第三章复变函数的积分习题与解答

合集下载

复变函数第3篇习题课

复变函数第3篇习题课

y
C2
解 设C1 : z x, x : 1 1
C1 1 O
|z|z dz C1
0 1
1
x
|x|x dx
1
C2 : z ei t , t : 0 d z eit i d t
|z|z dz
C2
ei
t
e i
t
i d t
idt i
0
0
i 原式= | z | z d z | z | z d z
解(C解3i1C)Cg自C22C:1CC:1z原C11zz2z::C22点d1dzzCz3沿xz2虚3ix•iy3iy轴,,0,1,03yx(至(i3yx::x::0i0,00i再yi))1水223dd13平((x3C至1 zCi3i21y)zd)2izd6z3019(ii原y032原)3式x62 式d2i=(d=i6yx)6232962363ii i
故 被积函数 在 | z | 1 上 处处解析
积分结果为0. 6
49页8 直接得到下列积分的结果,并说明理由
Ñ (3) ez (z2 1) d z |z|1
解 结果为 0 , 因为 被积函数 ez (z2 1) 在 | z | 1上 处处解析, 所以 积分结果为0.
Ñ (4)
|z| 1 2
1 (z2 1) (z3 1)
dz
解 结果为 0 , 由 (z2 1) (z3 1) 0 得到
z 1, z 1 3 i
2 这2些点都在圆 | z | 1 的外部。

被积函数

|
z
|
1

2
处处解析
2
积分结果为0. 7
49页9 沿指定曲线的正向计算下列积分

第三章复变函数的积分

第三章复变函数的积分

第三章复变函数的积分3.1 单项选择题3---1设C 是z=e θi ,θ从-π至π的一周,则,⎰Cdz z )Re(=( )(a) -π(B)π(C)- πi (D) πi3---2设C 同3-1题,⎰Cdz z )Im(=( )(A)-π (B) π (C)- πi (D) πi3---3积分曲线C 同上题,则⎰C dz z =( )(A) 0 (B)2π (C)2πi (D)-2πi 3---4设C 为z=eθi ,θ从-2π至2π的一段,则dz z C ⎰=()(A) i (B)2i (c)-2i (D)-i3---5设C 是z=iy,-1≤y ≤1沿虚轴自上而下的线段,则dz z C⎰=()(A )i (B)-i (C)2i (D)-2i 3---6设C 是从z=0到z=1+i 的直线段,则dz z C⎰=()(A)1+i (B)21i + (C)e i 4π- (D)e i 4π3---7设C 是从z=0到z=1再到z=1+i 的折线段,则dz z C⎰=( )(A)21+i(22+iln(1+2)) (B) 21+2i (2+ln(1+2)) (C)21-2i (2+ln(1+2)) (D) 21+2i(2-ln(1+2)) 3---8设C 是从z=0到z=2+i 的线段, 则⎰Cdz z )Re(=( )(A) 2+i (B)2-i (C)1+i/2 (D)1-i/2 3---9设C 是从z=0到z=1再到z=1+i 的折线, 则⎰Cdz z )Re(=( )(A)2 (B)2i (C)2+2i (D)2-2i3---10设C 是z=(1+i)t,t 是从1到2的线段,则⎰Czdz arg =()(A)4π (B)4πi (C) 4π(1+i) (D)1+i 3---11设C 是z=eθi ,θ从-π至π的一段,则⎰Czdz arg =( )(A )-π-2i (B) -π (C) π+2i (D) π-2i3---12设C 是z=(1-i)t,t 是从1到0的一段, 则⎰C dz z =( )(A)1 (B)-1 (C)i (D)-i 3---13设C 是z=eθi ,θ从0至2π的一周,则⎰C dz z =( )(A)0 (B)2π(C)-2π (D)2πi3---14设C 是以-1,1和i 三点为顶点的三角形边界,则dz z C⎰=()(A) 2+i (B)1+i (C) –2(1-i) (D)1-i3---15设C 是单位圆=1的上半部分逆时针方向,则dz z C⎰-)1(=( )(A) 2i (B)2 (C) –2i (D)-2 3---16设C 同上题,则⎰-Cdz z )1(=( )(A) 2i-π (B)π-2i (C) π (D) 2i3-17 设C 是单位圆z=ei θ, 从2π 至0,则dz z C⎰-1 =()(A )4 (B )-4 (C )8 (D )-8 3-18 设C 是z=ei θ一周正向,则dz Cz ⎰2=( )(A) 2 (B)-2 (C)2i(D)03-19 设C 是单位圆1=z 正向一周,则=⎰dz z C( )(A)0(B)π2i (C)π2-i (D)π23-20 设C 是z=0到z=1+I 的直线段,则(=⎰dz Cze )(A)0 (B)()121--eii (C)()11--e ii (D)()eii --113-21 设C 为简单闭曲线正向,S 为C 所围成区域的面积,则=⎰dz z C ( )(A)2S (B-2S (C)2Si (D)-2Si3-22 C 为简单闭曲线,D 为C 所围区域,S 表示此区域的面积,则()dz z C⎰Im =( )(A)S (B)-S (C)Si (D)-Si 3-23 C 为简单闭曲线,D 为C 所围区域,S 是D 的面积,则()dz z C⎰Re =( )(A)S (B)-S (C)-Si (D)Is3-24 设C 是e i z θ=,θ从0至2π的弧段,则⎰C zdz ln =( ) (A)1-2π-i (B)2π-i (C)1-2π-i (D)1-2π+i3-25 C 是椭圆1422=+yx,则dz z zC⎰+2sin =( )(A)0 (B)-sin2 (c)2sin 2π (D)π2-isin2 3-26 设C 是圆e i z θ21=,则⎰-C z ee zsin dz=( ) (A)sin1 (B)π2i e1sin (C)e i 1sin 2π- (D)03-27⎰=12cos z zdz=( )(A)不存在 (B )0 (C )π (D )π- 3-28⎰=++122z z z dz=( ).(A) 2πi (B)-2πi (C)0 (D)2π 解 z 2+2z+2=0的零点是-1+-i ,故被积函数在z 〈1内无奇点,积点为0. 选(C ) 3-29⎰=+122cos z z zdz=( ).(A)0 (B)-πi ( C)πi (D)2πi解 被积函数在z 〈1内处处解析,故积分为0. 选(A )3-30 设C 是沿抛物线y=x 2-1,从(-1,0)至(1,0)的弧段,则dz z c⎰+)1sin(=()。

