流5V-24V ),高速型数字输出(拉电流)2 x RS485式可选输入或输出,5V 1 x 继电器输出,24V @ 2A 1 x 单通道或双通道STO2 x 模拟输入2 x 模拟输出8 x 数字输入(灌电流),其中2路为高速型4 x “安全”数字输入(灌电流,)可配置为“常规”输入或2 x “开路”数字输出(灌电流/拉电流5V-24V ),高速型2 x 数字输出(拉电流)4 x “安全”输出(拉电流)2 x RS485式可选输入或输出,5V ,高速型1 x 继电器输出,24V @ 2A 1 x 单通道或双通道STO型号名称A* 当前尚不提供12 A 的双轴驱动器。

SIMOTICS S-series服机器人电机说明书

SIMOTICS S-series服机器人电机说明书

SIMOTICS servomotorsAn attractive alternative to Rockwell AutomationMP-series low-inertia servomotorsSIMOTICS S-1FK7 and S-1FT7 servomotors are an attractive alternative to Rockwell’sMP-series low-inertia servomotors. In the majority of cases, the bolt hole circlediameter (M) dimension is the same.In addition, SIMOTICS servomotors offer many additional features and benefits to themachine builder and the end-user.n SIMOTICS S-series servomotors include decoupled encoder from output shaftCustomer benefits include:n Removes the requirement to derate motor torque by 10% (i.e. with absolute encoder)n Insulates the encoder from vibration emanating from loadn Longer encoder lifetime due to reduced thermal and vibration stressn SIMOTICS S-series servomotors include a field replaceable encoderCustomer benefits include:n Less machine downtime — no need to send the motor to the factory for repairn No need to remove the entire motor from the machinen Replace the existing encoder and the machine restored to production in minutesn Less spare parts inventory is needed/simotics-sRockwell MPL to Siemens SIMOTICSA servomotor comparison guideThe following table documents 400V-class Rockwell MPL servomotor models, each followed by a SIMOTICS counterpart of similar torque and speed performance capacity. Use the table as a guideline for applications in which Rockwell MPL servomotors are currently being used or considered. Use SIZER for Siemens SINAMICS drives per application for thorough evaluation of torque vs. speed characteristics, remainder of servomotor options, servo drive system and pre-fabricated MOTION-CONNECT cables.1FK7 and 1FT7 high-dynamic servomotors are especially competitive substitutes for Rockwell MPL (i.e. low-inertia) servomotors due to their similar design of low rotor moment of inertia.A servomotor with low moment of inertia is optimally designed for rapid dynamic response. The dynamic response of 1FK7 and 1FT7 Compact (i.e. medium-inertia) servomotors may be less than with MPL servomotors.21) MPL motor-rated torque = rated power * 9550 / rated speed2) MPL motor catalog description is frame size / SIMOTICS motor catalog description is shaft height3) Diameter of circle intersecting centers of bolt holes (M)4) High-dynamic SIMOTICS servomotor3Servomotor torque-speed curve characteristicsThe plot is characterized by two regions. The first is the continuous operating range, bounded by the blue curves in the figure. Within this region, the servomotor can operate at 100% duty cycle. A higher temperature rise tolerance increases the bound of the continuous operating range, as illustrated by the 60K and 100K curves. The typical catalog ratings for servomotors are documented per 100K curve [i.e. S1(100K)].The second region is the temporarily-permissible peak range, bounded by the red curve in the figure. Within this range, the motor can be operated at lower duty cycles. If the motor is operated in this region at a duty cycle higher than permissible, the motor will overheat, or motor circuitry can be damaged. SIZER for Siemens SINAMICS drives is the optimal tool to properly size a motor and drive per application so that motor capacity is effectively utilized.Published bySiemens Industry, Inc.5300 Triangle ParkwayNorcross, GA 30092(770) 871-3800/motioncontrol Order No. DRFL-MTR01-0817Printed in USA© 2017 Siemens Industry, Inc.This document contains only general descriptions or performance features, whichdo not always apply in the manner described in concrete application situations ormay change as the products undergo further development. Performance featuresare valid only if they are formally agreed upon when the contract is closed.Siemens is a registered trademark of Siemens AG. Product names mentioned maybe trademarks or registered trademarks of their respective companies.Specifications are subject to change without notice.。

电动机反转启动器Eaton Moeller系列MSC-R说明书

电动机反转启动器Eaton Moeller系列MSC-R说明书

Eaton 103001Eaton Moeller® series MSC-R Reversing starter, 380 V 400 V 415V: 0.37, 0.55 kW, Ir= 1 - 1.6 A, 24 V DC, DC voltage MSC-R-1,6-M7(24VDC)/BBAEspecificaciones generalesEaton Moeller® series MSC-R Reversingstarter1030014015081028405200 mm153 mm90 mm 1.67 kgUL 508 (on request)CSA File No.: 012528CSA-C22.2 No. 14-10IEC/EN 60947-4-1ULCECSA-C22.2 No. 14 (on request) UL60947-4-1ACSA Class No.: 3211-04UL Category Control No.: NKJH UL File No.: E123500CSA MSC-R-1,6-M7(24VDC)/BBAProduct Name Catalog NumberEANProduct Length/Depth Product Height Product Width Product Weight Certifications Model CodeShort-circuit releaseTemperature compensated overload protection CLASS 10 AScrew terminalsNo2IP20NEMA OtherReversing starterDIN rail1 A1.6 AIII36000 V ACAlso motors with efficiency class IE3 Starter with Bi-Metal releaseDCFitted with: Functions ClassConnectionConnection to SmartWire-DTCoordination typeDegree of protectionModelMounting methodNumber of auxiliary contacts (normally closed contacts) Number of auxiliary contacts (normally open contacts) Overload release current setting - minOverload release current setting - maxOvervoltage categoryPollution degreeRated impulse withstand voltage (Uimp)Suitable forTypeVoltage typeMax. 2000 m -25 °C55 °C 1.5 A1.6 A0.25 kW0.55 kW230 - 415 V AC15 A, 600 V AC, (UL/CSA)1 A, 250 V DC, (UL/CSA)P300, DC operated (UL/CSA) A600, AC operated (UL/CSA)50000 A 24.8 A 3 W 0 V 0 V 0 V 0 V 24 V 24 VAltitudeAmbient operating temperature - min Ambient operating temperature - max Rated operational current (Ie)Rated operational current (Ie) at AC-3, 380 V, 400 V, 415 V Rated operational power at AC-3, 220/230 V, 50 HzRated operational power at AC-3, 380/400 V, 50 HzRated operational voltageSwitching capacity (auxiliary contacts, general use) Switching capacity (auxiliary contacts, pilot duty)Rated conditional short-circuit current (Iq), type 2, 380 V, 400 V, 415 VShort-circuit release (Irm) - max Power consumption (sealing) at DCRated control supply voltage (Us) at AC, 50 Hz - min Rated control supply voltage (Us) at AC, 50 Hz - max Rated control supply voltage (Us) at AC, 60 Hz - min Rated control supply voltage (Us) at AC, 60 Hz - max Rated control supply voltage (Us) at DC - minRated control supply voltage (Us) at DC - max5.7 W0 W1.9 W1.6 A2.6 WMeets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.DA-DC-00004910.pdfDA-DC-00004878.pdfeaton-manual-motor-starters-busbar-msc-r-reversing-starter-dimensions-002.epsDA-CE-ETN.MSC-R-1,6-M7(24VDC)_BBAeaton-manual-motor-starters-starter-msc-r-reversing-starter-wiring-diagram.epsSimple, flexible and safe! Distribution system for motor-starter combinationsIL03402015ZIL03402006ZDA-CD-msc_r_bba_bg1DA-CS-msc_r_bba_bg1Equipment heat dissipation, current-dependent PvidHeat dissipation capacity PdissHeat dissipation per pole, current-dependent PvidRated operational current for specified heat dissipation (In) Static heat dissipation, non-current-dependent Pvs10.2.2 Corrosion resistance10.2.3.1 Verification of thermal stability of enclosures10.2.3.2 Verification of resistance of insulating materials to normal heat10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects10.2.4 Resistance to ultra-violet (UV) radiation10.2.5 Lifting10.2.6 Mechanical impact10.2.7 Inscriptions10.3 Degree of protection of assemblies10.4 Clearances and creepage distances10.5 Protection against electric shock10.6 Incorporation of switching devices and components Declarations of conformity DibujoseCAD modelEsquemas eléctricos FolletosInstrucciones de montaje mCAD modelEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. All Rights Reserved. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmediaDoes not apply, since the entire switchgear needs to be evaluated.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.Is the panel builder's responsibility. The specifications for the switchgear must be observed.Is the panel builder's responsibility. The specifications for the switchgear must be observed.The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.10.7 Internal electrical circuits and connections 10.8 Connections for external conductors 10.9.2 Power-frequency electric strength 10.9.3 Impulse withstand voltage 10.9.4 Testing of enclosures made of insulating material 10.10 Temperature rise10.11 Short-circuit rating10.12 Electromagnetic compatibility10.13 Mechanical function。

