二次函数与直线问题常见模型
《一题可破万题——二次函数压轴题常见模型小结》

——二次函数压轴题常见模型小结DBO AxyC问题1:求抛物线解析式和顶点D 坐标12()()y a x x x x =--2y ax bx c=++2()y a x h k=-+十字相乘配方法(★)12轴交点(,0)、(,0)x x x 轴交点(0,c )y 顶点(h,k )原始三角形:重视四点围成的三角形(边、角关系)函数 点形2223(3)(1)(1)4y x x y x x y x =+-=+-=+-问题2:判断△ACD 的形状,并说明理由DBOAxyCD (-1,-4)BOA (-3,0)xyC (0,-3)问题3:E是y轴上一动点,若BE=CE,求点E的坐标DB OA xyCB(1,0)O xyC(0,-3)B(1,0)O xyC(0,-3)问题4:抛物线上有一动点P,过点P作PM⊥x轴于点M,交直线AC与点N,在线段PM、MN中,若其中一条线段是另一条线段的2倍,求点P的坐标。
DB OA xyC最大值及此时点P 的坐标DBO Ax yC PH DB O Ax yC PHEFDB O AxyC PHE F于G ,PH 为邻边作矩形PEGH ,求矩形PEGH 周长的最大值。
DBO Ax yCDB O AxyC PHEG问题7:在对称轴上找一点P,使得△BCP的周长最小,求出P点坐标及△BCP的周长DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题8:在对称轴上找一点P,使得∣PA-PC∣最大,求出P点坐标DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题9:线段MN=1,在对称轴上运动(M 点在N 点上方),求四边形BMNC 周长的最小值及此时M 点坐标DBOAxyC已知抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,OA=OC=3,顶点为D 2y x bx c =++B (1,0)OA (-3,0)xyC (0,-3).x=1NB ’ B ’’M将军饮马:这个将军饮的不是马,是数学!解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,对称。
常见的函数模型

常见的函数模型
函数模型是数学中常见的一种表达式形式,用来描述输入和输出之间的关系。
常见的函数模型包括线性函数、二次函数、指数函数、对数函数和三角函数等。
线性函数的一般形式为y=kx+b,其中k为斜率,b为截距。
该函数模型表示了一条直线的方程,可以用来描述许多实际问题,如物体的运动、经济学中的需求曲线等。
二次函数的一般形式为y=ax+bx+c,其中a、b、c为常数,a不为0。
该函数模型表示的是一个开口向上或向下的抛物线,可以用来描述自由落体、弹道问题等。
指数函数的一般形式为y=a^x,其中a为底数,x为指数,a>0
且a≠1。
该函数模型表示的是一条经过点(0,1)的递增或递减的曲线,可以用来描述复利计算、人口增长等问题。
对数函数的一般形式为y=loga(x),其中a为底数,a>0且a≠1,x>0。
该函数模型表示的是一个递增但增长缓慢的曲线,可以用来描述音量、酸碱度等问题。
三角函数包括正弦函数、余弦函数和正切函数等。
它们的一般形式为y=Asin(x)+B、y=Acos(x)+B和y=Atan(x)+B,其中A、B为常数。
这些函数模型可以用来描述周期性现象,如音波、光波等。
这些常见的函数模型在数学中有着广泛的应用,可以帮助人们更好地理解和解决各种实际问题。
- 1 -。
二次函数(一)——常见二次函数模型

二次函数(一)——所描述的关系、结识抛物线、刹车距离与二次函数一、 知识点回顾1.函数概念小结2.待定系数法求函数解析式3.图像平移法则二、 典例剖析考点1【二次函数的相关概念】例1下列函数中,哪些是二次函数?y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=21x x- (5)y=(x+3)²-x² (6) v=10πr²随堂练习11.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).3.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2 B .y C .y =21x D .y =a 2x考点2【二次函数的一般式】例2-1若y=(m +1)x 267m m --是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对例2-2.已知抛物线y=ax²经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.随堂练习21.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠02.