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答3.1 如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系?【答案 单连通 无关,复连通 有关】 3.2 计算积分 3||21z z =-⎰的值【答案 0】3.3 计算积分22d L zz a -⎰:其中0a >.设 L 分别为(1)(1)||/2; ||; (3)||z a z a a z a a =-=+=【答案 (1)0;(2)πia; (3)πia -】3.4 计算积分 Im d C z z⎰,其中积分曲线C 为 (1)从原点到2i +的直线段;(2)上半圆周 ||1z =,起点为1,终点为1-;(3)圆周|| (0)z a R R -=>的正方向(逆时针方向)【答案 2(1)1i /2;(2)π/2;(3)πR +--】3.5 计算积分 d ||C z zz ⎰的值,(1)||2; (2)||4;z z == 【答案(1)4πi;(2)8πi 】3.6 计算积分的值 π2icos d 2z z+⎰【答案 1/e e +】 3.7计算下列积分的值(1) ||1d cos z z z =⎰;(2)2||2d z ze z =⎰21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++⎰⎰ 【答案(1)0;(2) 0;(3) 0;(4) 4πi4i +】3.8 计算2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z z z z z z z e z z z z z z z e z zz z z e z z z z z ==-===-=--+--+⎰⎰⎰⎰⎰⎰【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】3.9 计算积分 (1)π61ii(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z--⎰⎰⎰【答案13(1)sin1cos1; (2)i; (3)1cos1i[sin(1)1]--+-】3.10 计算复数123cos (1)d C C zzz +⎰,其中1:||2C z =顺时针方向;2:||3C z =逆时针方向.(2)3||1d ()zz e zz a =-⎰,其中复常数||1a ≠【答案 (1) 0;(2)当||1,0;||1,πi aa a e ><】 3.11 设L 为不经过点b 和b -的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与b 的各种可能计算积分的值.d ()()L zI zz b z b =+-⎰ 【答案 (1)L 不含b ±,则I=0;(2)L 含b ,πi bI =;L 含b -,πib I =-;(3)两点在内部 0I =】3.12 已知 π3||2()d e h z zξξξξ==-⎰,试求(i),(i)h h -,以及当||2z >时,()h z '的值. 【 ()π(i);(i)i);||2,()0h i h z h z '=-=>=】 3.13 计算积分 3d ()zC ze zz a -⎰,其中 常数a 在闭曲线C 内部【答案 1(2)2aa e +】3.14 设 C 为正向圆周1=z ,且||1a ≠,证明:积分222π1||22π||1||1 (||1)|d ||| (||1)a z a a z z a a -=-<⎧⎪=⎨->⎪⎩⎰3.15 利用积分 ||1d 2z zz =+⎰的值,证明2π012cos d 054cos θθθ+=+⎰3.16 计算积分 2|||d |,(||)||z r z a r z a =≠-⎰(提示:令i i :|d |d ,r z c z re z z θ=⇒=注意到点2,r aa 是关于圆周||z r =的对称点)3.17.已知2πsin 4()d f z zζζζζ==-⎰求(12i),(1),(1)f f f '-.3.18 计算积分(2)2||1cos d z z zz e z =⎰本章计算机仿真编程3.19 计算机仿真编程验证3.15的积分结果2π012cos d 054cos θθθ+=+⎰3.20 计算机仿真计算下列积分的值 (沿非闭合路径的积分)π63πii i2123πi(1)d ; (2)ch3d ; (3)(1)d ;zz I e z I z z I z e z --===-⎰⎰⎰i4211tan (4)d ,cos zI z z +=⎰其积分的路径为沿1到i 的直线段.(说明:沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程Matlab 直接求解)。

复变函数3

复变函数3

∫= 1it2 (1+ i)dt = −1+ i t3 1 = −1+ i
0
30 3
∫ 2. 计算积分 ez dz ,其中 c 为
c
(1)从 0 到 1 再到1 + i 的折线 (2)从 0 到1 + i 的直线
解:(1)从 0 到 1 的线段 c1 方程为: z = x + iy = x, x : 0 → 1,
解:各积分的被积函数的奇点为:(1) z = −2 ,(2) (z + 1)2 + 3 = 0
即 z = −1± 3i ,(3) z = ± 2i (4) z = kπ + π , k 为任意整数, 2
(5)被积函数处处解析,无奇点
不难看出,上述奇点的模皆大于 1,即皆在积分曲线之外,从而在积分曲线内被
0
0
0
= e −1+ ei(sin1− i cos1+ i) = e(cos1+ i sin1) −1 = e1+i −1;
(2)从 0 到1 + i 的直线段的方程为 z = x + iy = t + ti ,t : 0 → 1,
代入积分表达式中,得
∫ ∫ ∫ ezdz = 1et+ti (t + ti)′dt = (1+ i) 1et (cos t + i sin t)dt ,
从 1 到1 + i 的线段 c2 方程为: z = x + iy = 1 + iy, y : 0 → 1,
代入积分表达式中,得
∫ ∫ ∫ ∫ ∫ ezdz = ezdz + ezdz = 1exdx + 1e1+yi (1+ yi)′dy

《复变函数》第四版习题解答第3章

《复变函数》第四版习题解答第3章

-1-
∫ ∫
C
Re[ f (z )]dz = Im[ f (z )]dz =
∫ ∫

0 2π
Re e iθ de iθ = cos θ (− sin θ + i cos θ )dθ = π i ≠ 0
[ ]


0
C
0
Im e iθ deiθ = sin θ (− sin θ + i cos θ )dθ = −π ≠ 0
3.设 f ( z ) 在单连域 D 内解析,C 为 D 内任何一条正向简单闭曲线,问


C
Re[ f (z )]dz =

C
Im[ f (z )]dz = 0
是否成立,如果成立,给出证明;如果不成立,举例说明。 未必成立。令 f ( z ) = z , C : z = 1 ,则 f ( z ) 在全平面上解析,但是
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i

(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz 1 = ∫ z + a dz = 2π i 2 2 C z−a z+a z −a
2
=
z =a
=0
(8)由 Cauchy 积分公式, (9)由高阶求导公式, ∫
v ∫
C
sin zdz = 2π i sin z |z =0 = 0 z
2
sin z
C
π⎞ ⎛ ⎜z − ⎟ 2⎠ ⎝
dz = 2π i(sin z )'