科尔摩根KBM(S)系列无刷直线电机安装指南说明书

科尔摩根KBM(S)系列无刷直线电机安装指南说明书

MOUNTINGANDINSTALLATIONGUIDELINES34Important Note:The recommendations included in this Kollmorgen Selection Guide are intended to serve as general installation guidelines, and are for reference purposes only. Kollmorgen assumes no responsibility for incorrect implementation of these techniques, which remain the sole responsibility of the user.KBM(S) series motors, as well as any other Kollmorgen frameless brushless motors that are supplied as 2-piece rotor/stator kits, should be installed by the user according to the general guidelines below.User Interface ResponsibilitiesTo assure proper performance and reliability of the motor when installed in the system, the user is responsible for designing the mounting interface in the following manner:BearingsThe user-supplied bearing system in the motor application must exhibit sufficient stiffness to maintain a rigid, uniform clearance gap between the rotor and the stator under all operating conditions. Concentricity requirements noted on each model-specific Kollmorgen outline drawing should be considered by the user when sizing and selecting bearings for appropriate radial and preload forces to achieve desired motor running gap clearance and total runout. Bearings with the lowest possible friction and high quality lubricant should be chosen to minimize overall system friction, which allows optimal motor operation.Stator Mounting MaterialsA metallic housing/clamp structure is suggested to rigidly mount the stator to assure best conductive heatsinking path and proper structural integrity. Aluminum alloys are preferred due to their superior thermal conductivity and strength-to-weight ratio, although stainless steel alloys (300 series or equivalent) are an acceptable alternative for applications that are less thermally critical. Carbon steel, cast iron, 400 series stainless alloys and other magnetic flux-conducting ferrous metals are the least desirable choices for stator mounting, but can certainly be used in some cases if proper design choices are considered. Consult a Kollmorgen Engineerfor assistance if such metals must be used. Plastics or other similar thermally isolating materials are not recommended, since they adversely affect the heatsinking capacity of the system, making it necessary to significantly de-rate the motor’s performance.Rotor Mounting MaterialsThe magnetized rotor may be mounted to any metallic shaft of the user’s choice. Carbon steel and stainless steel are the most commonly used shaft materials, although aluminum alloys are occasionally used if properly designed for the intended torqueand thermal operating range. The user’s intended method of attaching the rotor to the shaft may influence the optimum material and tolerance choices for the shaft. The user’s shaft does not need to carry flux or function as a portion of the magnetic circuit to achieve rated performance when using a Kollmorgen brushless motor.GroundingWhen mounted in the application, the laminated stack (or bare metal outer sleeve) of the stator must be at the same electrical ground potential as the system chassis and the drive amplifier chassis. If this common ground path is not ensured, the application may exhibit electrical noise and also create an electrical shock hazard. The risk of shock is particularly prevalent when using high pole-count motors with large capacitance characteristics. Typically, if the stator is mounted using electrically conductive metallic components, then a robust ground path between stator stack and machine chassis is inherently achieved. Kollmorgen suggests performing a continuity check to confirm proper ground path before enabling the motor system. In some applications, depending on mounting configuration and materials chosen by the user, a separate conductive ground strap may be required. In such cases, the user is responsible for installation of the ground path and electrical verification.Mounting and Installation Guidelinesw w w.k o l l m o r g e n.c o mM O U N T I N G A N D I N S T A L L A T I O N G U I D E L I N E S35WiringKBM(S) series motors are supplied with UL-compliant unterminated flying leadwires. The user is responsible for proper leadwire routing and connection per the diagrams shown on Kollmorgen drawings. Avoid routing wires across sharp corners, pinch points or edges that may pierce the insulation. Clamp or otherwise secure wire bundle in high vibration applications and avoid wirecontact with moving/vibrating surfaces that may abrade the insulation. Provide strain relief for all wire bundles and allow room for a generous bend radius. User assumes responsibility for connector installation, crimping, soldering, shielding, sleeving or any other wire bundling or electrical interface enhancement beyond the configuration shown on the Kollmorgen outline drawing.Stator MountingKollmorgen suggests the following options for installation of the motor stator depending on torque, vibration and thermal characteristics of the application, as well as cost, ease of assembly and serviceability desired by the user.Adhesive BondIn most cases, motors in the general peak torque range up to 750 N-m may have the stator bonded in place using a structural epoxy, such as Hysol ® EA934NA, 3M ™ Scotchweld ™ 2214 or other similar adhesives. Bonding is a preferred installation technique for the KBM(S)-10XXX through KBM(S)-57XXX size stators, although shrink fitting as described in the next section is also an acceptable option. Bonding can certainly be used to secure stators larger than the aforementioned size range if desired, butrequires additional design and process considerations. To successfully utilize adhesive bonding, the user’s stator enclosure should be designed as a cylindrical cup, as shown in the illustration below, with a small shoulder for axial positioning at one end and open at the opposite end. The shoulder serves as a stop point for the stator to bank against when inserted from the open end, and should generally clear the maximum outer diameter of the winding end turn by no less than 1 mm at all circumferential points. A small internal chamfer at the open end of the housing cup simplifies stator insertion. If using a thick structural epoxy, inner diameter of the housing cup should be approximately 0.051 mm - 0.102 mm larger than the maximum outer diameter of the stator. However, the user should consult the adhesive manufacturer for proper bond line thickness, application process and curing instructions. Small grooves shown in the inner diameter of the housing in the illustration below are intended to serve as adhesive reservoirs forthick structural epoxies, but are considered optional featuresper the user’s discretion. If a retaining compound, such asLoctite ® 640™ or other similar adhesive, is preferred instead of a structural epoxy, a much tighter clearance between housing inner diameter and stator outer diameter must be controlled to maintain appropriate bond line thickness. Refer to adhesive manufacturer’s guidelines for recommendations. User assumes responsibility for selecting proper adhesive and for designing housing dimensions per expected thermal growth rate atintended temperature extremes of application. Adhesive curetemperatures should not exceed 155°C to avoid damaging themotor stator. Stator and housing surfaces should be cleanedthoroughly prior to bonding to ensure good adhesion.INSERT STATOR ILLUSTRATION II.A CONCEPTUSER'S STATOR HOUSING CHAMFER 1mm MIN.0.1020.051mmAdhesive Bond IllustrationMOUNTINGANDINSTALLATIONGUIDELINES36Mounting and Installation GuidelinesShrink FitThe user’s housing may be designed with an inner diameter that is slightly smaller than the outer diameter of the motor stator, providing an interference fit when installed. Pressing the stator into the housing at normal room temperature is not recommended because ofits laminated construction. Instead, heating the housing to achieve enough thermal growth to freely slide the stator inside is a more common technique that achieves the desired interference fit when the housing cools. Aluminum or steel housings may be used effectively to shrink fit stators across a broad peak torque range, generally from <1 N-m up to thousands of N-m. It is generally not necessary to shrink fit small diameter motors where bonding is a simpler and equally effective option, although it is acceptable to do so at the user’s discretion. For KBM(S) series motors, shrink fit is the preferred installation technique for sizes KBM(S)-60XXX throughKBM(S)-118XXX stators. Steel has a lower coefficient of thermalexpansion than aluminum, so a steel housing must be heated to amuch higher temperature than a comparable aluminum housingto achieve the desired diameter growth and stator installationclearance. In contrast, because aluminum grows much morerapidly than steel at elevated temperatures, the user should takespecial design precautions regarding size and tolerances to assurethat an aluminum housing maintains the required interference fit atthe application’s extreme high temperature. It is important to designfor sufficient dimensional interference fit, which can be influencedgreatly by many application variables and design choices, tosafely reach the motor’s maximum torque while also avoidingcrush damage to the stator. The user assumes all responsibilityfor housing design details, material selection, fit calculations andtolerance analysis for the intended application.Axial ClampingFor low torque applications, or for applications where the stator may need to be repeatedly installed and removed from the system, axially clamping may be an acceptable option. Kollmorgen does not generally recommend this technique for high shock/vibration applications, extreme temperature applications or for peak torques greater than 50 N-m without special design considerations. Thestator enclosure shown in the illustration below is very similar tothe bonding technique example shown in the first section, withapproximately 0.051 mm – 0.102 mm slip fit clearance betweenthe inner diameter of the housing and the outer diameter of thestator. When inserted, the stator banks against a shoulder insidethe housing bore that controls axial position and provides a fixedaxial clamping surface. The shoulder should clear the maximumouter diameter of the winding end turn by no less than 1 mm atall circumferential points. A separate clamp ring with the samecircumferential clearance is placed over the opposite end of thestator and bolted (typically 4 – 12 fasteners, equally spaced) to thehousing enclosure.INSERT STATORUSER'S STATOR HOUSING CHAMFER1mm MIN.USER'S STATOR HOUSINGILLUSTRATION II.C CONCEPTINSERT STATOR1mm MIN.0.1020.051CLEARANCEmmGAP REQUIRED AT ALLTOLERANCE CONDITIONSK O L L M O R G E N Shrink Fit IllustrationAxial Clamping IllustrationM O U N T I N G A N D I N S T A L L A T I O N G U I D E L I N E S37The user should design the enclosure components to ensure that, with the stator installed, an axial clearance gap exists between the clamp ring and the end of housing at all tolerance conditions. Otherwise, the clamp ring could contact the housing before the fasteners are fully tightened, resulting in insufficient axial clamping force against the stator. If desired, the small radial space between the stator outer diameter and the housing inner diameter may be filled with a thermal compound for more efficient conduction to the heatsink. However, use caution to avoid contaminating the axial clamping surfaces with grease that may reduce clamping force. If the user wishes to evaluate this axial clamping technique for motors with higher peak torque ratings, it may be necessary to increase the total surface area of the clamping regions and increase the number of clamping fasteners.BoltingSizes KBM(S)-163XXX through KBM(S)-260XXX are supplied with the stator installed in an aluminum sleeve with flange and through-holes for bolted mounting. User interfaces for these large motors should be designed per the pilot diameters and hole patterns shown on the Kollmorgen model-specific outline drawings. Several of the smaller sizes within this motor family, such as KBM(S)-10XXX through KBM(S)-45XXX range, are also supplied with the stator installed inside an aluminum sleeve, but do not include a stepped flange and are not intended to be bolted in place. For the latter range of sizes, bonding, shrinking or clamping techniques described in previous sections are appropriate.Rotor Mounting to ShaftKollmorgen’s KBM(S) series and other frameless brushless motors utilize high-performance rare earth magnets. Use extreme caution when handling or transporting to avoid injury and product damage. The attractive forces between magnetized rotors and nearby metallic objects can be extremely powerful. Improper handling can result in sudden unexpected impacts. The strong magnetic field can also damage nearby computers, display screens and memory storage devices. Keep the rotor in its shipping container or wrapped protectively until ready to install. This practice will help avoid accidents and prevent contamination such as metallic chips or debris that tend to cling to the magnets.Axial Alignment ControlKollmorgen’s model-specific outline drawings note axial alignment that must be maintained between rotor and stator whenmounted to ensure proper motor performance. The user is responsible for designing the rotor shaft, stator enclosure and bearing system to achieve the specified mounting alignment. Machined shoulders on the shaft or grooves for removable retaining rings are common ways of controlling rotor installation position. Maximum diameter of retaining rings or shaft shoulders should be kept below the rotor diameter where magnets are bonded to the steel hub.BondingGenerally, for applications where peak torque does not exceed 750 N-m, rotors can be bonded to carbon steel or stainless steel shafts. Retaining compounds, such as Loctite 640 or other similar adhesives, usually require smooth continuous interface diameters and tight fit tolerances. Structural epoxies generally require slightly larger fit clearance to allow a thicker bond line. Epoxies often benefit from grooves in the shaft/rotor interface that function as adhesive reservoirs and may be enhanced by textured machined surfaces via knurling or grit blasting. Always clean the bond joint surfaces thoroughly to ensure good adhesion. Consult adhesive manufacturer for proper bond line thickness, fit tolerances, process details and curing guidelines. To avoid partial demagnetization of the rotor, do not cure rotor/shaft bond joints at temperatures > 180°F unless rotor is nested inside the matching stator or rotor is completely surrounded by a ferrous metal keeper fixture. Contact a Kollmorgen Engineer if more information is required on this topic. Before bonding rotors to aluminum shafts, consult with adhesive manufacturer for assistance. A highly flexible adhesive with broad thermal properties may be required.K O L L M O R G E NM O U N T I N G A N D I N S T A L LA T I O N G U I D E L I N E S38Mounting and Installation GuidelinesAxial ClampingIf the user’s shaft is designed with a machined shoulder that the rotor can rigidly bank against, the rotor may be axially clamped in place using a locknut. This technique allows the rotor to be installed and removed from the shaft repeatedly, but requires a portion of the shaft to be threaded. Rotors retained by locknuts may be generally suitable for applications up to 400 N-m peak torque, although this estimate may vary greatly depending upon size and type of nut used.BoltingMotors ranging from size KBM(S)-43XXX and larger are provided with hole patterns in the rotor hub to facilitate bolted mounting. User shaft interface should be designed per the diameter, length, axial position and hole pattern noted on the Kollmorgen model-specific outline drawing.Installing Rotor Inside StatorAs previously described, magnetic forces can be extremely powerful and surprise the user when handling or installing the rotor. Extreme caution is required when placing the rotor inside the stator.Secure the StatorConfirm that the stator is securely mounted per the guidelines previously described before attempting to install the rotor. Kollmorgen recommends taping or tying the wiring bundle aside in a safe position to avoid accidental damage.Protect the Running Gap SurfacesIf left unprotected, the outer surface of the rotor may stick or “pole” to the nearest point on the inner bore of the stator due to magnetic attractive forces as the user attempts to install it. The resulting friction as the rotor slides along the inside of the stator can potentially damage the rotor band, magnets, coatings or stator bore surfaces. T o prevent damage and simplify the rotor installation process, Kollmorgen recommends first installing a thin layer of shim material, such as Mylar ® film, in the stator’s inner bore. See photos below for examples. Mylar (DuPont ® Corp. trade name) is a commonly available polyester film, often used as electrical insulation or in laminating processes, and is available in a variety of thicknesses. The Mylar film can be installed as a single piece that is wrapped entirely around the circumference of the stator bore and slightly overlapped, or multiple pieces may be inserted axially at equally spaced points. Optimum film thickness and number of shim layers required is dependent upon the gap clearance between rotor and stator for the specific motor size the user is attempting to install. Appropriately thick Mylar film shim layer(s) will keep the rotor roughly centered inside the stator bore and provides a slick surface to slide the rotor to its intended mounting position without damage.Single Mylar Shim Multiple Mylar Shimsw ww.k o l l m o r g e n.c o mM O U N T I N G A N D I N S T A L L A T I O N G U I D E L I N E S39Installing the RotorMany of the KBM(S) series rotors are too large to safely lift by hand and the attractive force as the rotor rapidly enters the stator can be too powerful to control by hand. Kollmorgen recommends using a hoist or small overhead crane to lift the rotor into position and stabilize it for safely controlled insertion into the stator. Most large KBM(S) rotors include tapped holes in the steel hub for the user to attach eye bolts to facilitate hoist lifting. Note that swiveled eye bolts, as opposed to fixed ring eye bolts, are recommended for safe lifting with hoist chain and hook interface.Inspect the Running GapAfter the rotor is properly installed and secured, remove all Mylar shim material. Carefully inspect the running gap for any debris or obstructions. If possible, spin the rotor by hand to confirm that it rotates freely.Installation AssistanceCustomers may contact Kollmorgen for assistance with application or installation problems. See rear cover of this selection guide for contact information. If desired, Kollmorgen can also design and supply custom motor installation fixtures for the user’s unique application needs. Fixture solutions are quoted separately on a case-specific basis.Electrical Wiring Interface。