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?3.如果函数y=x 232k k -++kx+1是二次函数,则k 的值一定是______考点3【常见的二次函数模型】例3-1【面积问题】如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值范围.例3-2【密植问题】某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.例3-3【利率问题】人民币一年定期储蓄的年利率是x ,一年到期后,银行将本息合计自动转存,到支取时,银行将扣除利息的20%作为利息税,我如果将10000元存入银行,请写出两年后支取时的本息和y(元)与年利率x的函数表达式。
4 第四讲 二次函数与直线型

第四讲 二次函数与直线型(一)二次函数中的三角形问题(等腰△、Rt △、相似三角形、面积最大问题)例1、如图,在平面直角坐标系中,点A 的坐标为),(m m ,点B 的坐标为),(n n -,抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数n m ,)(n m <分别是方程0322=--x x 的两根.(1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于E D 、 两点(点D 在y 轴右侧),连接OD 、BD .①当OPC ∆为等腰三角形时,求点P 的坐标;②求BOD ∆面积的最大值,并写出此时点D 的坐标.例2、如图1,已知抛物线y=ax 2+bx+c (a≠0)的顶点为C (l ,4),交x 轴于A 、B 两点,交y 轴于点D ,点B 的坐标为(3,0).(1)求点A 的坐标和抛物线的解析式;(2)如图2,设G 为已知抛物线的对称轴上的任意一点,当△BGD 的面积等于△ADB 的面积时,求点G 的坐标;(3)如图3,在抛物线上是否存在一点T ,过点T 作x 轴的垂线,垂足为点M ,过点M 作MN ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD ?若存在,求出点T 的坐标;若不存在,请说明理由.图1 图2 图372x =B(0,4)A(6,0)EFxyO(二)二次函数与四边形的形状(平行四边形、正方形、菱形、矩形)例1.(浙江义乌市) 如图,抛物线322--=x x y 与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.变式训练1.(河南省实验区) 如图,对称轴为直线27=x 的抛物线经过点A (6,0)和点 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.例2、如下图,抛物线)0(2152≠++=a bx ax y 经过A (-3,0),C (5,0)两点,点B 为抛物线的顶点,抛物线的对称轴与x 轴交于点D 。
中考数学压轴题专题-二次函数与线段最值定值及数量关系问题

专题10二次函数与线段最值定值及数量关系问题图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用.一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.【例1】(2021•沈阳)如图,平面直角坐标系中,O是坐标原点,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C(0,3),点P是抛物线的顶点,连接PC.(1)求抛物线的函数表达式并直接写出顶点P的坐标.(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.①当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;②在①的条件下,当点Q在x轴上方时,过点Q作直线l垂直于AQ,直线y=x﹣交直线l于点F,点G在直线y=x﹣上,且AG=AQ时,请直接写出GF的长.【例2】(2021•滨州)如下列图形所示,在平面直角坐标系中,一个三角板的直角顶点与原点O重合,在其绕原点O旋转的过程中,两直角边所在直线分别与抛物线y=x2相交于点A、B(点A在点B的左侧).(1)如图1,若点A、B的横坐标分别为﹣3、,求线段AB中点P的坐标;(2)如图2,若点B的横坐标为4,求线段AB中点P的坐标;(3)如图3,若线段AB中点P的坐标为(x,y),求y关于x的函数解析式;(4)若线段AB中点P的纵坐标为6,求线段AB的长.【例3】(2021•盘锦)如图,抛物线y=﹣x2+2x+6与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,直线y=x﹣2与y轴交于点D,与x轴交于点E,与直线BC交于点F.(1)点F的坐标为;(2)如图1,点P为第一象限抛物线上的一点,PF的延长线交OB于点Q,PM⊥BC于点M,QN⊥BC于点N,若=,求点P的坐标;(3)如图2,点S为第一象限抛物线上的一点,且点S在射线DE上方,动点G从点E出发,沿射线DE方向以每秒4个单位长度的速度运动,当SE=SG,且tan∠SEG=时,求点G的运动时间t.