复变函数积分习题与解答

复变函数积分习题与解答

第三章复变函数的积分习题与解答假如函数f (z)是在【 1】单连通地域; 【 2】复通地域中的分析函数,问其积分值与路径有 没关系 【答案 单连通 没关,复连通 有关】idz计算积分 |z| 2z 3 1 的值【答案 0 】idz计算积分L z2a 2 : 此中 a 0.设 L 分别为(1) (1)| z |a / 2;| z a | a;(3) | z a |a【答案 (1)0πiπi;( 2) a ; (3) a】计算积分CIm zdz,此中积分曲线C 为(1)从原点到 2 i 的直线段;(2)上半圆周 | z| 1,起点为 1,终点为1;(3)圆周| za | R (R0)的正方向(逆时针方向)【答案(1)1 i / 2;(2) π/ 2;(3) πR 2 】izdz计算积分C | z | 的值,(1)| z | 2;(2) | z| 4;【答案 (1)4πi;(2)8 πi 】π 2i zdzcos计算积分的值2【答案 e 1/ e 】计算以下积分的值( 1)idz2(3)i |z|dz 4;(4)i |z| 1( zdz|z| 1cosz ;( 2) i|z| 2ze dz1z 22 z2i 1)(z 2)4πi【答案( 1) 0;( 2) 0 ;( 3) 0 ;( 4) 4 i 】计算e z(2)iz(1)i |z| 2z3 dz;|z| 2( z 1)2 (2 z 1) dz;(3)i|zcos zdz;(4)i |z|e zdz i| 1( z i) 31z 2(z2) (5)i |z|ez(6)idz1 z5dz;|zi| 2z 2 ( z 2 4)【答案 ( ) ;( ) ;( ) π icosi ;( )3πiπiπ 0 0 42;( )12 ( )8 】1 2 35 6计算积分(1)(1)1 6πi i 1)e z dzzsin zdz; (2) 0 ch3zdz; (3) 0 ( z 【答案(1)sin1 cos1; (2) 1 i;(3)1 cos1 i[sin(1) 1]】3计算复数(1)cos 3z dz ,此中 C 1:| z | 2顺时针方向;C 2:| z | 3逆时针方向.CC( 2)i|z|e zdz,此中复常数 | a | 11 ( z a)3【答案 ( 1) 0 ;( 2)当 | a | 1,0;| a | 1,πe ai 】设 L 为不经过点 b 和 b 的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与 b 的各种可能计算积分的值.Ii L( z zb)dzb)( z(1) Lb ,则 I=0; ( 2)L 含 b , Iπi b ,Iπi【答案 不含 b; L 含 b;( 3)两点在内部 I0 】πh( z)i |e 3d已知 | 2,试求 h(i), h( i) ,以及当 | z | 2 时, h ( z) 的值 .z【h(i)π( 3 i); h( i) π(3 i);| z | 2, h ( z)0 】ize z计算积分C ( za)3dz,此中 常数 a 在闭曲线 C 内部1(2 a) e a【答案 2】设 C 为正向圆周z1,且 | a |1,证明:积分|dz |2 π(| a | 1)1 |a|222 π(| a | 1)i |z| 1 | z a |21|a|利用积分计算积分iidz|z| 1 z 2 的值,证明|dz | ,(| a | r ) |z| r| z a |22π1 2cosd 05 4cos(提示 :令 c : z re i|dz | i r z dz, 注意到点 a, r2a 是关于圆周| z |r的对称点). 已知sinπf ( z)4 d2z求 f (1 2i), f (1), f (1) .cos z计算积分(2) i |z| 1e z z 2dz本章计算机仿真编程2π1 2cos5d计算机仿真编程考据的积分结果 4cos计算机仿真计算以下积分的值(沿非闭合路径的积分)(1)I 13 πi (2) I 2 6πich3zdz;(3) I 3i zdz;e 2 zdz;0 ( z 1)eπii1tan z(4) I 4cos 2 dz,1 到 i 的直线段.1z 其积分的路径为沿( 说明: 沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程 Matlab 直接求解 )。

【精品】复变函数第三章习题答案

复变函数第三章习题答案------------------------------------------作者------------------------------------------日期第三章 柯西定理 柯西积分掌握内容:1.柯西积分定理:若函数()f z 在围线C 之内是处处解析的,则()Cf z dz =⎰0。

2.柯西积分定理的推广:若函数()f z 在围线C 之内的,,...n z z z 12点不解析,则()()()...()nCC C C f z dz f z dz f z dz f z dz =+++⎰⎰⎰⎰12,其中,,...n C C C 12是分别以,,...n z z z 12为圆点,以充分小的ε为半径的圆。

3.若在围线C 之内存在不解析点,复变函数沿围线积分怎么求呢?——运用柯西积分公式。

柯西积分公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()Cf z dz if z z z π=-⎰002 4.柯西积分公式的高阶求导公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()()()!n n Cf z i dz f z z z n π+=-⎰0102 习题:1.计算积分⎰++-idz ix y x 102)(积分路径是直线段。

解:令iy x z +=,则idydx dz += 积分路径如图所示:在积分路径上:x y =,所以3131212121312110322232112112112112102102i x ix y i x ix x dxix x i iydy xdx dx ix x dyix x i iydy ydx dx ix x idy dx ix y x dz ixy x ii+-=-+--+=++--+=++--+=++-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++)()()()()())(()(2.计算积分⎰-iidz z 。

复变函数习题解答(第3章)