SM系列无刷电机说明书

SM Series Servo Motors Brushless servo motors featuring high performance slotless designThis design eliminates all detent torque in the motor, allowing the SM Series motors to provide extremely smooth motion, especially at low speeds. The slotless design also creates a higher rotor inertia, which is ideal for applications involving high inertial loads (such as lead screws and belt drives).Features• NEMA size 16 and 23• 0.8 to 11.3 lb-in continuous torque• Brushless construction • Slotless design providesnegligible detent torque, reduced torque ripple and high inertia • High-performance neodymium magnets• Thermostat protected • TENV housing • IP65 option• Feedback options – Encoder/Hall effect – Resolver• Connectorization choices • Special winding availability• Custom modifications available • Two-year warranty • CAD models available •CE CompliantContact Information:Parker Hannifin CorporationHydraulic Pump and Power Systems Div.14249 Industrial Pkwy. Marysville, OH 43040 USA Tel: (937) 644-3915 Fax: (937) 642-3738Web: /hpsSM Series Servo MotorsHigh-Performance Slotless DesignThe SM Series motors also feature a rugged anodized aluminum body and connector housing. An IP65 rating can be obtained on motors with PS or MS connectors and an optional shaft seal. All SM motors are CE (LVD) compliant.The SM Series brushless servo motors feature a slotless stator design.1@ 25°C ambient, 125°C winding temperature, motor connected to a 10” x 10” x 1/4” aluminum mounting plate. @ 40°C ambient derate phase currents and torques by 12%.2Operating at maximum bus voltage. Higher speed operation possible as custom.3Measured line-to-line, ±10%.4Value is measured rms of sine wave.5±30%, line-to-line, inductance bridge measurement @1Khz.6Initial winding temperature must be 60°C or less before peak current is applied.8A rms current in any phase for a sinusoidally commutated motor.9Total motor torque per A rms measured in any phase, ±10%.Note: These specifications are based on theoretical motor performance and are not specific to any amplifier.SM Series NEMA Size 16SM Series NEMA Size 16 NEMA Size 16 Performance Curves@ 40°C ambient derate phase currents and torques by 12%.2 Operating at max bus voltage. Higher speed operation possible as custom.3 Measured line-to-line, ±10%.4 Value is measured rms of sine wave.5 ±30%, line-to-line, inductance bridge measurement @1Khz.6 Initial winding temperature must be 60°C or less before peak current is applied.8 A rms current in any phase for a sinusoidally commutated motor.9 Total motor torque per A rms measured in any phase, ±10%.Note: These specifications are based on theoretical motor performance and are not specific to any amplifier.NEMA Size 23 Performance CurvesØ0.125 (3.18) Thru (4X)SM Series DimensionsNEMA Size 16 — Inches (mm)Ø0.218 (5.54) Thru (4X)NEMA Size 23 — Inches (mm)SM Series DimensionsSM Series - Recommended DrivesRecommended Parker Drives for SM Series Motor(AC powered)Recommended Parker Drives for SM Series Motor(DC powered)SM Series - Cable OptionsP-1A1P power cable is for use with P series drives and has extended ground wire to reach drive ground lug (heatsink).Brake leads included in either cable and not used when motor does not have a brake.Parker motors include brake rectifier preventing miswiring of the brake leads and either brake wire (red/blue) can be used as+ or -(with Parker drive-compatible terminations)Feedback Cables (with pin connector one end and flying leads)PS – Parker Standard (-xPSx) Pin ConnectionsPS Incremental Encoder/Hall (J and L) Pin ConnectionsPS Power & Brake Pin ConnectionsPowerThe PS connector option for the SM motors features high-quality Hypertac - Interconnectron circular connectors mounted to the motor body.Mating cables are specified and ordered separately. The PS option joins the motor phase wires and brake leadsIP65.NOTE: For customers preferring to build their own mating cables, a PS connector kit (Part #: PS-CONN-KIT), is available. The kit contains a mating PS power connector, PS feedback connector and connector pins, allowing customers to build cables to their own specification. Special tools are not included in the kit.NOTE: Brake will operate regardless of polarity of connectionLC – Low Cost (-xLCx) Pin ConnectionsLC Incremental Encoder/Hall (R) PinLC Resolver (R) Pin ConnectionsThe LC connector option for the SM motors features a high-quality and low cost molded connector. This option uses the very common Amp, or Tyco brand of connectors on the ends of 8” motor and feedback cables. These connectors are usually available from most electrical supply houses.Feedback2Power PowerBrakeThe LC connector option is available on all SM size 16 and 23 stack length motors. The feedback type selections that are available with the LC option are J (incremental encoder) and R (resolver) feedback options.The LC connections support the brake option for SM motors. When the brake option is ordered, the motor ships with three individual connectors: One for feedback, one for power and the last for the brake. Without a brake, the motor only comes with the feedback and power connectors.Feedback Connector Tyco 172171-1Mating Connector Tyco 172163-1Mating Pin (F) Connector Tyco 170362-1Tyco 172167-1Tyco 172159-1Tyco 170362-1 Tyco 170362-1Wiring Connections for:FL – Flying Leads with Enclosed Feedback (-xFLx) FO – Flying Leads with Exposed Feedback (-xFOx)FL and FO Cable MotorPower, Motor Feedback andFO/FL Flying LeadsThe FO/FL cable option for the SM motors features flying leads for both feedback and power connections. The only variable is whether or not the feedback device is fully enclosed (FL) or fully exposed (FO).These options are for OEM customers that wish to reduce cost as much as possible and fully integrate their own cable solutions.10 - 10’ hard wired cableThe “10” cable option for the SMhard wired into the rear of the motor. The cables have full strain relief and completely enclosed feedback. While custom lengths are available, it is not recommended to exceed 10 feet between motor and drive.NOTE: Brake will operate regardless of polarity of connection10’ Cable Motor Power, Motor Feedback and Brake (J) Wiring ConnectionsMS – Military Style (-xMSx) Pin ConnectionsMS Incremental Encoder/Hall and Brake (E and L) Pin ConnectionsMS Power Pin ConnectionsAmphenol CONN PT06E-14-12P(023) Feedback connector part number:Amphenol CONN PT02E-14-18S(023)MS Resolver and Brake (R) Pin ConnectionsPowerFeedbackThe “MS” connection option for the SM Series motors provides quick disconnect, bayonet style connectors attached to the motor body. Mating cables are specified and ordered separately.With the “MS” connection option, the motor phase wires are in one connector, and the hall, encoder, temperature switch, and brake wires are in the other connector. This option works well when using an amplifier with a built-in controller, or when all cables enter into a cabinet or enclosure and then are wired into a terminal strip.When specifying the “R” (resolver) feedback option, the motor phase wires reside in one connector, the resolver signal, temperature switch, and brake wires in the other.The “GS” connection option for the SM Series motors provides quickdisconnect, bayonet style connectors attached to the motor body. Mating cables are specified and ordered separately. Wiring for the “GS”connection option for SM motors is similar to the “MS” option, except thetemperature switch leads have been moved to the feedback connector. This connection option should be selected when operating the SM motors with the Gemini family of amplifiers.GS – Gemini Amp Series Connection (-xGSx)GS Motor Wiring ConnectionsGS Encoder/Hall Feedback Wiring ConnectionsPowerFeedbackFeedback OptionsResolver SpecificationsHall-Effect SpecificationsEncoder SpecificationsR2R1S3S1S1-S3 R1-R2E S2-S4 = KE R1-R2 SINØPhase B-APhase A-CClockwise rotation as viewed from front shaft.Phase C-BHall #1Hall #2Hall #3Resolver SchematicCommutation ChartSM Series OptionsFill in an order code from each of the numbered fields to create a complete model order code.SeriesSMBrushless Servo MotorsFrame (Magnet Length)161Size 16 frame, 1 stack magnet 162Size 16 frame, 2 stack magnet 231Size 23 frame, 1 stack magnet 232Size 23 frame, 2 stack magnet 233Size 23 frame, 3 stack magnetWindingA 16 or 23B16 or 23FeedbackE 1000 ppr encoder*L 5000 line encoder*RResolver***Includes Hall-effect**Not available on any size 16 FrameShaft OptionsN Normal F FlatKKeyway**Not available on size 16 motorsConnectionPS Parker standard connectors, all feedback optionsLCLow cost connectors 1010 ft. (3m) cable*FL Flying leads (housed feedback)FO Flying leads (exposed feedback)MS Military styleGSGemini amp series ***Cable is hard-wired**See amplifier sections for specific motor/amplifier compatibilityOptionsN NoneB 24 V failsafe spring brake*BV 24V failsafe spring Brake with IP 65 shaft seal VIP 65 shaft seal***Available on 23 frame with any connector option except FO, not available on 16 frame.**Available with PS, LC, MS or GS connectors only, not available on size 16 frame.SM Series Ordering InformationParker Hannifin CorporationElectromechanical Product Sales OfficesAustraliaParker Hannifin (Australia) Pty Ltd.9 Carrington Road Castle Hill NSW 2154AustraliaTel: +61 (0) 2 9634-7777 Fax: +61 (0) 2 9634 3749BrazilParker Hannifin Ind. Com Ltda.Av. Lucas Nogueira Garcez 2181Esperança12325-900 Jacareí, SP Tel: 12 3954 5100Fax: 12 3954 5262Email: a ***************************CanadaParker Hannifin (Canada) Inc.160 Chisholm DrMilton, Ontario L9T 3G9 Tel: 905-693-3000 Fax: 905-876-1958Email:****************************ChinaParker Hannifin Motion & Control (Shanghai) Co., Ltd280 Yunqiao Rd. Jin Qiao Export Processing ZoneShanghai 201206, China Tel: (86-21) 50312525Fax: (86-21) 64459717FranceParker SSD Parvex 8 avenue du Lac B.P . 249F-21007 Dijon CedexTel: +33 (0) 3 80 42 41 40Fax: +33 (0) 3 80 42 41 23GermanyElectromechanical EuropeParker Hannifin GmbH & Co KG Robert-Bosch-Strasse 22 D-77656 Offenburg GermanyTel: +49 (0) 781 509 0Fax: +49 (0) 781 509 98176Email:********************IndiaParker Hannifin India Pvt. LtdAutomation Group-SSD Drives Div.133 & 151 Developed Plots Estate Perungudi, Chennai 600 096Tel: 044-4391-0799ax: 044-4391-0700ItalyParker Hannifin SpA Via Gounod 120092 Cinsello Balsamo Milano, ItalyTel: +39 02 361081Fax: +39 02 36108400Email: ********************KoreaParker Hannifin Korea9th Floor KAMCO Yangjae Tower 949-3 Dogok 1-dong Gangnam-gu Seoul 135-860, Korea Tel: 82-2-559-0454Fax: 82-2-556-8187MexicoParker Hannifin de Mexico Eje uno Norte No.100Parque Industrial Toluca 2000 Toluca, CP 50100 México Tel: 52-722-275-4200Fax: 52-722-279-0316SingaporeParker Hannifin Singapore Pte Ltd 11, Fourth Chin Bee Road Singapore 619702Tel: (65) 6887 6300Fax: (65) 6265 5125/6261 4929TaiwanParker Hannifin Taiwan Co., Ltd No. 40, Wuchiuan 3rd Road Wuku Industrial ParkTaipei County, Taiwan 248ROCTel: 886 2 2298 8987Fax: 886 2 2298 8982ThailandParker Hannifin (Thailand) Co., Ltd.1265 Rama 9 RoadSuanluang, Bangkok 10250 ThailandTel: (66) 2 186 7000Fax: (66) 2 374 1645UKParker Hannifin Ltd.Tachbrook Park Drive Tachbrook Park Warwick CV34 6TUTel: +44 (0) 1926 317970Fax: +44 (0) 1926 317980USAParker Hannifin Electronic Motion and Controls Division 1140 Sandy Hill Road Irwin, PA 15642Tel: 800-358-9070Email:**********************Parker Hannifin Hydraulic Pump & Power Systems Division 2101 N. Broadway New Ulm, MN 56073Tel: 800-358-9070Email:**********************Issue Date 6/2021© 2021 Parker Hannifin Corporation BRO-SM-0612SM Series: Made in the USA。