【例4】(2021•巴中)已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C (0,﹣3).(1)求抛物线的表达式;(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.【例5】(2020•孝感)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A,B,C,D;(2)如图1,直线DC交x轴于点E,若tan∠AED=43,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x 轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.【例6】(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【题组一】1.(2021•青山区模拟)已知抛物线y=ax2﹣4ax﹣12a与x轴相交于A,B两点,与y轴交于C点,且OC =OA.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)如图1,点E(m,n)为抛物线上的一点,且0<m<6,连接AE,交对称轴于点P.点F为线段BC上一动点,连接EF,当PA=2PE时,求EF+BF的最小值.(3)如图2,过点M作MQ⊥CM,交x轴于点Q,将线段CQ向上平移t个单位长度,使得线段CQ 与抛物线有两个交点,求t的取值范围.2.(2021•赣州模拟)已知抛物线C1:y=x2﹣4x+3m和C2:y=mx2﹣4mx+3m,其中m≠0且m≠1.(1)抛物线C1的对称轴是,抛物线C2的对称轴是;(2)这两条抛物线相交于点E,F(点E在点F的左侧),求E、F两点的坐标(用含m的代数式表示)并直接写出直线EF与x轴的位置关系;(3)设抛物线C1的顶点为M,C2的顶点为N;①当m为何值时,点M与点N关于直线EF对称?②是否存在实数m,使得MN=2EF?若存在,直接写出实数m的值,若不存在,请说明理由.3.(2021•桓台县二模)在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A,B两点,点A,B的坐标分别为(﹣1,0),(3,0),点M为顶点.(1)求抛物线的解析式;(2)过点M作y轴的垂线,垂足为C,过点B作y轴的平行线,交CM于点D,点H为OC上的任一点,将线段HB绕点H逆时针旋转90°到HP.求∠PCD的度数;(3)在(2)的条件下,将点H改为y轴上的一动点,连接OP,BP,求OP+BP的最小值.4.(2021•成都模拟)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式.(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴分别交于点G,H,设点D的横坐标为m.①求DF+HF的最大值;②连接EG,若∠GEH=45°,求m的值.【题组二】5.(2021•攸县模拟)材料:对抛物线,定义:点叫做该抛物线的焦点,直线叫做该抛物线的准线,且该抛物线上任意一点到焦点的距离与它到准线的距离相等.运用上述材料解决如下问题:如图所示,已知抛物线C:y=ax2﹣4ax的图象与x轴交于O、A两点,且过点.(1)求抛物线C的解析式和点A的坐标;(2)若将抛物线C的图象先向左平移2个单位,再向上平移1个单位得到抛物线C'的图象.①求抛物线C'的焦点坐标和准线方程.②设M为抛物线C'位于第一象限内图象上的任意一点,MN⊥x轴于点N,求MN+MA的最小值,并求出取得这个最小值时点M的坐标.6.(2021•南沙区一模)已知,抛物线y=mx2+x﹣4m与x轴交于点A(﹣4,0)和点B,与y轴交于点C.点D(n,0)为x轴上一动点,且有﹣4<n<0,过点D作直线l⊥x轴,且与直线AC交于点M,与抛物线交于点N,过点N作NP⊥AC于点P.点E在第三象限内,且有OE=OD.(1)求m的值和直线AC的解析式.(2)若点D在运动过程中,AD+CD取得最小值时,求此时n的值.(3)若△ADM的周长与△MNP的周长的比为5:6时,求AE+CE的最小值.7.(2021•宝安区模拟)(1)已知二次函数经过点A(﹣3,0)、B(1,0)、C(0,3),请求该抛物线解析式;(2)点M为抛物线上第二象限内一动点,BM交y轴于点N,当BM将四边形ABCM的面积分为1:2两部分时,求点M的坐标;(3)点P为对称轴上D点下方一动点,点Q为直线y=x第一象限上的动点,且DP=OQ,求BP+BQ 的最小值并求此时点P的坐标.8.(2021•茶陵县模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C,点P是直线BC上方抛物线上的动点.