p141第三章习题(一)[ 5, 7, 13, 14, 15, 17, 18 ]5. 由积分⎰C1/(z + 2) dz之值证明⎰[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = 0,其中C取单位圆周| z | = 1.【解】因为1/(z + 2)在圆| z | < 3/2内解析,故⎰C1/(z + 2) dz = 0.设C : z(θ)= e iθ,θ∈[0, 2π].则⎰C1/(z + 2) dz = ⎰C1/(z + 2) dz = ⎰[0, 2π] i e iθ/(e iθ + 2) dθ= ⎰[0, 2π] i (cosθ + i sinθ)/(cosθ + i sinθ + 2) dθ= ⎰[0, 2π] (- 2 sinθ + i (1 + 2cosθ ))/(5 + 4cosθ) dθ= ⎰[0, 2π] (- 2 sinθ)/(5 + 4cosθ) dθ+ i ⎰[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ.所以⎰[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.因(1 + 2cosθ ))/(5 + 4cosθ)以2π为周期,故⎰[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0;因(1 + 2cosθ ))/(5 + 4cosθ)为偶函数,故⎰[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = (1/2) ⎰[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.7. (分部积分法)设函数f(z), g(z)在单连通区域D内解析,α, β是D内两点,试证⎰[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -⎰[α, β] g(z) f’(z)dz.【解】因f(z), g(z)区域D内解析,故f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’的积分都与路径无关.⎰[α, β] f(z)g’(z)dz + ⎰[α, β] g(z) f’(z)dz = ⎰[α, β] ( f(z)g’(z)dz + g(z) f’(z))dz= ⎰[α, β] ( f(z)g(z))’dz.而f(z)g(z)是( f(z)g(z))’在单连通区域D内的一个原函数,所以⎰[α, β] ( f(z)g(z))’dz = f(β)g(β) -f(α)g(α) = ( f(z)g(z))|[α, β].因此有⎰[α, β] f(z)g’(z)dz + ⎰[α, β] g(z) f’(z)dz = ( f(z)g(z))|[α, β],即⎰[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -⎰[α, β] g(z) f’(z)dz.13. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,求证Γ亦为光滑曲线.【解】分两种情况讨论.(1) 当z(α) ≠z(β)时,C不是闭曲线.此时z(t)是[α, β]到D内的单射,z(t)∈C1[α, β],且在[α, β]上,| z’(t) |≠ 0.因Γ是曲线C在映射f下的象,所以Γ可表示为w = f(z(t)) (α≤t≤β).∀t∈[α, β],z(t)∈D.因f于区域D内解析,故f在z(t)处解析,因此f(z(t))在t处可导,且导数为f’(z(t))z’(t).显然,f’(z(t))z’(t)在[α, β]上是连续的,所以f(z(t))∈C1[α, β].因为f(z)于区域D内是单叶的,即f(z)是区域D到 的单射,而z(t)是[α, β]到D 内的单射,故f(z(t))是[α, β]到 内的单射.因在D内有f’(z) ≠ 0,故在[α, β]上,| f’(z(t))z’(t) |= | f’(z(t)) | · |z’(t) |≠ 0.所以,Γ是光滑曲线.(2) 当z(α) = z(β)时,C是闭曲线.此时z(t)∈C1[α, β];在[α, β]上,有| z’(t) |≠ 0;z’(α) = z’(β);∀t1∈[α, β],∀t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2).与(1)完全相同的做法,可以证明f(z(t))∈C1[α, β],且| f’(z(t))z’(t) |≠ 0.由z(α) = z(β)和z’(α) = z’(β),可知f’(z(α))z’(α) = f’(z(β))z’(β).因为∀t1∈[α, β],∀t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2),由f(z)于区域D内单叶,因此我们有f(z(t1)) ≠f(z(t2)).所以Γ是光滑的闭曲线.14. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,证明积分换元公式⎰ΓΦ(w) dw = ⎰CΦ( f(z)) f’(z) dz.其中Φ(w)沿曲线Γ连续.【解】由13题知曲线Γ也是光滑曲线,其方程为w(t) = f(z(t)) (α≤t≤β).故⎰ΓΦ(w) dw = ⎰[α, β] Φ(w(t)) ·w’(t) dt = ⎰[α, β] Φ( f(z(t))) · ( f’(z(t)) z’(t)) dt.而⎰CΦ( f(z)) f’(z) dz = ⎰[α, β] ( Φ( f(z(t))) f’(z(t))) ·z’(t) dt.所以⎰ΓΦ(w) dw = ⎰CΦ( f(z)) f’(z) dz.15. 设函数f(z)在z平面上解析,且| f(z) |恒大于一个正的常数,试证f(z)必为常数.【解】因| f(z) |恒大于一个正的常数,设此常数为M.则∀z∈ ,| f(z) | ≥M,因此| f(z) | ≠ 0,即f(z) ≠ 0.所以函数1/f(z)在 上解析,且| 1/f(z) | ≤ 1/M.由Liuville定理,1/f(z)为常数,因此f(z)也为常数.17. 设函数f(z)在区域D内解析,试证(∂2/∂x2 + ∂2/∂y2) | f(z) |2 = 4 | f’(z) |2.【解】设f(z) = u + i v,w = | f(z) |2,则w = ln ( u 2 + v 2 ).w x = 2(u x u+ v x v),w y = 2(u y u+ v y v);w xx = 2(u xx u+ u x2 + v xx v+ v x2 ),w yy = 2(u yy u+ u y2 + v yy v+ v y2 );因为u, v都是调和函数,所以u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,故w xx + w yy = 2 (u x2 + v x2 + u y2 + v y2) = 4 (u x2 + v x2) = 4 | f(z) |2;即(∂2/∂x2 + ∂2/∂y2) | f(z) |2 = 4 | f’(z) |2.18. 设函数f(z)在区域D内解析,且f’(z) ≠ 0.试证ln | f’(z) |为区域D内的调和函数.【解】∀a∈D,因区域D是开集,故存在r1 > 0,使得K(a, r1) = { z∈ | | z -a | < r1 } ⊆D.因f’(a) ≠ 0,而解析函数f’(z)是连续的,故存在r2 > 0,使得K(a, r2) ⊆K(a, r1),且| f’(z) -f’(a)| < | f’(a) |.用三角不等式,此时有| f’(z)| > | f’(a) | - | f’(z) -f’(a)| > 0.记U = { z∈ | | z -f’(a)| < | f’(a) |},则U是一个不包含原点的单连通区域.在沿射线L = {z∈ | z = - f’(a) t,t≥ 0 }割开的复平面上,多值函数g(z) = ln z可分出多个连续单值分支,每个单值连续分支g(z)k在 \L上都是解析的.∀t≥ 0,| - f’(a) t -f’(a) | = (t + 1) | f’(a) | ≥ | f’(a) |,故- f’(a) t ∉U.所以U ⊆ \L,即每个单值连续分支g(z)k在U上都是解析的.因为当z∈K(a, r2)时,f’(z)∈U,故复合函数g( f’(z))k在上解析.而Re(g( f’(z))k) = ln | f’(z) |,所以ln | f’(z) |在K(a, r2)上是调和的.由a∈D的任意性,知ln | f’(z) |在D上是调和的.【解2】用Caucht-Riemann方程直接验证.因为f’(z)也在区域D内解析,设f’(z) = u + i v,则u, v也满足Cauchy-Riemann方程.记w = ln | f’(z) |,则w = (1/2) ln ( u 2 + v 2 ),w x = (u x u+ v x v) /( u 2 + v 2 ),w y = (u y u+ v y v) /( u 2 + v 2 );w xx = ((u xx u+ u x2 + v xx v+ v x2 )( u 2 + v 2 ) - 2(u x u+ v x v)2)/( u 2 + v 2 )2;w yy = ((u yy u+ u y2 + v yy v+ v y2 )( u 2 + v 2 ) - 2(u y u+ v y v)2)/( u 2 + v 2 )2;因为u, v都是调和函数,所以u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,u x v x + u y v y = 0,因此(u x u+ v x v)2 + (u y u+ v y v)2= u x2u 2+ v x 2v 2 + 2 u x u v x v+ u y2u 2+ v y 2v 2 + 2 u y u v y v= (u x2 + v x2 )( u 2 + v 2 );故w xx + w yy = (2(u x2 + v x2 )( u 2 + v 2 ) - 2(u x2 + v x2 )( u 2 + v 2 ))/( u 2 + v 2 )2 = 0.所以w为区域D内的调和函数.[初看此题,就是要验证这个函数满足Laplace方程.因为解析函数的导数还是解析的,所以问题相当于证明ln | f(z) |是调和的,正如【解2】所做.于是开始打字,打了两行之后,注意到ln | f’(z) |是Ln f’(z)的实部.但Ln z不是单值函数,它也没有在整个 上的单值连续分支,【解1】前面的处理就是要解决这个问题.] p141第三章习题(二)[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]1. 设函数f(z)在0 < | z | < 1内解析,且沿任何圆周C : | z | = r, 0 < r < 1的积分值为零.问f(z)是否必须在z = 0处解析?试举例说明之.【解】不必.例如f(z) = 1/z2就满足题目条件,但在z = 0处未定义.