科尔摩根AKM 同步伺服电机 选型指南说明书

K O L L M O R G E N | A K o l l m o r g e n C O M PA N Y欢迎来到科尔摩根官方微信科尔摩根3目录u AKM ™ 同步伺服电机4u AKD ™ 伺服驱动器8u AKM ™ 各种选件12u AKM ™ 防水型和食品级防水型电机13u AKM ™ 系统综述14u AKM ™ 图纸和性能数据AKM1x 16AKM2x 20AKM3x24AKM4x 28AKM5x 34AKM6x 40AKM7x 44AKM8x48u L 10 轴承疲劳寿命和轴负载53u 反馈选件56u 抱闸选件60u 伺服电机连接器选件61u 型号命名67u MOTIONEERING ® Online71科尔摩根A K M 同步伺服电机选型指南克服设计、采购和时间障碍科尔摩根明白:帮助原始设备制造商的工程师克服障碍,可以显著提高其工作成效。

因而,我们主要通过如下三种方式来提供帮助:集成标准和定制产品在很多情况下,理想方案都不是一成不变的。

我们拥有专业应用知识,可以根据全面的产品组合来修改标准产品或开发全定制解决方案,从而为设计奠定良好的基础。

提供运动控制解决方案而不仅仅是部件在各公司减少供应商数量和工程人力的过程中,他们需要一家能够提供多种集成解决方案的全系统供应商。

科尔摩根就采用了全面响应模式,为客户提供全套解决方案,这些方案将编程软件、工程服务以及同类优秀的运动控制部件结合起来。

覆盖全球我们在美洲、欧洲、中东和亚洲拥有众多直销、工程支持单位、生产工厂以及分销商,临近全球各地的原始设备制造商。

这种便利优势可以加速我们的供货过程,根据客户需要随时随地供货。

财务和运营稳定性科尔摩根隶属于Fortive 公司。

Fortive 业务系统是推动Fortive 各部门发展的一个关键力量。

该系统采用“不断改善”(Kaizen )原理。

由高素质人才构成的多学科团队使用世界级的工具对过程进行评估,并制定相关计划以达到卓越的性能。

S 系列马达手册说明书

产品手册S 系列内容内容1一般说明 (4)1.1关于手册 (4)1.2预期用途 (4)1.3保修 (4)1.4产品标识 (4)1.5出版日期 (4)1.6公司声明 (5)2安全说明 (6)2.1警告符号 (6)3马达说明 (7)3.1工作原理 (7)3.2产品标识代码 (7)3.2.1马达型号代码 (8)3.2.2加工 ID (10)3.3技术数据 (11)3.4马达接口 (15)3.4.1主尺寸 (15)3.4.2双速马达尺寸 (16)3.4.3轴连接尺寸 (17)3.4.4壳体接口 (20)3.4.5扭力臂 (21)3.5转动方向 (21)3.6自由轮功能 (22)3.7单速:1N00 (22)3.8双速阀:2N0R/2N0L (23)3.9保持制动器 (24)3.10密封保护器 (25)3.11冲洗马达壳体 (25)3.12附件 (26)3.12.1速度传感器 (26)3.12.2锁紧套 (26)3.12.3扭力臂 (28)3.12.4转向泄压阀 CPV500 (29)4系统设计 (30)4.1马达液压回路 (30)4.1.1简单回路 (30)4.1.2反压运转 (30)4.1.3静压制动 (30)4.1.4短路运转 (31)4.2液压油口 (31)4.3液压油 (32)4.3.1液压油类型 (32)4.3.2液压油属性 (33)4.3.3液压油洁净度 (33)4.4工作压力 (33)4.4.1壳体压力 (33)内容4.4.2先导压力 (33)4.4.3工作管路压力 (34)5马达尺寸 (36)5.1性能 (36)5.1.1转速和流速 (36)5.1.2扭矩和功率 (36)5.2性能图表 (37)5.2.1性能曲线 (37)5.2.2压力损失 (41)5.2.3壳体泄漏 (43)5.2.4制动扭矩 (43)5.3使用寿命 (43)6安装说明 (45)6.1安装马达 (45)6.2冲洗液压系统 (45)6.3排气程序 (45)6.4试运转程序 (46)7操作说明 (47)7.1磨合期 (47)7.2使用 (47)7.3工作温度 (47)7.4拆下马达 (47)8特别说明 (48)8.1存放马达 (48)一般说明关于手册本手册所包含技术说明适用于 Black Bruin S 系列液压马达。