(1)求抛物线的解析式;(2)如图①,连接BC与OP,交于点D,求当的值最大时点P的坐标;(3)如图②,过点P作PD∥AC交x轴于点D,交BC于点E,求BE的最大值及点P的坐标.【题组三】9.(2021•东莞市校级一模)如图,抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于C点,抛物线的对称轴l与x轴交于M点.(1)求抛物线的函数解析式;(2)设点P是直线l上的一个动点,当PA+PC的值最小时,求PA+PC长;(3)已知点N(0,﹣1),在y轴上是否存在点Q,使以M、N、Q为顶点的三角形与△BCM相似?若存在,请求出点Q的坐标;若不存在,请说明理由.10.(2021•怀化模拟)如图,已知抛物线y=ax2+bx+3的对称轴是直线x=1,与x轴交于点A、B,与y 轴交于点C,其中点A的坐标是(﹣1,0).(1)直接写出点B的坐标并求出抛物线的解析式;(2)点P是抛物线上的一个动点.①当∠PCB=∠OCB时,求点P的坐标;②当点P在B、C两点之间运动时,连接AP,交BC于点Q,设t=,求当t值最大时点P的坐标.11.(2021•罗湖区三模)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)直接写出抛物线的解析式:;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴交于点G、H,设点D的横坐标为m.①求DF+HF的最大值;②连接EG,若∠GEH=45°时,求m的值.12.(2021•南海区二模)如图1,抛物线y=x2+bx+c与x轴交于A、B两点,点A、B分别位于原点左、右两侧,且AO=2BO=4,过A点的直线y=kx+c交y轴于点C.(1)求k、b、c的值;(2)在抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,直接写出所有满足条件的点的坐标;若不存在,请说明理由;(3)如图2,点M为线段AC上一点,连接OM,求AM+OM的最小值.【题组四】13.(2020•西宁二模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C(0,52).(1)求抛物线的解析式;(2)若点M是抛物线的顶点,连接AM,CM,求△AMC的面积;(3)若点P是抛物线上的一个动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x 轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.14.(2020•涡阳县一模)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式.(2)点P是直线上方的抛物线上的一个动点,求△ABP的面积最大时的P点坐标.(3)若点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(4)设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点M,使得AM被FC平分?若存在,请求出点M的坐标;若不存在,说明理由.15.(2020•哈尔滨模拟)如图,抛物线y=ax2+bx+5经过坐标轴上A、B和C三点,连接AC,tan C=355OA=3OB.(1)求抛物线的解析式;(2)点Q在第四象限的抛物线上且横坐标为t,连接BQ交y轴于点E,连接CQ、CB,△BCQ的面积为S,求S与t的函数解析式;(3)已知点D是抛物线的顶点,连接CQ,DH所在直线是抛物线的对称轴,连接QH,若∠BQC=45°,HR∥x轴交抛物线于点R,HQ=HR,求点R的坐标.16.(2020•皇姑区校级一模)如图,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于点A,B,其中点B的坐标为(4,0),与y轴交于点C(0,2).(1)求抛物线y=−122+bx+c和直线BC的函数表达式;(2)点P是直线BC上方的抛物线上一个动点,当点P到直线BC的距离最大时,求点P的坐标;(3)连接点O与(2)中求出的点P,交直线BC于点D,点N是直线BC上的一个动点,连接ON,作DF⊥ON于点F,点F在线段ON上,当OD=5DF时,请直接写出点N的坐标.【题组五】17.(2020•岳阳二模)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y 轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若点E在x轴上,且∠ECB=∠CBD,求点E的坐标.(3)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF的最小值.18.(2020•白云区模拟)如图,抛物线y=x2+bx+c交x轴于点A,B两点,OA=1,与y轴交于点C,连接AC,tan∠OAC=3,抛物线的对称轴与x轴交于点D.