[事实上可以任意选择一个在| z | < 1内解析的函数g(z),然后修改它在原点处的函数值得到新的函数f(z),那么新的函数f(z)在原点不连续,因此肯定是解析.但在0 < | z | < 1内f(z) = g(z),而g(z)作为在| z | < 1内解析的函数,必然沿任何圆周C : | z | = r的积分值都是零.因此f(z)沿任何圆周C : | z | = r的积分值也都是零.若进一步加强题目条件,我们可以考虑,在极限lim z→0 f(z)存在的条件下,补充定义f(0) = lim z→0 f(z),是否f(z)就一定在z = 0处解析?假若加强条件后的结论是成立,我们还可以考虑,是否存在满足题目条件的函数,使得极限lim z→0 f(z)不存在,也不是∞?]2. 沿从1到-1的如下路径求⎰C1/√z dz.(1) 上半单位圆周;(2) 下半单位圆周,其中√z取主值支.【解】(1) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[0, π].⎰C1/√z dz = ⎰[0, π] i e iθ/e iθ/2dθ = ⎰[0, π] i e iθ/2dθ = 2e iθ/2|[0, π] = 2(- 1 + i).(2) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[-π, 0].⎰C1/√z dz = -⎰[-π, 0] i e iθ/e iθ/2dθ = -⎰[-π, 0] i e iθ/2dθ = - 2e iθ/2|[-π, 0] = 2(- 1 -i).[这个题目中看起来有些问题:我们取主值支,通常在是考虑割去原点及负实轴的z平面上定义的单值连续分支.因此,无论(1)还是(2),曲线C上的点-1总不在区域中(在区域的边界点上).因此曲线C也不在区域中.所以,题目应该按下面的方式来理解:考虑单位圆周上的点ζ,以及沿C从1到ζ的积分的极限,当ζ分别在区域y > 0和区域y < 0中趋向于-1时,分别对应(1)和(2)的情形,简单说就是上岸和下岸的极限情形.那么按照上述方式理解时,仍然可以象我们所做的那样,用把积分曲线参数化的办法来计算,这是由积分对积分区域的连续性,即绝对连续性来保证的.以后我们遇到类似的情形,都以这种方式来理解.]3. 试证| ⎰C(z + 1)/(z - 1) dz | ≤ 8π,其中C为圆周| z - 1 | = 2.【解】若z∈C,| z + 1 | ≤ | z - 1 | + 2 = 4,故| (z + 1)/(z - 1) | ≤ 2.因此| ⎰C(z + 1)/(z - 1) dz | ≤⎰C| (z + 1)/(z - 1) | ds≤ 2 · Length(C) = 8π.4. 设a, b为实数,s = σ+ i t (σ > 0)时,试证:| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.【解】因为f(z) = e sz在 上解析,故f(z)的积分与路径无关.设C是从a到b的直线段,因为e sz/s是f(z)的一个原函数,所以| ⎰C e sz dz | = | e sz/s |[a, b] | = | e bs–e as|/| s |.而| ⎰C e sz dz | ≤⎰C | e sz|ds = ⎰C | e(σ+ i t)z|ds = ⎰C | eσ z+ i tz|ds= ⎰C | eσ z|ds ≤⎰C e max{a, b} ·σ ds = | b–a | e max{a, b} ·σ.所以| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.5. 设在区域D = { z∈ : | arg z | < π/2 }内的单位圆周上任取一点z,用D内曲线C连接0与z,试证:Re(⎰C1/(1 + z2) dz ) = π/4.【解】1/(1 + z2)在单连通区域D内解析,故积分与路径无关.设z = x + i y,∀z∈D,i z∈{ z∈ : 0 < arg z < π } = { z∈ : Im z > 0 },-i z∈{ z∈ : -π < arg z < 0 } = { z∈ : Im z < 0 },故1 + i z∈{ z∈ : Im z > 0 }, 1 -i z∈{ z∈ : Im z < 0 }.设ln(z)是Ln(z)的主值分支,则在区域D内( ln(1 + i z) - ln(1 -i z) )/(2i)是解析的,且(( ln(1 + i z) - ln(1 -i z) )/(2i))’ = (i/(1 + i z) + i/(1 -i z))(2i) = 1/(1 + z2);即( ln(1 + i z) - ln(1 -i z) )/(2i)是1/(1 + z2)的一个原函数.⎰C1/(1 + z2) dz = ( ln(1 + i z) - ln(1 -i z) )/2 |[0, z]= (ln(1 + i z) - ln(1 -i z))/(2i) = ln((1 + i z)/(1 -i z))/(2i)= (ln |(1 + i z)/(1 -i z)| + i arg ((1 + i z)/(1 -i z)))/(2i)= -i (1/2) ln |(1 + i z)/(1 -i z)| + arg ((1 + i z)/(1 -i z))/2,故Re(⎰C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2.设z = cosθ + i sinθ,则cosθ> 0,故(1 + i z)/(1 -i z) = (1 + i (cosθ + i sinθ))/(1 -i (cosθ + i sinθ)) = i cosθ/(1 + sinθ),因此Re(⎰C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2= arg (i cosθ/(1 + sinθ))/2 = (π/2)/2 = π/4.[求1/(1 + z2) = 1/(1 + i z) + 1/(1 -i z) )/2的在区域D上的原函数,容易得到函数( ln(1 + i z) - ln(1 -i z) )/(2i),实际它上就是arctan z.但目前我们对arctan z的性质尚未学到,所以才采用这种间接的做法.另外,注意到点z在单位圆周上,从几何意义上更容易直接地看出等式arg ((1 + i z)/(1 -i z))/2 = π/4成立.最后,还要指出,因曲线C的端点0不在区域D中,因此C不是区域D中的曲线.参考我们在第2题后面的注释.]6. 试计算积分⎰C( | z | - e z sin z ) dz之值,其中C为圆周| z | = a > 0.【解】在C上,函数| z | - e z sin z与函数a- e z sin z的相同,故其积分值相同,即⎰C( | z | - e z sin z ) dz = ⎰C( a- e z sin z ) dz.而函数a- e z sin z在 上解析,由Cauchy-Goursat定理,⎰C( a- e z sin z ) dz = 0.因此⎰C( | z | - e z sin z ) dz = 0.7. 设(1) f(z)在| z | ≤ 1上连续;(2) 对任意的r (0 < r < 1),⎰| z | = r f(z) dz = 0.试证⎰| zf(z) dz = 0.| = 1【解】设D(r) = { z∈ | | z | ≤r },K(r) = { z∈ | | z | = r },0 < r≤ 1.因f在D(1)上连续,故在D(1)上是一致连续的.再设M = max z∈D(1) { | f(z) | }.∀ε > 0,∃δ1> 0,使得∀z, w∈D(1), 当| z-w | < δ1时,| f(z) -f(w)| < ε/(12π).设正整数n≥ 3,z k= e 2kπi/n ( k = 0, 1, ..., n- 1)是所有的n次单位根.这些点z0, z1, ..., z n– 1将K(1)分成n个弧段σ(1), σ(2), ..., σ(n).其中σ(k) (k = 1, ..., n- 1)是点z k– 1到z k的弧段,σ(n)是z n– 1到z0的弧段.记p(k) (k = 1, ..., n- 1)是点z k– 1到z k的直线段,p(n)是z n– 1到z0的直线段.当n充分大时,max j {Length(σ( j))} = 2π/n < δ1.设P是顺次连接z0, z1, ..., z n– 1所得到的简单闭折线.记ρ = ρ(P, 0).注意到常数f(z j)的积分与路径无关,⎰σ( j)f(z j) dz =⎰p( j)f(z j) dz;那么,| ⎰K(1)f(z) dz -⎰P f(z) dz |= | ∑j⎰σ( j)f(z) dz -∑j⎰p( j)f(z) dz |= | ∑j (⎰σ( j)f(z) dz -⎰p( j)f(z) dz ) |≤∑j | ⎰σ( j)f(z) dz -⎰p( j)f(z) dz |≤∑j ( | ⎰σ( j)f(z) dz -⎰σ( j)f(z j) dz | + | ⎰p( j)f(z j) dz -⎰p( j)f(z) dz | )= ∑j ( | ⎰σ( j) ( f(z)-f(z j)) dz | + | ⎰p( j) ( f(z)-f(z j)) dz | )= ∑j ( ⎰σ( j)ε/(12π) ds + ⎰p( j)ε/(12π) ds )= (ε/(12π))·∑j ( Length(σ( j)) + Length(p( j)) )≤ (ε/(12π))·∑j ( Length(σ( j)) + Length(σ( j)) )= (ε/(12π))· (2 Length(K(1)))= (ε/(12π))· 4π = ε/3.当ρ< r < 1时,P中每条线段p(k)都与K(r)交于两点,设交点顺次为w k, 1, w k, 2.设Q是顺次连接w1, 1, w1, 2, w2, 1, w2, 2, ..., w n, 1, w n, 2所得到的简单闭折线.与前面同样的论证,可知| ⎰K(r)f(z) dz -⎰Q f(z) dz |≤ε/3.因此,| ⎰K(1)f(z) dz | = | ⎰K(1)f(z) dz -⎰K(r)f(z) dz |≤ | ⎰K(1)f(z) dz -⎰P f(z) dz | + | ⎰K(r)f(z) dz -⎰Q f(z) dz | + | ⎰P f(z) dz-⎰Q f(z) dz |≤ε/3 + ε/3 + | ⎰P f(z) dz-⎰Q f(z) dz |.记连接w k, 2到w k +1, 1的直线段为l(k),连接w k, 2到z k +1的直线段为r(k),连接z k +1到w k +1, 1的直线段为s(k),则| ⎰r(k)f(z) dz + ⎰s(k)f(z) dz-⎰l(k)f(z) dz |≤M ( Length(l(k)) + Length(r(k)) + Length(s(k)) ) ≤ 3 M · Length(l(k)).因为当r → 1-时,有Length(l(k)) → 0,故存在r∈(ρ, 1)使得| ⎰r(k)f(z) dz + ⎰s(k)f(z) dz-⎰l(k)f(z) dz | < ε/(3n).