科尔莫根交流驱动器Crimson v2.0兼容设备信息表说明书

Kollmorgen AC DrivesInformation Sheet for Crimson v2.0Compatible Devices•Kollmorgen AC drives 300/400/600/700Verified Device•Schneider/Telemechanique LXM15MD40N4 Version 1.0•S300 Version 1.2Device OptionsSelect the address of the destination device.Accessible DataPREFIX DESCRIPTION Function List Command Info --- A COMMANDS...ACC Acceleration VELOCITY ACCACCR Acceleration - Home/Jog POSITION ACCRACCU Type of acceleration command AMPLIFIER ACCUNITACTF Active Fault Mode AMPLIFIER ACTFAULTACTI Output stage active/inhibited DRIVE STATUS ACTIVEACTR Activate RS232 Watchdog COMMUNICATION ACTRS232ADDR Multidrop Address BASIC SETUP ADDRAENA Auto-Enable BASIC SETUP AENAALIA Drive Name String BASIC SETUP ALIASA10X Additional Torque Tuning Value ANALOG I/O AN10TXA11N Max. # of changeable INxTRIG ANALOG I/O AN11NRA11R Range - analog change of INxTRIG ANALOG I/O AN11RANGEANTR Analog Output Scaling ANALOG I/O AN_TRIG 1 ANCN Analog Input Configuration ANALOG I/O ANCNFGANDB Dead Band - Analog Velocity Input ANALOG I/O ANDBANIN Analog Input Voltage ACTUAL VALUE ANIN 1 AOFF Analog Input Offset ANALOG I/O ANOFF 1 AOUT Analog Output Configuration ANALOG I/O ANOUT 1 AZER Analog Input Zero ANALOG I/O ANZERO 1 AHOM Automatic Homing POSITION AUTOHOMEAVZ Analog Out Filter Time Constant ANALOG I/O AVZ 1--- C COMMANDS...CLRF Clear Drive Fault AMPLIFIER CLRFAULTCLRH Bit 5 of STAT is cleared DRIVE STATUS CLRHRCLRO Delete a Motion Task POSITION CLRORDERCLRW Warning Mode DRIVE STATUS CLRWARNCOLD Drive Reset DRIVE STATUS COLDSTART--- D COMMANDS...DOFF Analog Output Offset VELOCITY DAOFFSET 1 DEC Deceleration VELOCITY DECDECD Deceleration - Disable Output VELOCITY DECDISDECR Deceleration Ramp - Home/Jog POSITION DECRDECS Fast Stop Ramp VELOCITY DECSTOPDVCE Device ID Numeric Data AMPLIFIER DEVICE 2 DICO Continuous Current AMPLIFIER DICONTDIPE Peak Rated Current AMPLIFIER DIPEAKDIR Count Direction VELOCITY DIRDIS Disable AMPLIFIER DISDREF Homing Direction POSITION DREFDRVS Internal Status DRIVE STATUS DRVSTAT--- E COMMANDS...EN Enable AMPLIFIER ENENCI Encoder Pulse Input GEARING ENCINENCL SinCos Encoder Resolution MOTOR ENCLINESENCM Encoder Emulation POSITION ENCMODEENCO Encoder Emulation Resolution POSITION ENCOUTENZE Zero Pulse Offset POSITION ENZEROECOD Fault Message String (39 Chars.) BASIC SETUP ERRCODE 2,3 ECOA Output Error Register DRIVE STATUS ERRCODE*EXTM External Encoder Multiplier POSITION EXTMULEXTW External Fieldbus Watchdog COMMUNICATION EXTWD--- F COMMANDS...FBTY Encoder/Resolver Selection FEEDBACK FBTYPEFLSH Send Data to External Flash COMMUNICATION FLASHFLTC Fault Frequency BASIC SETUP FLTCNT* 1 FLTH Fault History BASIC SETUP FLTHIST* 1 FLUX Rated Flux MOTOR FLUXMFEEDBACK--- G COMMANDS...GRI Gearing Input Factor GEARING GEARIGRMO Secondary Position Source GEARING GEARMODEGRO Gearing Output Factor GEARING GEAROGP Proportional Gain - Position Loop POSITION GPGPFB Feed Forward - Actual Current POSITION GPFBTGPFF Feed Forward - Velocity POSITION GPFFVGPTN Integral - Position Loop POSITION GPTNGPV Prop Gain - Velocity Controller POSITION GPVGV Prop Gain - Velocity Loop VELOCITY GVGVFB First Order TC - Velocity Loop VELOCITY GVFBTGVFI % Output Filtered - Velocity Loop VELOCITY GVFILTGVFR Feed Forward - Actual Velocity VELOCITY GVFRGVT2 Second TC - Velocity Loop VELOCITY GVT2GVTN Integral - Velocity Loop VELOCITY GVTN--- H COMMANDS...HVER Hardware Version String BASIC SETUP HVER 2 --- I COMMANDS...I Current ACTUAL VALUE II2T RMS Current Loading % ACTUAL VALUE I2TI2TL I2T Warning % CURRENT I2TLIMICMD Current Command CURRENT ICMDICNT Rated Current CURRENT ICONTID D-Component of Current Monitor ACTUAL VALUE IDIMAX Current Limit for Drive/Motor CURRENT IMAXINAD A/D Channels Input counts ANALOG I/O IN 10 IN Digital Input Status DIGITAL I/O INn 1 INMO Digital Input Function DIGITAL I/O IN_MODE 1 INTR INMODE Trigger Data DIGITAL I/O IN_TRIG 1 INPO In-Position Status POSITION INPOSINPT In-Position Delay POSITION INPTIPEK Peak Current - Application CURRENT IPEAKIQ Q-Component of Current Monitor ACTUAL VALUE IQISCA Analog Current Scaling ANALOG I/O ISCALE 1 --- K COMMANDS...K Kill AMPLIFIER KKC I-Controller Prediction Current CURRENT KCKEYL Lock the Push Buttons BASIC SETUP KEYLOCKKTN Integral - Current Controller CURRENT KTN--- L COMMANDS...L Stator Inductance MOTOR LLTCH Latched 32/16 Position (LATCHDRVSTAT) POSITION LATCH 4 LTCX Latched 32/16 Position (TRJSTAT) POSITION LATCHX 4 L16P 16 bit Position @ INx rising POSITION LATCH1P16L32P 32 bit Position @ INx rising POSITION LATCH1P32LED LED Display ACTUAL VALUE LED 5 LEDS Display Page DRIVE STATUS LEDSTATLOAD Load Parameters from EEPROM AMPLIFIER LOAD--- M COMMANDS...MXTE Switch off - Ambient ºC BASIC SETUP MAXTEMPE MXTH Switch off - Heat Sink ºC BASIC SETUP MAXTEMPH MXTM Switch off – (Motor Ohms) BASIC SETUP MAXTEMPM MBRA Motor Holding Brake Select MOTOR MBRAKEMDBC Number of Motor Data Sets MOTOR MDBCNTMH Start Homing POSITION MHMICO Motor Continuous Current Rating MOTOR MICONTMIPK Motor Peak Current Rating MOTOR MIPEAKMJOG Start Jog Mode POSITION MJOGMKT Motor KT MOTOR MKTMLGC Adapt Gain Q-rated - Current Loop CURRENT MLGCMLGD Adapt Gain D - Current Loop CURRENT MLGDMLGP Adapt Gain Q-peak - Current Loop CURRENT MLGPMLGQ Adapt Gain Abs - Current Loop CURRENT MLGQMNAM Motor Name String MOTOR MNAME 2 MNUM Motor Number MOTOR MNUMBER MNTR Monitor Output Voltage ANALOG I/O MONITOR 1 MOVE Start Motion Task POSITION MOVEMPHA Motor Phase, Feedback Offset FEEDBACK MPHASEMPOL Number of Motor Poles MOTOR MPOLESMRD Homing to Resolver Zero, Mode 5 POSITION MRDMRBW Resolver Bandwidth FEEDBACK MRESBWMRPO Number of Resolver Poles FEEDBACK MRESPOLES MSPD Maximum Rated Motor Velocity MOTOR MSPEEDMTAP Current Lead MOTOR MTANGLPMUNI Units for Velocity Parameters POSITION MUNITMVAB Velocity Lead (Start Phi) MOTOR MVANGLBMVAF Velocity Lead (Limit Phi) MOTOR MVANGLFMVAP Velocity Lead (Commutation Angle) MOTOR MVANGLP--- N COMMANDS...NONB Mains-BTB Check On/Off DRIVE STATUS NONBTBNREF Homing Mode POSITION NREF--- O COMMANDS...OACC Acceleration Time - Motion Task 0 POSITION O_ACC 6 OC Control Variable - Motion Task 0 POSITION O_CODEC Deceleration Time - Motion Task 0 POSITION O_DEC 6 OFN Next Task Number - Motion Task 0 POSITION O_FNOFT Delay before Next Motion Task POSITION O_FTOP Target Position - Motion Task 0 POSITION O_POV Target Speed - Motion Task 0 POSITION O_VO Digital Output Status DIGITAL I/O O 1 OMOD Digital Output Function DIGITAL I/O O_MODE 1 OTRI OMODE Trigger Data DIGITAL I/O O_TRIG 1 OPMO Operating Mode AMPLIFIER OPMODEOPTI Option Slot ID DRIVE STATUS OPTION--- P COMMANDS...PASS Parameter Change Password BASIC SETUP PASSPBAL Regen Power - Actual ACTUAL VALUE PBALPBAX Regen Power - Maximum BASIC SETUP PBALMAXPBAR Regen Resistor - Select BASIC SETUP PBALRESPE Following Error - Actual ACTUAL VALUE PEPEIN In-Position Window POSITION PEINPOSPEMX Following Error - Maximum POSITION PEMAXPFB Actual Position from Feedback ACTUAL VALUE PFBPFB0 Position from External Encoder ACTUAL VALUE PFB0PGRI Position Resolution - Numerator POSITION PGEARIPGRO Position Resolution - Denominator POSITION PGEAROPMOD Line Phase Error Mode BASIC SETUP PMODEPOSC Axes Type POSITION POSCNFGPRD 20-bit Position Feedback ACTUAL VALUE PRDPTMN Min. Accel for Motion Tasks POSITION PTMINPUNI Position Resolution POSITION PUNITPV Actual Velocity - Position Loop ACTUAL VALUE PVPVX Max. Velocity - Position Loop POSITION PVMAXPVXN Max. Neg Velocity - Position Loop POSITION PVMAXNPVXP Maximum Positive Velocity POSITION PVMAXP--- R COMMANDS...RDY Software Enable Status DRIVE STATUS READYREFI Peak Rated Current for Homing 7 CURRENT REFIPREFP Reference Switch Position POSITION REFPOSREMO Hardware Enable Status DRIVE STATUS REMOTERESP Resolver Phase FEEDBACK RESPHASERK Resolver Sine Gain Adjust FEEDBACK RKROFF Reference Offset POSITION ROFFSRABS Offset to Encoder Position POSITION ROFFSABSR232 RS232 Watchdog Time COMMUNICATION RS232TRSTV Restore Variables to Default BASIC SETUP RSTVAR--- S COMMANDS...S Stop Motor and Disable Drive OSCILLOSCOPE SSAVE Save Data in EEPROM AMPLIFIER SAVESCAN Restart Communications COMMUNICATION SCANXSNO Drive Serial Number BASIC SETUP SERIALNOSETR Set Reference Point POSITION SETREFSLOT I/O States - Expansion Card DIGITAL I/O SLOTIOSSIG SSI Code Select FEEDBACK SSIGRAYSSII SSI Clock FEEDBACK SSIINVSSIM SSI Mode POSITION SSIMODESSIO SSI Baud Rate FEEDBACK SSIOUTSTAT Drive Status Word DRIVE STATUS STATSTCO Status Variable Warnings DRIVE STATUS STATCODE*STIO I/O Status DIGITAL I/O STATIO 1,7 STUS Detailed Amplifier Status DRIVE STATUS STATUS 7 STOP Stop Motion Task POSITION STOPSCF Position Reg 1...4 Configuration POSITION SWCNFGSCF2 Position Reg 0 & 5 Configuration POSITION SWCNFG2SWE Position Register Data POSITION SWE 8 SWEN Cam Position Register Data POSITION SWE_N 8 --- T COMMANDS...T Digital Current Command OSCILLOSCOPE TTMPE Ambient Temperature ACTUAL VALUE TEMPETMPH Heat Sink Temperature ACTUAL VALUE TEMPHTMPM Motor Temperature ACTUAL VALUE TEMPMTRJS Status 2 DRIVE STATUS TRJSTATTRUN Run-Time Counter Value (secs) BASIC SETUP TRUN--- U COMMANDS...UID User ID AMPLIFIER UIDUSER User Defined Command String ACTUAL VALUE USER 2,9 --- V COMMANDS...V Actual Velocity ACTUAL VALUE VVBUS DC-bus Voltage ACTUAL VALUE VBUSVBSB Maximum Line Voltage BASIC SETUP VBUSBALVBSX Maximum DC-bus Voltage AMPLIFIER VBUSMAXVBSN Minimum DC-bus Voltage AMPLIFIER VBUSMINVCMD Internal Velocity RPM ACTUAL VALUE VCMDVER Firmware Version String BASIC SETUP VER*VJOG Jog Mode Speed POSITION VJOGVLIM Maximum Velocity VELOCITY VLIMVMAX Maximum System Speed VELOCITY VMAXVMIX Velocity Mix VELOCITY VMIXVOSP Overspeed VELOCITY VOSPDVREF Homing Speed POSITION VREFVSCA Velocity Scaling - Analog Input ANALOG I/O VSCALE 1 --- W COMMANDS...WMSK Warning as Fault Mask AMPLIFIER WMASK--- ACTUAL VALUES...--- AMPLIFIER...--- ANALOG I/O...--- BASIC SETUP...--- COMMUNICATION...--- CURRENT...--- DIGITAL I/O...--- DRIVE STATUS...--- FEEDBACK...--- GEARING...--- MOTOR...--- OSCILLOSCOPE...--- POSITION...--- VELOCITY...