(1)求点A,C的坐标;(2)若点P在抛物线上,且满足∠PAB=2∠ACO,求直线PA在与y轴交点的坐标;(3)点Q在抛物线上,且在x轴下方,直线AQ,BQ分别交抛物线的对称轴于点M、N.求证:DM+DN 为定值,并求出这个定值.19.(2020•福安市校级模拟)已知,抛物线y=ax2,其中a>0.(1)如图1,若点A、B是此抛物线上两点,且分属于y轴两侧,连接AB与y轴相交于点C,且∠AOB =90°.求证:CO=1;(2)如图2,若点A是此抛物线上一点,过点A的直线恰好与此抛物线仅有一个交点,且与y轴交于点B,与x轴相交于点C.求证:AC=BC.20.(2020•德城区一模)已知,在以O为原点的直角坐标系中,抛物线的顶点为A(﹣1,﹣4),且经过点B(﹣2,﹣3),与x轴分别交于C、D两点.(1)求直线OB以及该抛物线相应的函数表达式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的下方,过点M作x轴的平行线与直线OB 交于点N,求MN的最大值;(3)如图2,过点A的直线交x轴于点E,且AE∥y轴,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G两点.当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.【题组六】21.(2020•青山区模拟)如图,在平面直角坐标系xOy中,一次函数y=54x+m(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C,以直线x=1为对称轴的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B(1)求m的值及抛物线的函数表达式;(2)是否存在抛物线上一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若存在,请说明理由;(3)若P是抛物线对称轴上一动点,且使△ACP周长最小,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问1δ212是否为定值,如果是,请求出结果,如果不是请说明理由.(参考公式:在平面直角坐标系中,若A(x1,y1),B(x2,y2),则A,B两点间的距离为AB=(1−2)2+(1−2)2)22.(2020•新都区模拟)已知:在平面直角坐标系中,抛物线y=ax2﹣2ax+4(a<0)交x轴于点A、B,与y轴交于点C,AB=6.(1)如图1,求抛物线的解析式;(2)如图2,点R为第一象限的抛物线上一点,分别连接RB、RC,设△RBC的面积为s,点R的横坐标为t,求s与t的函数关系式;(3)在(2)的条件下,如图3,点D在x轴的负半轴上,点F在y轴的正半轴上,点E为OB上一点,点P为第一象限内一点,连接PD、EF,PD交OC于点G,DG=EF,PD⊥EF,连接PE,∠PEF=2∠PDE,连接PB、PC,过点R作RT⊥OB于点T,交PC于点S,若点P在BT的垂直平分线上,OB ﹣TS=23,求点R的坐标.23.(2020•自贡)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y 轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+14OQ的最小值.24.(2020•凉山州)如图,二次函数y=ax2+bx+c的图象过O(0,0)、A(1,0)、B(32,32)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.。
专题复习二次函数之线段问题

变式2:点P是抛物线对称轴 上的一个动点, 求PB-PC的最大值。
探究二:
设点Q是线段BC上方抛物线上的一动点, 作QD⊥x轴,交BC于点D,求线段DQ长度的最 大值.
变式:
接着上面问题,你能求出△BQC面积的最大 值吗 ?
小组合作
请再提出一个数学问题并能解答出来
跟踪练习
如图所示,已知点A(-1,0),B(3,0),C (0,t),且t>0,tan∠BAC=3,抛物线经过A、 B、C三点,点P(2,m)是抛物线与直线l:
y=k(x+1)的一个交点. 必做(1)求抛物线和直线l的表达式;
(2)对于动点Q(1,n),求PQ+QB的最小 值和此时Q点的坐标; 选做
(3)若动点M在直线l上方的抛物线上运动, 求△AM课的收获!
学
不变应万变
研
数
学 ❖ 今天我们研究了什么?
知识点链接
一:线段长度的计算
1、分别求出数轴上两点间的距离: (1)表示数6的点与表示数2的点; (2)表示数2的点与表示数-5的点; (3)表示数-1的点与表示数-6的点. 请思考数轴上任意两点(A、B)间线段的长 度如何求?
2、推广到平面直角坐标系内,AB长度如何求?
二、常见线段最值问题 1、“将军饮马”模型PA+PB最小值问题
线 段
知
最
识
方 ❖ 我们得到了哪些成果?
值 问
法
题
, 取
❖ 在研究过程中有何体会?