对这个r,我们有| ⎰P f(z) dz-⎰Q f(z) dz | = | ∑k (⎰r(k)f(z) dz + ⎰s(k)f(z) dz-⎰l(k)f(z) dz ) |≤∑k (| ⎰r(k)f(z) dz + ⎰s(k)f(z) dz-⎰l(k)f(z) dz |) ≤∑k ε/(3n) = ε/3.故| ⎰K(1)f(z) dz | ≤ε.因此⎰K(1)f(z) dz = 0.8. 设(1) f(z)当| z–z0 | > r0 > 0时是连续的;(2) M(r)表| f(z) |在K r : | z–z0 | = r > r0上的最大值;(3) lim r → +∞r M(r) = 0.试证:lim r → +∞⎰K(r) f(z) dz = 0.【解】当r > r0时,我们有| ⎰K(r) f(z) dz | ≤⎰K(r) | f(z) | ds≤⎰K(r) M(r) ds = 2πr M(r) → 0 (当r → +∞时),所以lim r → +∞⎰K(r) f(z) dz = 0.9. (1) 若函数f(z)在点z = a的邻域内连续,则lim r → 0 ⎰| z–a | = r f(z)/(z–a) dz = 2πi f(a).(2) 若函数f(z)在原点z = 0的邻域内连续,则lim r → 0 ⎰[0, 2π] f(r e iθ ) dθ = 2π f(0).【解】(1) 当r充分小时,用M(r)表| f(z) |在K r : | z–a | = r上的最大值;| ⎰| z–a | = r f(z)/(z–a) dz– 2πi f(a) |= | ⎰| z–a | = r f(z)/(z–a) dz–f(a)⎰| z–a | = r1/(z–a) dz |= | ⎰| z–a | = r( f(z) –f(a))/(z–a) dz | ≤⎰| z–a | = r| f(z) –f(a) |/| z–a| ds≤M(r) ⎰| z–a | = r1/| z–a| ds = 2πr M(r).当r → 0时,由f(z)的连续性,知M(r) → | f(a) |.故| ⎰| z–a | = r f(z)/(z–a) dz– 2πi f(a) | → 0.因此,lim r → 0 ⎰| z–a | = r f(z)/(z–a) dz = 2πi f(a).(2) 根据(1),lim r → 0 ⎰| z | = r f(z)/z dz = 2πi f(0).而当r充分小时,我们有⎰| z | = r f(z)/z dz = ⎰[0, 2π] f(r e iθ )/(r e iθ )· (r e iθi ) dθ = i ⎰[0, 2π] f(r e iθ ) dθ.所以,lim r → 0 (i ⎰[0, 2π] f(r e iθ ) dθ)= 2πi f(0).故lim r → 0 ⎰[0, 2π] f(r e iθ ) dθ = 2π f(0).10. 设函数f(z)在| z | < 1内解析,在闭圆| z | ≤ 1上连续,且f(0) = 1.求积分(1/(2πi))⎰| z | = 1 (2 ± (z + 1/z)) f(z)/z dz之值.【解】(1/(2πi))⎰| z | = 1 (2 ± (z + 1/z)) f(z)/z dz= ⎰| z | = 1 (2f(z)/z± (zf(z)/z + (1/z)f(z)/z) dz= (1/(2πi)) ·( ⎰| z | = 1 2f(z)/z dz ± (⎰| z | = 1 f(z) dz +⎰| z | = 1 f(z)/z 2dz) )= (1/(2πi)) ·( 2(2πi) f(0)± (0+ (2πi/1!)f’(0)) )= 2 f(0)±f’(0) = 2 ±f’(0).11. 若函数f(z)在区域D内解析,C为D内以a, b为端点的直线段,试证:存在数λ,| λ| ≤ 1,与ξ∈C,使得f(b) -f(a) = λ(b -a) f’(ξ).【解】设C的参数方程为z(t) = (1 –t ) a + t b,其中t∈[0, 1].在区域D内,因f(z)是f’(z)的原函数,故f(b) -f(a) = ⎰C f’(z) dz = ⎰[0, 1] f’((1 –t ) a + t b) (b -a) dt == (b -a) ⎰[0, 1] f’((1 –t ) a + t b) dt.(1) 若⎰[0, 1]| f’((1 –t ) a + t b) | dt = 0,因| f’((1 –t ) a + t b) |是[0, 1]上的连续函数,故| f’((1 –t ) a + t b) |在[0, 1]上恒为零.即f’(x)在C上恒为零.此时取λ= 0,任意取ξ∈C,则有f(b) -f(a) = (b -a) ⎰[0, 1] f’((1 –t ) a + t b) dt = 0 = λ(b -a) f’(ξ).(2) 若⎰[0, 1]| f’((1 –t ) a + t b) | dt > 0,因| f’((1 –t ) a + t b) |是[0, 1]上的实变量连续函数,由积分中值定理,存在t0∈[0, 1],使得⎰[0, 1]| f’((1 –t ) a + t b) | dt = | f’((1 –t0) a + t0b) |.取ξ = (1 –t0) a + t0b,则f’(ξ) = f’((1 –t0) a + t0b) ≠ 0,令λ= (⎰[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ).因为| ⎰[0, 1] f’((1 –t ) a + t b) dt | ≤⎰[0, 1]| f’((1 –t ) a + t b) | dt = | f’(ξ) |.所以| λ| = | (⎰[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ) |= | ⎰[0, 1] f’((1 –t ) a + t b) dt |/| f’(ξ) | ≤ 1.且f(b) -f(a) = (b -a) ⎰[0, 1] f’((1 –t ) a + t b) dt = λ(b -a) f’(ξ).12. 如果在| z | < 1内函数f(z)解析,且| f(z) | ≤ 1/(1 - | z |).试证:| f(n)(0) | ≤ (n + 1)!(1 + 1/n)n < e (n + 1)!,n =1, 2, ....【解】设K(r) = { z∈ | | z | = r },0 < r≤ 1.由Cauchy积分公式和高阶导数公式,有| f(n)(0) | = (n!/(2π)) | ⎰K(r) f(z)/z n + 1dz | ≤ (n!/(2π)) ⎰K(r) | f(z) |/| z |n + 1ds≤ (n!/(2π)) ⎰K(r) 1/((1 - | z |)| z |n + 1) ds = (n!/(2π))/((1 -r ) r n + 1) 2πr= n!/((1 -r ) r n).为得到| f(n)(0) |的最好估计,我们希望选取适当的r∈(0, 1),使得n!/((1 -r ) r n)最小,即要使(1 -r ) r n最大.当n≥ 1时,根据均值不等式,(1 -r ) r n = (1 -r ) (r/n)n ·n n≤ (((1 -r ) + (r/n) + ... + (r/n))/(n + 1))n + 1 ·n n = n n/(n + 1)n + 1.当1 -r = r/n,即r = n/(n + 1)时,(1 -r ) r n达到最大值n n/(n + 1)n + 1.因此,我们取r = n/(n + 1),此时有| f(n)(0) | ≤n!/((1 -r ) r n) = n!/(n n/(n + 1)n + 1) = (n + 1)!(1 + 1/n)n < e (n + 1)!.[也可以用数学分析中的办法研究函数g(r) = (1 -r ) r n在(0, 1)内的上确界,也会得到同样的结果.]13. 设在| z | ≤ 1上函数f(z)解析,且| f(z) | ≤ 1.试证:| f’(0) | ≤ 1.【解】设D = { z∈ | | z | ≤ 1 }.由高阶导数公式,| f’(0) | = (1/(2π)) | ⎰∂D f(z)/z 2dz | ≤ (1/(2π)) ⎰∂D1/| z |2 ds = 1.14. 设f(z)为非常数的整函数,又设R, M为任意正数,试证:满足| z | > R且| f(z) | > M的z必存在.【解】若不然,当| z | > R时,| f(z) | ≤M.而f(z)为整函数,故必连续,因此f(z)在| z | ≤R上有界.所以f(z)在 上有界.由Liouville定理,f(z)必为常数,这与题目条件相矛盾.15. 已知u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),试确定解析函数f(z) = u + i v.【解】由于u x + v x = 3(x2 + 2xy–y2) – 2,u y + v y = 3(x2– 2xy–y2) – 2,两式相加,再利用Cauchy-Riemann方程,有u x = 3(x2–y2) – 2.两式相减,再利用Cauchy-Riemann方程,有v x = 6xy.所以f’(z) = u x + i v x = 3(x2–y2) – 2 + 6xy i = 3(x + y i)2– 1 = 3 z2– 2.因此,f(z) = z3– 2z + α,其中α为常数.将z = 0代入,f(z) = z3– 2z + α,得α = f(0).把(x, y) = (0, 0)带入u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),得u(0, 0) + v(0, 0) = 0.设u(0, 0) = c∈ ,则v(0, 0) = -c.因此α = f(0) = u(0, 0) + v(0, 0) i = (1 -i )c.所以,f(z) = z3– 2z + (1 -i )c,其中c为任意实数.[书上答案有误.设f(z) = z3– 2z + (a + b i),则f(z) = (x + y i)3– 2(x + y i) + (a + b i) = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)i.因此,u + v = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)= (x–y)(x2 + 4xy + y2) – 2(x + y) + (a + b),所以,当a + b≠ 0时,不满足题目所给条件.]16. 设(1) 区域D是有界区域,其边界是周线或复周线C;(2) 函数f1(z)及f2(z)在D内解析,在闭域cl(D) = D + C上连续;(3) 沿C,f1(z) = f2(z).试证:在整个闭域cl(D),有f1(z) = f2(z).【解】设f(z) = f1(z) -f2(z).用Cauchy积分公式,∀z∈D有f(z) = (1/(2πi))⎰C f(ζ)/(ζ–z) dζ = 0.所以∀z∈cl(D)有f(z) = 0,即f1(z) = f2(z).∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞•︒ℵℜ℘∇∏∑⎰⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。