--- LIST - ALPHABETICAL--- LIST - FUNCTION--- LIST - KEYWORDTABLE LAYOUT:PREFIX: An abbreviation or contraction of the command name. ‘---‘ indicates a header which opens an associated list of selections.DESCRIPTION: The specified operation of a command, or header title. FUNCTION LIST: The specified command group.COMMAND: The actual command mnemonic to be transmitted.INFO: Reference numbers to notes for additional information.TABLE SELECTIONS: Clicking an item with a prefix selects it. Clicking a header opens the associated list, whether it be sorted alphabetically, function, or keyword. LIST – ALPHABETICAL,LIST – FUNCTION, LIST – KEYWORD select the type of sorting. A selected list always appears at the top of the dialog box, with the remaining headers listed beneath. For LIST – KEYWORD, enter the text, e.g. analog, and all items with that text in the description will be displayed.INFO:1) These items require a number to specify an I/O selection. Not all numeric choices are necessarily supported. An ‘_’ in Command indicates the position of the selected number in the transmitted command.2) These items must be assigned to String tags. Configure the tag properties as shown below:2A: Encoding must be set to Packed High-to-Low for proper operation.2B: Length should be set for the number of characters desired.3) ECOD (ERRCODE) – FAULT MESSAGE STRING: Returns up to the first 39 characters of fault messages. Therefore, set the Length, as shown above, to no more than 40.4) LTCH, LTCX (LATCH, LATCHX) – LATCHED POSITIONS:Select 0 for the element value to request the 16 bit Latched Position.Select 1 for the element value to request the 32 bit Latched Position.5) LED (LED1, LED2, LED3) – LED STATUS: Select the desired display.6) OACC, ODEC (O_ACCn, O_DECn) – ACCELERATION and DECELERATION times for Motion Task 0: Select the desired time.7) Requests for a list of values: Select the number of the desired value in the list.8) SWE, SWEN – POSITION REGISTER DATA: Select the desired register. The ‘_’ in the SWE_N Command indicates the position of the number in the transmitted command.9) USER – USER DEFINED COMMAND STRING:WARNING:The programmer must ensure the safety and validity of the strings to be sent. An operator must NEVER be allowed to enter a string manually. Attempting to control a drive using this command is not recommended. The driver does not validate any transmission or response.USER is selected either for commands that are not present in the list, or for new commands added subsequently. The programmer defines the string to be sent, and executes a write. The driver will append the terminating Line Feed and Carriage Return. If USER is configured for Read and Write, the subsequent reply from the device will appear in the place of the sent data. The programmer may also configure two tags for USER, one Read-Only, one Write-Only. Example:USERTAGW is assigned to USER as Write-Only. USERTAGR is assigned to USER as Read-Only. For both, Encoding is set to Packed High-to-Low, and Length is set to 80 (The maximum permissible). See Info 2, above.USERTAGW = “ACC”sends ACC followed by a Line Feed and Carriage Return.The device replies with:ACC 12345In USERTAGR, ACC 12345 will appear in the display.Only the most recent response to USER will be accessible. The programmer must arrange for the returned string to be saved and/or parsed, if necessary.‘Escaped’ characters (e.g. \t for HorizontalTab = 0x8) are not supported. The programmer must add those characters individually when constructing the string.10) INAD – A/D Channels Input counts. Select the number of the function.0 – Heat Sink Temperature 4 – Motor Temperature1 – Ambient Temperature 5 – DC link/DC bus voltage2 – Regen Power 6 – Supply voltage3 – I_U 7 – I_WRS-232 ConnectionsLexium 15 MP Signal Signal G32 Tx Rx 53 Rx Tx 25 0V 0v 3/4S300 Signal Signal G32 Tx Rx 53 Rx Tx 25 0V 0v 3/4 Configuration Version 1.2 - November6 2008.Increased IN, INMO, INTR, O, OMOD, OTRI to 20. Added INAD, L16P, L32P, PASS, PVXP, and RABS commands.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Synchron ServomotorenSerie SM45..100Technische BeschreibungAusgabe10/00Technische Änderungen,die der Verbesserung der Gerätedienen,vorbehalten !Gedruckt in der BRD 10/00Mat.Nr.:73498Alle Rechte vorbehalten.Kein Teil des Werkes darf in irgendeiner Form (Druck,Fotokopie,Mikrofilm oder in einem anderen Verfahren)ohne schriftliche Genehmigung der Firma Seidel reproduziert oderunter Verwendung elektronischer Systeme verarbeitet,vervielfältigt oder verbreitet werden.Bisher erschienene AusgabenKapitel Seite AKollmorgen Seidel10.00SM45..100-MotorenIAllgemeines I.1Über dieses Handbuch ....................................................................1I.2Bestimmungsgemäße Verwendung ..........................................................1I.3Aufbau der Motoren ......................................................................2I.4Allgemeine technische Daten ...............................................................2I.5Standardausrüstung . (3)I.5.1Bauform.............................................................................3I.5.2Wellenende A-Seite....................................................................3I.5.3Flansch .............................................................................3-E.4.929.4/9I.5.4Schutzart............................................................................4I.5.5Schutzeinrichtung .....................................................................4I.5.6Isolierstoffklasse ......................................................................4I.5.7Schwinggüte .........................................................................4I.5.8Anschlußtechnik ......................................................................4I.5.9Tachogenerator,Rotorlagegeber .........................................................4I.6Optionen ...............................................................................5I.7Auswahlkriterien .........................................................................5I.8Kennlinien (6)I.8.1S1-Drehmoment-Kennlinien SM45..100unbelüftet............................................6-E.4.929.4/4I.8.2S1-Drehmoment-Kennlinien SM56..100belüftet..............................................7-E.4.929.4/5I.8.3Radial-/Axialkräfte am Wellenende........................................................8I.9Technische Daten (8)I.9.1Begriffsdefinitionen ....................................................................8-E.4.929.4/42I.9.2Technische Daten SM45/56/71/100. (9)II Montage /InbetriebnahmeII.1Wichtige Hinweise.......................................................................15II.2Montage/Verdrahtung.. (16)II.2.1Anschlußtechnik (18)II.2.1.1Rotorlagegeberanschluß.........................................................18II.2.1.2LeistungsanschlußSM56/71/100...................................................19-A.4.029.4/10II.2.1.3LüfteranschlußSM56/71/100-BV (20)-A.4.029.4/07II.3Inbetriebnahme.........................................................................21III ZeichnungenIII.1AnschlußSM45 (23)-E .4.929.4/3III.2AnschlußSM56/71/100...................................................................24-E.4.929.4/6III.3Maßzeichnung SM45....................................................................25-A.4.007.4/23III.4Maßzeichnung SM56....................................................................26-A.4.007.4/24III.5Maßzeichnung SM71....................................................................27-A.4.007.4/25III.6Maßzeichnung SM100...................................................................28-A.4.007.4/26III.7Maßzeichnung SM56..100fremdbelüftet .....................................................29-A.4.007.4/19IV AnhangIV.1Lieferumfang,Transport,Lagerung,Wartung,Entsorgung........................................31IV.2Beseitigen von Störungen.................................................................32IV.3Stichwortverzeichnis (33)InhaltsverzeichnisZeichnungSeiteInhaltsverzeichnis ...............................................A Sicherheitshinweise .............................................B Wichtige Hinweise ..............................................C -E.4.929.4/27Herstellererklärung ..............................................DSM45..100-Motoren10.00Kollmorgen Seidel SicherheitshinweiseWarnsymbole:Beachten Sie unbedingt die wichtigen Hinweise im Text,die mit fol-genden Symbolen gekennzeichnet sind:Gefährdung durch Allgemeine WarnungElektrizität und ihre Wirkung Allgemeine HinweiseNur qualifiziertes Fachpersonal darf Arbeiten wie Transport,Montage,Inbetriebnahmeund Instandhaltung ausführen.Qualifiziertes Fachpersonal sind Personen,die mit Trans-port,Aufstellung,Montage,Inbetriebnahme und Betrieb von Motoren vertraut sind undüber die ihrer Tätigkeit entsprechenden Qualifikationen verfügen.Das Fachpersonal mußfolgende Normen bzw.Richtlinien kennen und beachten:IEC364bzw.CENELEC HD384oder DIN VDE0100IEC-Report664oder DIN VDE0110nationale Unfallverhütungsvorschriften oder BGV A2Lesen Sie vor der Montage und Inbetriebnahme die vorliegende Dokumentation.Falsches Handhaben des Motors kann zu Personen-oder Sachschäden führen.HaltenSie die technischen Daten und die Angaben zu den Anschlußbedingungen(Typenschild und Dokumentation)unbedingt ein.Stellen Sie unbedingt die ordnungsgemäße Erdung des Motorgehäuses mit der PE-Schiene im Schaltschrank als Bezugspotential sicher.Ohne niederohmige Erdung istkeine personelle Sicherheit gewährleistet.