, 展
其
其
精
学习梳理
本
髓
质
2、变式:当A、B位于直线l异侧时,求PA-PB 最大值问题
探究一(模型思想的应用)
如图,已知抛物线 与 轴交于点C,与 轴交于 A,B两点,点B的坐标为(3,0)。
二次函数中常见的几种综合题型
二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。
1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。
2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。
1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。
①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。
二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。
1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。
计算二次函数与直线的交点
计算二次函数与直线的交点二次函数和直线的交点计算是高中数学中的常见问题,本文将介绍如何计算二次函数与直线的交点,并提供相应的计算方法和示例。
首先,我们需要了解二次函数和直线的一般表达式。
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数,a ≠ 0。
直线的一般表达式为 y = mx + k,其中 m 和 k 为常数。
计算二次函数和直线的交点,就是要找到满足二者方程组的解。
将二次函数和直线的方程联立,可以得到以下方程组:ax^2 + bx + c = mx + k为了求解方程组的解,我们可以使用以下两种方法。
方法一:联立方程法1. 将二次函数和直线的方程联立,得到 ax^2 + (b-m)x + (c-k) = 0。
2. 根据二次方程的一般解公式,可以求得 x 的两个解:x1 = (-b+m+√(b^2-2am+2bm+m^2-4ac+4ak))/(2a) 和 x2 = (-b+m-√(b^2-2am+2bm+m^2-4ac+4ak))/(2a)。
3. 将得到的 x 代入二次函数或直线的方程中,可以得到对应的 y 值。
4. 最终的交点坐标为 (x1, y1) 和 (x2, y2),即为二次函数与直线的交点。
方法二:平方差法1. 将二次函数和直线的方程联立,得到 ax^2 + (b-m)x + (c-k) = 0。
2. 计算平方差 b^2 - 4ac + 4ak - 2am + 2bm + m^2,并记为Δ。
3. 如果Δ 大于零,方程有两个不相等的实数解,可以继续计算。
a) 计算 x1 = (-b+m+√Δ)/(2a)。
b) 计算 y1 = mx1 + k,得到对应的 y 值。
c) 计算 x2 = (-b+m-√Δ)/(2a)。
d) 计算 y2 = mx2 + k,得到另一个交点的 y 值。
e) 最终的交点坐标为 (x1, y1) 和 (x2, y2)。
4. 如果Δ 等于零,方程有且只有一个实数解。
2021年中考复习: 二次函数压轴题——线段问题
二次函数压轴题——线段问题解析类型一:距离最值常见模型1. “变动的两线段之和的最小值”时大都应用“两点之间的连线中,线段最短”这一模型.2. “变动的两线段之差的最大值”时大都应用“三角形两边之差小于第三边”这一模型.1. 如图,抛物线y =-14x 2+bx +c 的图象过点A (4,0),B (-4,-4),且抛物线与y 轴交于点C ,连接AB ,BC ,AC .(1)求抛物线的解析式;(2)点P 是抛物线对称轴上的点,求△PBC 周长的最小值及此时点P 的坐标;答案:(1)y =−14x 2+12x +2;(2)2√13+6√22.如图,抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y =kx +n 与y 轴交于点C ,与抛物线y =﹣x 2+bx +c 的另一个交点为D ,已知A (﹣1,0),D (5,﹣6),P 点为抛物线y =﹣x 2+bx +c 上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE ∥x 轴交直线l 于点E ,作PF ∥y 轴交直线l 于点F ,求PE +PF 的最大值;答案(1)y=−x2+3x+4 ;(2)当x=2时,其最大值为18;3.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.求DE的最大值;【解答】解:(1)y=−x2−4x−3;(2)44.如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;答案(1)y=−x2+2x+3;(2)p(1,2),√10+3√25.