(完整版)第三章复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分系 专业 班 姓名 学号§1 复变函数积分的概念 §4 原函数与不定积分一.选择题1.设为从原点沿至的弧段,则[]C 2y x =1i +2()Cx iy dz +=⎰(A )(B ) (C ) (D )1566i -1566i -+1566i --1566i +2. 设是,从1到2的线段,则 []C (1)z i t =+t arg Czdz =⎰(A )(B )(C )(D )4π4i π(1)4i π+1i+3.设是从到的直线段,则[]C 012i π+z Cze dz =⎰(A )(B ) (C ) (D )12e π-12e π--12ei π+12eiπ-4.设在复平面处处解析且,则积分[]()f z ()2iif z dz i πππ-=⎰()iif z dz ππ--=⎰(A ) (B )(C )(D )不能确定2i π2i π-0二.填空题1.设为沿原点到点的直线段,则2。

C 0z =1z i =+2Czdz =⎰2.设为正向圆周,则C |4|1z -=2232(4)A Cz z dz z -+=-⎰10.i π三.解答题1.计算下列积分。

(1)323262121()02iziiz i i i edzee e ππππππ---==-=⎰(2)22222sin 1cos2sin 2224sin 2.244iiiii i zdzz z z dz i e e e e i i i i ππππππππππππππ------⎛⎫==- ⎪⎝⎭⎛⎫--=-=-=+⎪⎝⎭⎰⎰(3)110sin (sin cos )sin1cos1.z zdzz z z =-=-⎰(4)20222cos sin 1sin sin().222iiz z dzz i ππππ==⋅=-⎰2.计算积分的值,其中为正向圆周:||C z dz z ⎰A C (1)2200||22,022224.2i i i z Cz e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I =(2)2200||44,024448.4i i i z Cz e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I =3.分别沿与算出积分的值。