Öffnen Sie niemals den Motorklemmkasten während des Betriebs.Ziehen Sie keine Stek-ker während des Betriebs.Es besteht die Gefahr von Tod oder schweren gesundheitli-chen oder materiellen Schäden.Leistungsanschlüsse können Spannung führen,auch wenn sich der Motor nicht dreht.Lösen Sie die elektrischen Anschlüsse der Motoren nie unter Spannung.In ungünstigenFällen können Lichtbögen entstehen und Personen und Kontakte schädigen.Warten Sie nach dem Trennen der Transistor-Wechselrichter von den Versorgungsspan-nungen mindestens zwei Minuten,bevor Sie spannungsführende Teile(z.B.Kontakte,Gewindebolzen)berühren oder Anschlüsse lösen.Kondensatoren im Transistor-Wech-selrichter führen bis zu zwei Minuten nach Abschalten der Versorgungsspannungen ge-fährliche Spannungen.Messen Sie zur Sicherheit die Spannung im Zwischenkreis undwarten Sie,bis die Spannung unter40V abgesunken ist.Während des Betriebes können Motoren ihrer Schutzart entsprechend heiße Oberflächenbesitzen.Die Oberflächentemperatur kann100°C erreichen.Messen Sie die Temperaturund warten Sie,bis der Motor auf40°C abgekühlt ist,bevor Sie ihn berühren.Entfernen/sichern Sie eine eventuell vorhandene Wellen-Paßfeder,falls der Motor freiläuft,um ein Wegschleudern der Paßfeder und die damit verbundene Verletzungsgefahrzu vermeiden.Seite B KapitelKapitel Seite CKollmorgen Seidel10.00-E.4.929.4/27SM45..100-MotorenWichtige HinweiseuServomotoren sind Präzisionsgeräte.Insbesondere Flansch und Welle sind bei Lagerung und Einbau gefährdet —vermeiden Sie daher rohe Kraftanwendung,Präzision verlangt Feingefühl.Benutzen Sie zum Aufziehen von Kupplungen,Zahnrädern oder Riemenscheiben unbedingt das vorgesehene Anzugsgewinde in der Motorwelle und erwärmen Sie,sofern möglich,die Abtriebselemente.Schläge oder Gewaltanwendung führen zur Schädigung von Kugellagern und Welle.uVerwenden Sie nach Möglichkeit nur spielfreie,reibschlüssige Spannzangen oder Kupplungen z.B.der Fabrikate Baumann &Cie,Gerwah,Jacob,KTR oder Ringspann.Achten Sie auf korrektes Ausrichten der Kupplung.Ein Versatz führt zu unzulässigen Vibrationen und zur Zerstörung von Kugellagern und Kupplung.u Beachten Sie bei Anwendung von Zahnriemen unbedingt die zulässigen Radialkräfte.Zu hohe Radialbelastung der Welle verkürzt die Lebensdauer des Motors erheblich.u Vermeiden Sie möglichst eine axiale Belastung der Motorwelle.Eine axiale Belastung verkürzt die Lebensdauer des Motors erheblich.u Vermeiden Sie unter allen Umständen eine mechanisch überbestimmte Lagerung der Motorwelle durch starre Kupplung und externe Zusatzlagerung (z.B.im Getriebe).u Stellen Sie bei der Montageart V3(Wellenende nach oben)sicher,daßkeine Flüssigkeit in das obere Lager eindringen kann.uBeachten Sie die Motorpolzahl und die Resolverpolzahl und stellen Sie bei den verwendeten Transistor-Wechselrichtern die Polzahlen unbedingt korrekt ein.Falsche Einstellung kann besonders bei kleinen Motoren zur Zerstörungführen.SM45..100-Motoren10.00-E.4.929.4/27Kollmorgen Seidel HerstellererklärungHiermit erklären wir,die Firma Kollmorgen Seidel GmbH&Co.KGWacholderstraße40-4240489Düsseldorfdaßdie Servomotoren derMotorserie SM(Typen SM45,SM56,SM71,SM100)in der serienmäßigen Ausführung ausschließlich zum Einbau in eine andere Maschine bestimmt sind,und daßihre Inbetriebnahme solange untersagt ist,bis festgestellt wurde,daßdie Maschine,in die diese Produkte eingebaut werden soll,den Bestimmungen der EG-Richtlinie in der Fassung89/392/EWG entspricht.Wir bestätigen die Konformität der oben bezeichneten Produkte mit den unten gelisteten Normen: VDE0530/DIN57530Bestimmungen für umlaufende MaschinenDIN42950BauformDIN748Blatt1Zylindrische WellenendenDIN42955Rundlauf,Koaxialität und PlanlaufDIN ISO2373SchwinggüteAussteller:GeschäftsführungL.D.KingsleyDiese Erklärung beinhaltet keine Zusicherung von Eigenschaften.Die Sicherheits-und Schutzhinweise der Dokumentation sind in jedem Falle einzuhalten.Seite D KapitelKollmorgen Seidel10.00SM45..100-Motoren I AllgemeinesI.1Über dieses HandbuchDieses Handbuch beschreibt die Synchron-Servomotoren der Serie SM45..100.Das Handbuch ist in4Kapitel unterteilt:Kapitel1Allgemeines,Beschreibung der Motoren,technische Daten,KennlinienKapitel2Montage,InbetriebnahmeKapitel3Anschlußbilder und MaßzeichnungenKapitel4Anhang mit Hinweisen zu Transport,Lagerung,Wartung,Entsorgung Dieses Handbuch richtet sich an Fachpersonal mit Kenntnissen in den BereichenElektrotechnik und Maschinenbau.Die Motoren werden im Antriebssystem zusammen mit Transistor-Wechselrichtern betrieben.Beachten Sie daher die gesamte Dokumentation des Systems,bestehend aus:—Installations-/Inbetriebnahmeanweisung des Transistor-Wechselrichters—Technische Beschreibung Motorserie SM45..100I.2Bestimmungsgemäße VerwendungSynchron-Servomotoren der Serie SM45..100sind insbesondere als Antrieb für Handhabungs-geräte,Textilmaschinen,Werkzeugmaschinen,Verpackungsmaschinen undähnliche mithohen Ansprüchen an die Dynamik konzipiert.Sie dürfen die Motoren nur unter Berücksichtigung der in dieser Dokumentation definiertenUmgebungsbedingungen betreiben.Die Motoren der Serie SM sind ausschließlich dazu bestimmt,von Transistor-Wechselrichternder Serien60WKS und64WKS drehzahl und/oder drehmomentgeregelt angesteuert zu werden.Die Motoren werden als Bauteile in elektrische Anlagen oder Maschinen eingebaut und dürfennur als integrierte Bauteile der Anlage in Betrieb genommen werden.Die Motoren dürfen niemals direkt ans Netz angeschlossen werden.Kapitel I Allgemeines Seite1SM45..100-Motoren10.00Kollmorgen Seidel I.3Aufbau der MotorenDie Synchron-Servomotoren der Serien SM45..100sind bürstenlose Drehstrom-Motorenfür hochwertige Servo-Applikationen.In Verbindung mit unseren Transistor-Wechselrichterneignen sie sich besonders für Positionieraufgaben bei Industrie-Robotern,Werkzeugmaschinen,Transferstraßen usw.mit hohen Ansprüchen an Dynamik und Standfestigkeit.Die Servomotoren besitzen Permanentmagneten im Rotor.Das Neodym-Magnetmaterial trägtwesentlich dazu bei,daßdiese Motoren hochdynamisch gefahren werden können.Im Stator isteine dreiphasige Wicklung untergebracht,die durch den Transistor-Wechselrichter versorgtwird.Der Motor besitzt keine Bürsten,die Kommutierung wird elektronisch im Transistor-Wechselrichter vorgenommen.Eine Fremdbelüftung der Motoren ist wegen der optimalen Wärmeabfuhrüber das starkgerippte Motorgehäuse meist nicht erforderlich.Optional sind jedoch zur Vergrößerung des M0(siehe Kennlinien)die Motoren der Serien SM56/71/100mit angebautem Fremdlüfter lieferbar(Motor inklusive Option-BV-).Sie können den Fremdlüfter auch nachträglich anbauen.Die Wicklungstemperatur wirdüber Temperatursensoren in den Statorwicklungenüberwachtundüber einen potentialfreien Kontakt(Öffner)gemeldet.Die Motoren haben als Rückführeinheit einen Rotorlagegeber eingebaut.Er liefert dem Transi-stor-Wechselrichter die Umschaltinformation für die Motorwicklung und die Tachoauswertung.Als Option kann der Motor mit einem Impulsgeber-Anbauflansch für ROD426ausgerüstetwerden(Option-426-).Hierdurch verändert sich die Motorlänge.Sie erhalten die Motoren mit oder ohne eingebaute Haltebremse.Eine Nachrüstung der Bremseist nicht möglich.Die Motoren sind mattschwarz(RAL9005)lackiert,eine Beständigkeit gegen Lösungsmittel(Tri,Verdünnung o.ä.)besteht nicht.I.4Allgemeine technische DatenKlimaklasse3K3nach EN50178Umgebungstemperatur(bei Nenndaten) 5...+40o C bei Aufstellhöhe bis1000müber NNSprechen Sie bei Umgebungstemperaturenüber40°C und bei gekapseltem Einbau der Motorenunbedingt mit unserer Applikationsabteilung.Zulässige Luftfeuchte(bei Nenndaten)85%rel.Feuchte,nicht betauendLeistungsreduzierung1%/K im Bereich40°C...50°C bis1000müber NN(Ströme und Momente)Bei Aufstellhöhenüber1000müber NN und40°C6%bei2000müber NN17%bei3000müber NN30%bei4000müber NN55%bei5000müber NNKeine Leistungsreduzierung bei Aufstellhöhenüber1000müber NN und Temperaturreduzierungum10K/1000mmax.zulässige Flanschtemperatur65°C±10%bei Ausnutzung der NenndatenKugellager-Lebensdauer³20.000BetriebsstundenTechnische Daten siehe Kapitel I.9Lagerungsdaten siehe Kapitel IV.1Seite2Allgemeines Kapitel II.5Standardausrüstung I.5.1BauformDie Grundbauform der Synchron-Servomotoren SM ist die Bauform IM B5nach DIN42950.Die zugelassenen Einbauformen für die einzelnen Motorserien sind in den technischen Daten angegegeben.I.5.2Wellenende A-SeiteDie Kraftübertragung erfolgt über das zylindrische Wellenende A (Passung k6)nach DIN 748,mit Anzugsgewinde und Paßfedernut nach DIN 6885.Treiben die Motoren über Ritzel oder Zahnriemen an,so treten hohe Radialkräfte auf.Die zugelassenen Werte am Wellenende abhängig von der Drehzahl entnehmen Sie denDiagrammen in Kapitel I.8.3.Die Maximalwerte bei Nenndrehzahl finden Sie in den technischen Daten.Bei Kraftangriff an der Mitte des freien Wellenendes kann F R 10%größer sein.Für die Lebensdauer der Lager sind 20.000Betriebsstunden zugrunde gelegt.Die Axialkraft F A darf F R /3nicht überschreiten.Als ideale spielfreie Kupplungselemente haben sich doppelkonische Spannzangen eventuell in Verbindung mit Metallbalg-Kupplungen bewährt.I.5.3FlanschFlanschmaße nach IEC-Norm,Passung j6,Genauigkeit nach DIN42955.Toleranzklasse :N (R als Option -65-erhältlich)Kapitel I Allgemeines Seite 3Kollmorgen Seidel 10.00-E.4.929.4/9SM45..100-MotorenSM45..100-Motoren10.00Kollmorgen Seidel I.5.4SchutzartStandardausführung IP65Motoren mit Fremdlüfter(Option-BV-)IP54Standard-Wellendurchführung IP64Wellendurchführung mit Wellendichtring(Option-J-)IP65I.5.5SchutzeinrichtungIn der Standardausführung ist jeder Motor mit einem Thermoschutzkontakt(potentialfreierÖffner)ausgestattet.Den Schaltpunkt entnehmen Sie den technischen Daten.Schutz gegenkurzzeitige,sehr hoheÜberlastung bietet der Thermoschutzkontakt nicht.Der Thermoschutz-kontakt mußin dasÜberwachungssystem des Transistor-Wechselrichters eingeschleift werden.Die Flanschtemperatur darf bei Betrieb mit Nenndaten65°C nichtüberschreiten.I.5.6IsolierstoffklasseDie Wicklung ist,entsprechend der Isolierstoffklasse F nach DIN57530,für105Kelvin Grenz-übertemperatur bei40°C Umgebungstemperatur ausgelegt.I.5.7SchwinggüteDie Motoren sind in Schwinggüte N nach DIN ISO2373ausgeführt.I.5.8AnschlußtechnikMotor Tacho/RLG Standard/Option Leistung Standard/OptionSM45Stecker abgewinkelt/—Stecker abgewinkelt/—SM56/71/100Stecker abgewinkelt/—Klemmkasten/—Die Gegenstecker gehören nicht zum Lieferumfang.Rotorlagegeber-und Leistungsleitungenbieten wir Ihnen fertig konfektioniert an.I.5.9Tachogenerator,RotorlagegeberDie Motoren sind mit einem Hohlwellen-Tachogenerator ausgerüstet,der mit dem Rotorlagege-ber mit Magnetgabelschranken eine Einheit bildet.Der Drehstromtachogenerator hat6Pole,diese Anzahl ist mit der Polzahl des Motors identisch.Die Tachokonstante ist von der Motor-Nenndrehzahl abhängig.Seite4Allgemeines Kapitel II.6Optionen-09-Sonderflansch und Sonderwelle sind möglich,wir bitten ggf.um Anfrage.