如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;答案:(1)y=−12x2+x+72;(2)32√56.直线132y x=-与抛物线2y x bx c=-++相交于A(),4m-和B(4,n)两点,点P是抛物线位于线段AB上方异于点A,B的一个动点,过点P作PQ⊥x轴,交线段AB于点Q.(1)求抛物线的解析式;(2)在P点运动过程中,线段PQ的长是否存在最大值?若存在,求出这个最大值,并求出此时P点的坐标;若不存在,请说明理由;答案(1)y=−x2+52x+5;(2)P(1,132),最大值9类型二距离和差积关系利用坐标的几何意义求距离1.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.【解答】解:(Ⅰ)(1,﹣4);(Ⅱ)3√2−1(Ⅲ)42.抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MA-MC|最大?若存在,请求出点M的坐标,若不存在,请说明理由.答案(1)y=x2−4x+3 (2)94;(3)存在.M(2,-3)3.抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.答案(1)14x2+12x−2 ;(2)58。
二次函数与直线的交点问题
二次函数与直线的交点问题二次函数与直线的交点问题是数学中的一个经典问题,它既是代数学的重要内容,也是几何学的基础知识。
在解决这类问题时,我们需要用到二次函数和直线的性质和特点,以及相关的数学方法和技巧。
本文将通过对二次函数与直线的交点问题进行分析和解答,探讨它们之间的关系及解题思路。
一、二次函数的定义和性质二次函数指的是形如y=ax^2+bx+c的函数,其中a、b、c为常数,且a≠0。
二次函数的图象一般为抛物线,具有以下性质:1. 对称轴:二次函数的图象关于直线x=-b/2a对称。
2. 顶点坐标:对称轴上的点称为二次函数的顶点,顶点的横坐标为-x/2a,纵坐标为f(-x/2a)。
3. 开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
4. 零点:二次函数与x轴的交点称为二次函数的零点,也就是方程ax^2+bx+c=0的实数解。
二、直线的定义和性质直线是平面上的一种基本几何图形,它具有以下特点:1. 斜率:直线的斜率是指直线在平面上的倾斜程度,斜率为k的直线可以表示为y=kx+b,其中k为斜率,b为截距。
2. 截距:直线与y轴的交点称为直线的y轴截距,可以表示为点(0,b),其中b为截距。
3. 直线的方程:直线可以通过点斜式、两点式、截距式等形式来表示。
三、在解决二次函数与直线的交点问题时,我们可以将二次函数和直线的方程进行联立,然后求解方程组,从而得到二者的交点坐标。
假设给定的二次函数为y=ax^2+bx+c,直线的方程为y=kx+b。
将二者联立,可得到以下方程组:ax^2+bx+c=kx+b整理后可得:ax^2+(b-k)x+c-b=0接下来就是解二次方程了。
根据二次函数的性质,若该方程有实数解,则说明二次函数与直线有交点;若无实数解,则说明二次函数与直线无交点。
根据一元二次方程求解的公式,可得二次函数与直线的交点坐标。
若方程有两个实数解x1和x2,则交点的坐标为(x1, y(x1))和(x2, y(x2))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与直线问题常见模型
一、抛物线上三点组成的三角形成直角三角形
模型:如图,抛物线上有三点A 、B 、C ,AB ⊥AC ,若有如下三个条件:①抛物线已知②AB 过定点,③BC 过定点,三个条件中只要知道二个就可以求第三个
此题的方法主要是通过相似列出A,B,C 三点之间的横坐标与纵坐标的关系,然后结合直线BC 的解析式以及根与系数关系,来求解
已知抛物线解析式:2
y ax bx c =++, 请同学们完成以下化简:
例1(2014年武汉中考第25题第三问)如图,已知直线AB :y =kx +2k +4与抛物线y =2
1x 2
交于A 、B 两点.若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.
例2(2016年武汉四调第24题第2问)如图1,在平面直角坐标系xOy 中,抛物线M :
52
12
+-=x y 经过点C (2,3),直线y =kx +b 与抛物线相交于A 、B 两点,∠ACB =90°,
②猜想:我们猜想直线AB 必经过一个定点Q ,其坐标为.请取点B 的横坐标为n ,验证你的猜想; 练习1:已知抛物线
2
12
y x =
.点P (-2,4)关于y 轴的对称点'P ,过'P 作直线EF 交抛物线于E 、F ,点H 在抛物线上一定点,且∠EHF =90°,求'P HO S ∆..