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 复变函数的积分习题与解答
3.1 如果函数
f ( z)
是在【 1】单连通区域;【 2】复通区域中的解析函数,问其积分值与路径
有无关系?
【答案
单连通 无关,复连通
有关】
dz
3.2 计算积分
|z|
2
z 3
1 的值
【答案 0】
dz
3.3 计算积分
L
z
2
a 2
:其中
a
0.设 L 分别为 (1) (1)| z | a / 2;
| z a | a;
(3) | z a |
a
πi
(3)
πi
【答案 (1)0;(2) a ;
a

3.4 计算积分 Im zdz ,其中积分曲线 C 为
C
(1)从原点到 2 i 的直线段;
(2)上半圆周 |
z| 1
,起点为 1,终点为
1;
(3)圆周
| z
a | R ( R
0)
的正方向(逆时针方向)
【答案
(1)1 i / 2;(2) π/ 2;(3)
πR 2 】
z
dz 3.5 计算积分
C
| z| 的值,
(1)| z | 2; (2) | z|
4;
【答案 (1)4πi;(2)8 πi 】
π 2i
3.6 计算积分的值
z
cos dz
2
【答案
e 1/ e 】
3.7 计算下列积分的值
dz
2
(3)
dz
; (4)
dz
( 1)
|z| 1
cosz ;( 2)
|z| 2 ze dz |z| 1
z 2
2 z 4 |z| 1
( z
2i 1
)(z 2)
4πi
【答案( 1) 0;( 2) 0;( 3) 0;( 4) 4 i 】
3.8 计算
(1)
e z
dz;
(2)
z
dz;
|z| 2
z3
|z| 2
( z 1)2
(2 z 1)
(3)
cos z
dz;
(4)
e z dz
|z i| 1
( z i) 3 |z| 1
z 2
(z
2) (5)
e z (6) dz
z 5 dz;
2
2
4)
|z| 1
|z i| 2
z ( z
3
πi
πi
π
【答案 ( ) ;( ) ;( ) π icosi ;(

( )

2 ;( )
128
1 0
2
3
4
5
6
3.9 计算积分
(1)
(1)
1
zsin zdz; (2)
6πi
ch3zdz;
(3) i
( z 1)e z dz
0 【答案
(1)sin1
cos1; (2) 1 i;
(3)1 cos1 i[sin(1) 1]

3

(1)
cos z
dz
,其中 C 1 :| z | 2 顺时针方向; C 2 :| z |
3
逆时针方向.
3.10 计算复数
C 1
C
2
z 3
e z
dz
|z| 1
( z
3
( 2)
a)
,其中复常数
| a | 1
【答案 ( 1) 0;( 2)当
| a |
1,0;| a | 1,πe a i 】
3.11 设 L 为不经过点 b

b 的简单正向(逆时针)曲线,
b 为不等于零的任何复数,试就
曲线 L 与 b 的各种可能计算积分的值.
I
z
dz
L
( z b)( z
b)
(1) L 不含 b ,则 I=0; ( 2) L 含 b ,
I
πi
πi 【答案
b ; L 含 b , I
b
;( 3)两点在内
部 I
0 】
π
h( z)
e 3 d
| | 2
z
3.12 已知
,试求 h(i), h( i) ,以及当 | z | 2 时, h ( z) 的值 .

h(i) π( 3
i); h( i) π(3 i);| z | 2, h ( z) 0 】
ze z
3.13 计算积分
C
( z
a) 3
dz
,其中 常数 a 在闭曲线 C 内部
1
(2 a) e a
【答案 2

3.14 设 C 为正向圆周
z
1
,且
| a | 1
,证明:积分
|dz |
2 π
(| a | 1)
1 |a|2
2
2 π
(| a | 1)
|z| 1 | z a |
2
|a| 1
3.15 利用积分
3.16 计算积分
(提示 :令
c : z
3.17.已知
dz
2π1
2cos
1
z
2 的值,证明 0 5 d 0
|z|
4cos
| dz| ,(| a | r ) |z|
r
| z a |2
2
re i
|dz |
i r
z
dz, 注意到点
a, r
a 是关于圆周
| z | r
的对称点

sin
π
f ( z)
4 d
2 z
求 f (1 2i), f (1), f (1) .
cos z
| z| 1 e z z 2
dz 3.18 计算积分( 2)
本章计算机仿真编程

1 2cos
5
d
3.19 计算机仿真编程验证 3.15 的积分结果
4cos
3.20
计算机仿真计算下列积分的值
(沿非闭合路径的积分)
(1)I 1
3 πi 6πi
(3) I 3
i z
dz;
e 2 z
dz;(2) I 2
ch3zdz;
( z 1)e πi
欢迎下载 2

i
1
tan z
(4) I 4
cos 2 dz,
1 到 i 的直线段.
1
z 其积分的路径为沿
(说明 :沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程 Matlab 直接求解 )
欢迎下载 3。

相关文档
最新文档