-J-Radialwellen-Dichtring:Gegen Mehrpreis kann ein Radialwellen-Dichtring geliefert werden zwecksAbdichtung gegenÖlnebel und Spritzöl.Die Schutzart der Wellendurchführungerhöht sich damit auf IP65.Der Dichtring ist für Trockenlauf nicht geeignet.-65-Niedrige Toleranz der Flansch und Wellenabmessungen sowie erhöhteKonzentrizität und Rechwinkligkeit nach DIN42955-66-Wellenende A-Seite ohne Paßfeder und Paßfedernut,Troleranzfeld k6.-67-Wellenende A-Seite ohne Paßfeder und Paßfedernut,hochgenau geschliffen fürÖlpressverband,Toleranzfeld k5-426-Impulsgeber-Adapter für ROD426mit Kupplung und Spannpratzen-G-Im Motor integrierte Permanentmagnetbremse(24VDC),die im Spannungslosen Zustand den Rotor blockiert.Die Haltebremsen sind als Stillstandsbremsen ausgelegt und fürdauernde,betriebsmäßige Abbremsvorgänge ungeeignet.Ist die Bremse gelöst,kannsich der Rotor ohne Restmoment bewegen,die Arbeitsweise ist spielfrei!-92-Tropenisolation-BV-Zur Erhöhung der Nenndrehmomente können die Motoren SM56/71/100mitangebautem Fremdlüfter geliefert werden.Der Lüfter saugt an der B-Seite an,kühltdie Motorenoberfläche und die Luft tritt an der A-Seite wieder aus.Der elektrische Anschlußder Lüfter erfolgtüber einen Stecker.Der Gegenstecker gehört zum Lieferumfang der Option.Die Schutzart des Synchron-Servomotors mit Fremdlüfter ist IP54.I.7AuswahlkriterienDie Drehstrom-Servomotoren sind für den Betrieb an Seidel-Transistor-Wechselrichtern der Se-rien60WKS und64WKS ausgelegt.Beide Einheiten zusammen bilden einen geschlossenen Drehzahl-oder Momentenregelkreis.Als wichtigste Auswahlkriterien gelten:—Stillstandsmoment M0[Nm]—Nenndrehzahl n n[min-1]—Trägheitsmomente von Motor und Last J[kgcm2]—Effektivmoment(errechnet)M rms[Nm]Beachten Sie bei der Berechnung der erforderlichen Motoren und Transistor-Wechselrichter diestatische Last und die dynamische Belastung(beschleunigen/bremsen).Formelzusammenstellungen und Berechnungsbeispiele können Sie von unsererApplikationsabteilung anfordern.I.8KennlinienI.8.1S1-Drehmoment-Kennlinien SM45..100unbelüftetI.8.2S1-Drehmoment-Kennlinien SM56..100belüftetI.8.3Radial-/Axialkräfte am WellenendeI.9Technische DatenI.9.1BegriffsdefinitionenStillstandsdrehmoment M0[Nm]Das Stillstandsdrehmoment kann bei Drehzahl n=0min-1und Nenn-Umgebungsbedingungenunbegrenzt lange abgegeben werden.Nenndrehmoment M n[Nm]Das Nenndrehmoment wird abgegeben,wenn der Motor bei Nenndrehzahl Nennstrom auf-nimmt.Das Nenndrehmoment kann im Dauerbetrieb(S1)bei Nenndrehzahl unbegrenzt langeabgegeben werden.Stillstandsstrom I0rms[A]Der Stillstandsstrom ist der Sinus-Effektiv-Stromwert,den der Motor bei Stillstand aufnimmt,umdas Stillstandsmoment abgeben zu können.Nennstrom I nrms[A]Der Nennstrom ist der Sinus-Effektiv-Stromwert,den der Motor bei Nenndrehzahl aufnimmt,umdas Nennmoment abgeben zu können.Spitzenstrom(Impulsstrom)I0max[A]Der Spitzenstrom(Sinus-Effektivwert)sollte den4-fachen Nennstrom nichtübersteigen.Dentatsächlichen Wert bestimmt der Spitzenstrom des verwendeten Transistor-Wechselrichters.Drehmomentkonstante K Trms[Nm/A]Die Drehmomentkonstante gibt an,wieviel Drehmoment in Nm der Motor mit1A Sinus-Effektiv-strom erzeugt.Es gilt M=I x K TSpannungskonstante K E[V/1000min-1]Die Spannungskonstante gibt die auf1000U/min bezogene induzierte Motor EMK als Sinus-Scheitelwert zwischen zwei Klemmen an.Rotorträgheitsmoment J[kgcm²]Die Konstante J ist ein Maßfür das Beschleunigungsvermögen des Motors.Mit I0ergibt sichz.B.die Beschleunigungszeit t b von0bis3000min-1zu:t sx x mM x s x x cmxJb []=300026010242pmit M0in Nm und J in kgcm²Thermische Zeitkonstante t th[min]Die Konstante t th gibt die Erwärmungszeit des kalten Motors bei Belastung mit I0bis zum Erreichen von0,63x105KelvinÜbertemperatur an.Bei Belastung mit Spitzenstrom erfolgt die Erwärmung in wesentlich kürzerer Zeit.I.9.2Technische Daten SM45/56/71/100Parameter Sym EinheitS M 45S -3000S M 45S -4000S M 45S -6000S M 45M -3000S M 45M -4000S M 45M -6000S M 45L -3000S M 45L -4000S M 45L -6000Stillstandsdrehmoment M 0Nm 0,850,850,851,71,71,73,23,23,2Nenndrehzahl n n min -1300040006000300040006000300040006000Nennspannung U n V 240NennstromI n A 2,12,83,23,74,96,55,57,49,6Nenndrehmoment bei n n M n Nm 0,650,60,41,51,41,22,62,42,0Stillstandsstrom I 0A 2,33,14,13,75,17,06,18,612,0Spitzenstrom I 0max A9,212,016,419,220,428,424,434,048,0Motorpolzahlp Mot -666666666Rotorträgheitsmoment J kgcm21,51,51,52,12,12,13,43,43,4Drehmomentkonstante KT Nm/A 0,430,320,240,490,360,260,550,390,28SpannungskonstanteKEV/1000min -145,033,725,151,137,827,457,241,229,4Wicklungswiderstand Ph-Ph R 20W 15,68,84,86,83,71,92,91,60,8Wicklungsinduktivität Ph-Ph L mH 35,820,211,221,211,66,210,26,63,4Statisches Reibmoment M R Nm 0,130,130,130,130,130,130,140,140,14Thermische Zeitkonst.t th min 212121242424262626Tachospannung U TA V/1000min -15,42,72,75,42,72,75,42,72,7Gewicht G kg 4,94,94,95,95,95,96,96,96,9Bestellnummer --662586701067011662526700967880669206788167008Anschlußtechnik RLG-/-Tacho-Stecker -Interconectron 17pol.17pol.17pol.17pol.17pol.17pol.17pol.17pol.17pol.RLG-Kabel -LiYCY6x 2x 0,14mm 2Leistungsstecker -Interconectron 8pol.8pol.8pol.8pol.8pol.8pol.8pol.8pol.8pol.Leistungskabel r mm 21,51,51,51,51,51,51,51,51,5Bremse (Option -G-)Haltemoment M BR Nm 6,56,56,56,56,56,56,56,56,5Anschlußspannung U BR V=242424242424242424elektrische Leistung P BR W 161616161616161616Trägheitsmoment J BR kgcm 21,061,061,061,061,061,061,061,061,06GewichtG BR kg0,60,60,60,60,60,60,60,60,6Eine Fremdbelüftung (Option -BV-)ist für die Motoren der Serie SM45nicht erhältlich.Parameter Sym EinheitS M 56S -2000S M 56S -3000S M 56S -4000S M 56S -6000S M 56M -2000S M 56M -3000S M 56M -4000S M 56M -6000Stillstandsdrehmoment M 0Nm 3,83,83,83,87,07,07,07,0Nenndrehzahl n n min -120003000400060002000300040006000Nennspannung U n V 240NennstromI n A 4,76,89,011,47,710,812,212,8Nenndrehmoment bei n n M n Nm 3,63,43,22,66,25,64,82,8Stillstandsstrom I 0A 4,97,310,215,08,513,016,627,0Spitzenstrom I 0max A 23,535,549,572,041,563,081,0132,0Motorpolzahlp Mot -66666666Rotorträgheitsmoment J kgcm 25,75,75,75,710,210,210,210,2Drehmomentkonstante KT Nm/A 0,810,540,390,270,840,560,430,27SpannungskonstanteKEV/1000min -184,756,540,627,788,358,145,327,9Wicklungswiderstand Ph-Ph R 20W 5,262,341,210,561,970,850,520,2Wicklungsinduktivität Ph-Ph L mH 3314,67,63,616,47,24,41,6Statisches Reibmoment M R Nm 0,150,150,150,150,180,180,180,18Thermische Zeitkonst.t th min 2121212124242424Tachospannung U TA V/1000min -15,45,42,72,75,45,42,72,7Gewicht G kg 6,66,66,66,68,58,58,58,5Bestellnummer --6262162423627886322262424624256334963759Anschlußtechnik RLG-/-Tacho-Stecker -Souriau 12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.RLG-Kabel -LiYCY 6x 2x 0,14mm 2Leistungsanschluß-Bolzen M4M4M4M4M4M4M4M4Leistungskabel r mm 22,52,52,52,52,52,52,54PG-Leistung -PG PG16PG16PG16PG16PG16PG16PG16PG16PG-Bremse/J -PG PG9PG9PG9PG9PG9PG9PG9PG9Bremse (Option -G-)Haltemoment M BR Nm 1212121212121212Anschlußspannung U BR V=2424242424242424elektrische Leistung P BR W 1818181818181818Trägheitsmoment J BR kgcm 23,63,63,63,63,63,63,63,6GewichtG BR kg1,11,11,11,11,11,11,11,1Fremdbelüftung (Option -BV-)Anschlußspannung U BV V /50...60Hz 220220220220220220220220Nennstrom I BV A 0,120,120,120,120,120,120,120,12Anschlußstecker -Souriau 4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.Schutzart --IP54IP54IP54IP54IP54IP54IP54IP54GewichtG BV kg1,71,71,71,71,71,71,71,7Nenndrehmoment bei n n M nBV Nm 4,14,44,54,18,78,37,96,7Stillstandsdrehmoment M 0BV Nm 4,84,84,84,89,29,29,29,2Stillstandsstrom I 0BV A 6,19,212,818,811,217,022,035,0Motorleistungskabelrmm22,52,52,52,52,52,5410S M 56L -2000S M 56L -3000S M 56L -4000S M 56L -6000S M 71K -2000S M 71K -3000S M 71K -4000S M 71K -6000S M 71S -2000S M 71S -3000S M 71S -4000S M 71S -6000S M 71M -2000S M 71M -3000S M 71M -4000S M 71M -6000Sym10,010,010,010,010,510,510,510,516,516,516,516,522,022,022,022,0M 02000300040006000200030004000600020003000400060002000300040006000n n 240U n10,612,814,08,312,216,619,218,617,622,021,58,420,023,018,80,0I n 8,47,25,61,49,38,37,24,313,411,18,31,016,512,57,50,0M n 12,417,223,038,513,420,026,539,521,031,039,066,025,538,048,582,0I 06184112190598811717493138173290116172218368I 0max 6666666666666666p Mot15,715,715,715,722,422,422,422436,336,336,336,350,250,250,250,2J 0,830,600,450,270,800,540,400,270,800,540,430,260,870,590,460,27KT 86,762,446,827,783,556,042,328,583,756,445,026,890,861,348,228,6KE 1,090,550,310,110,970,430,250,110,460,210,130,050,330,150,090,03R 2010,25,43,01,012,25,43,21,47,03,22,00,85,62,61,60,6L 0,210,210,210,210,230,230,230,230,280,280,280,280,330,330,330,33M R26262626272727273232323236363636t th 5,45,42,72,75,45,42,72,75,45,42,72,75,45,42,72,7U TA10,810,810,810,812,212,212,212,216,316,316,316,320,520,520,520,5G63516626076389167367624266242763420637606242863400638886783063045634026734866491-Anschlußtechnik12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.12pol.-6x 2x0,14mm 2-M4M4M4M4M6M6M6M6M6M6M6M6M6M6M6M6-2,52,546444104610104101010rPG16PG16PG16PG16PG21PG21PG21PG21PG21PG21PG21PG21PG21PG21PG21PG21-PG9PG9PG9PG9PG9PG9PG9PG9PG9PG9PG9PG9PG9PG9PG9PG9-Bremse (Option -G-)12121212202020202020202020202020M BR 24242424242424242424242424242424U BR 18181818222222222222222222222222P BR 3,63,63,63,69,59,59,59,59,59,59,59,59,59,59,59,5J BR 1,11,11,11,11,91,91,91,91,91,91,91,91,91,91,91,9G BR Fremdbelüftung (Option -BV-)220220220220220220220220220220220220220220220220U BV0,120,120,120,120,250,250,250,250,250,250,250,250,250,250,250,25I BV 4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.4pol.-IP54IP54IP54IP54IP54IP54IP54IP54IP54IP54IP54IP54IP54IP54IP54IP54-1,71,71,71,72,52,52,52,52,52,52,52,52,52,52,52,5G BV12,211,410,48,012,912,912,210,621,219,818,114,027,725,322,315,4M nBV 13,213,213,213,214,014,014,014,023,023,023,023,031,031,031,031,0M 0BV16,222,530,051,017,826,535,052,029,043,054,091,037,555,070,0118,0I 0BV2,546102,561010610163510162550r。

相关文档
最新文档