2.已知抛物线y =x 2-1,抛物线交x 轴正半轴于A 点,M 、N 在抛物线上,MA ⊥NA ,试说明MN 恒过-定点,并求此定点的坐
标.
3.(2016三寄宿中考模拟)已知抛物线21y ax =+与x 轴交于点A 、B (点A 在B 点左侧),且与直线22y x =+仅有一个公共点.
(1)求A 、B 两点的坐标
(2)如图,作∠MBN=90°,交抛物线于M.N 两点,则直线MN 必过定点Q,求点Q 的坐标.
二、抛物线上三点组成的三角形的内心在经过期中一点的并且平行于x 轴的水平直线上
模型:如图,抛物线上有三点A 、B 、C ,若有如下:①A 定点(坐标已知)②抛物线已知,③BC 直线k 已知,三个条件中只要知道二个就可以求第三个
抛物线解析式:2
y ax bx c =++直线BC :
y kx n =+
例1(2014四调第25题第2问)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4(a <0)经过第一象限内的定点P .
(1)直接点P 的坐标;
(2)(2)直线y =2x +b 与抛物线c 1在相交于A 、B 两点,如图1所示,直线PA 、PB 与x 轴分别交于D 、C 两点,当PD
=PC 时,求a 的值;
例2.(2016洪山区中考模拟一第24题第2问)已知抛物线y =(m -1)x 2
+(m -2)x -1与x 轴交于A 、B 两点,若m >1,且点A 在点B 的左侧,OA ∶OB =1∶3.
(1)试确定抛物线的解析式(解析式:
13
2
312--=
x x y ) (2)直线3y kx =-与抛物线交于M 、N 两点,若△AMN 的内心在轴上,求k 的
值。
x
y
练习1:已知抛物线上有A 、B 、C 、D 四点,且A 、D 关于轴对称,直线
与抛物线相切,BC ∥DE .求证:AD 平分∠BAC
2.如图,在平面直角坐标系中,抛物线y=ax 2
-2ax-3与x 轴交于A 、B ,且AB=4,与y 轴交于C 点, (1)求抛物线的解析式:2
23y x x =--
(3)若平行于直线AC 的直线与抛物线交于M 、N 两点,若抛物线上存在一个定点D ,使过D 点且平行于x 轴的直线DE 平分∠MDN ,求D 点坐标和的值
3.如图,在直角坐标系中,二次函数y =x 2-4x 的顶点是C ,与x 轴相交于A 、B 两点(A 在B 的左边)点D 、E 同时从点B 出发,在抛物线上分别向左、向右移动,DM ⊥x 轴于M ,EN ⊥x 轴于N .设BM =m (m <OB ),BN =n ,当m 、n 满足怎样的等量关系时,△ODE 的内心在x 轴上
三、直线与抛物线相交,交点与对称轴上一点组成的三角形(三点组成的三角形内心在对称轴上)
例1已知抛物线,点、
为抛物线对称轴上两点,且、
关于抛物线顶点对称,过点
任意作一条直线与抛物线交于两点,求证:抛物线对称轴平分
练习:1.如图,在平面直角坐标系xOy 中,抛物线2
9
3212+-=
x x y 交y 轴于点E ,C 为抛物线的顶点,直线AD :y=kx+b (k >0)与抛物线相交于A ,D 两点(点D 在点A 的下方).
练习2:(2015广雅二中中考模拟)已知抛物线C 1:y =-x 2+2x +c 经过x 轴上的点A ,与y 轴交于点B ,直线AB 的解析式为y =x -1,B 、C 关于x 轴对称,如图1 (1)求抛物线的解析式
(2)将抛物线C 1向上平移一个单位,再沿BA 方向平移,得到抛物线C 2,若抛物线C 2与线段AC 交于点E ,求AE
CE
的最小值 (3)直线y =kx +b (k >0)与抛物线C 1交于M 、P 两点,交抛物线C 1对称轴于Q (Q 在x 轴下方),交x 轴于点D ,M 、N 两点
关于抛物线C 1的对称轴对称,NP 的延长线交抛物线的对称轴于G ,如图2,求证:DG =DQ。