2017苏锡常镇高三数学一模试卷答案
苏州一模数学(四)DA

(这是边文,请据需要手工删加)2017届高三年级第一次模拟考试(四)(苏州市)数学参考答案一、 填空题1. (1,3)2. -12 3.3 4. 900 5. 0.46. [-2,-1]7. 58. -139. 12 10. 311. 94 12. 1+5249 13. ⎩⎨⎧⎭⎬⎫-e ,-5ln 5,2,5214. ⎣⎡⎦⎤-43,4 二、 解答题 15. 解:(1) f(x)=32sin 2x -1+cos 2x 2-12=32sin 2x -cos 2x2-1(2分) =sin ⎝⎛⎭⎫2x -π6-1.(4分)当2x -π6=2k π-π2,即x =k π-π6(k ∈Z )时,f (x )的最小值为-2.(6分)此时自变量x 的取值集合为{x |x =k π-π6,k ∈Z }.(7分)(或写成⎩⎨⎧⎭⎬⎫x |x =k π+5π6,k ∈Z ). (2) 因为f (C )=0,所以sin ⎝⎛⎭⎫2C -π6-1=0,又0<C <π,所以2C -π6=π2,即C =π3.(9分)在△ABC 中,sin B =2sin A ,由正弦定理知b =2a ,又c =3,(11分) 由余弦定理知(3)2=a 2+b 2-2ab cos π3,即a 2+b 2-ab =3,(13分)联立⎩⎪⎨⎪⎧a 2+b 2-ab =3,b =2a ,解得a =1,b =2.(14分)16. 证明:(1) 连接菱形的对角线AC ,BD 交于点O ,连接MO ,因为M 是线段AC 1的中点,在△ACC 1中,MO ∥CC 1,且MO =12CC 1,(2分)又F 是BB 1的中点,BF ∥CC 1,且BF =12CC 1,所以BF ∥MO 且BF =MO ,故四边形MOBF 是平行四边形,(4分)所以MF ∥BO ,又MF 平面ABCD ,BO 平面ABCD ,所以MF ∥平面ABCD.(7分)(2) 由(1)知,OB ∥MF ,在菱形ABCD 中,OB ⊥AC ,所以MF ∥AC ,(9分) 在直四棱柱ABCDA 1B 1C 1D 1中,CC 1⊥平面ABCD ,BO 平面ABCD , 所以BO ⊥CC 1,即MF ⊥CC 1,(11分)因为MF ⊥AC ,MF ⊥CC 1,CC 1∩AC =C ,AC ,CC 1 平面ACC 1A 1, 所以MF ⊥平面ACC 1A 1,(13分)又MF 平面AFC 1,所以平面AFC 1⊥平面ACC 1A 1.(14分)17. 解:(1) 因为椭圆C 的离心率为c a =32,所以a 2-b 2a 2=34,即a 2=4b 2,(2分)所以椭圆C 的方程可化为x 2+4y 2=4b 2.又椭圆C 过点P(2,-1),所以4+4=4b 2,解得b 2=2,a 2=8,(4分) 所以所求椭圆C 的标准方程为x 28+y 22=1.(5分)(2) 由题意,设直线PA 的方程为y +1=k(x -2),联立方程组⎩⎪⎨⎪⎧x 2+4y 2=8,y =k (x -2)-1,消去y 得:(1+4k 2)x 2-8(2k 2+k)x +16k 2+16k -4=0,(7分) 所以2x 1=16k 2+16k -41+4k 2,即x 1=8k 2+8k -21+4k 2,因为直线PQ 平分∠APB ,即直线PA 与直线PB 的斜率为互为相反数. 设直线PB 的方程为y +1=-k(x -2),同理求得x 2=3k 2-8k -21+4k 2.(10分)又⎩⎪⎨⎪⎧y 1+1=k (x 1-2),y 2+1=-k (x 2-2),所以y 1-y 2=k(x 1+x 2)-4k , 即y 1-y 2=k(x 1+x 2)-4k =k 16k 2-41+4k 2-4k =-8k 1+4k 2,x 1-x 2=16k 1+4k 2. 所以直线AB 的斜率为k AB =y 1-y 2x 1-x 2=-8k1+4k 216k 1+4k2 =-12.(14分)18. 解:(1) 据题意,抛物线段AB 与x 轴相切,且A 为抛物线的顶点,设A(a ,0)(a<-2),则抛物线段AB 在图纸上对应函数的解析式可设为y =λ(x -a)2(a ≤x ≤-2)(λ>0),(2分)其导函数为y′=2λ(x -a).由曲线段BD 在图纸上的图象对应函数的解析式为y =84+x 2(x ∈[-2,2]), 又y′=-16x (4+x 2)2,且B(-2,1),所以曲线在B 点处的切线斜率为12, 因为B 点为衔接点,则⎩⎪⎨⎪⎧λ(-2-a )2=1,2λ(-2-a )=12,解得⎩⎪⎨⎪⎧a =-6,λ=116.(4分)所以曲线段AB 在图纸上对应函数的解析式为y =116(x +6)2(-6≤x ≤-2).(5分) (2) 设P(x ,y)是曲线段AC 上任意一点,①若P 在曲线段AB 上,则通过该点所需要的爬坡能力 (M p )1=(-x)·18(x +6)=-18[(x +3)2-9](-6≤x ≤-2),(6分)令y 1=-18[(x +3)2-9](-6≤x ≤-2),所以函数y 1=-18[(x +3)2-9](-6≤x ≤-2)在区间[-6,-3]上为增函数,在区间[-3,-2]上是减函数,所以[(M P )1]max =98(米)(9分)②若P 在曲线段BC 上,则通过该点所需要的爬坡能力 (M p )2=(-x)·-16x (4+x 2)2=16x 2(4+x 2)2(-2≤x ≤0),(10分)令t =x 2,t ∈[0,4],则(M p )2=16t(4+t )2,t ∈[0,4],记y 2=16t (4+t )2,t ∈[0,4],当t =0时,y 2=0,而当0<t ≤4时,y 2=1616t+t +8, 所以当t =4时,t +16t 有最小值16,从而y 2取最大值1,此时[(M p )2]max =1(米)(13分)所以由①,②可知:车辆过桥所需要的最大爬坡能力为98米,(14分)又因为0.8<98<1.5<2,所以“游客踏乘”的车辆不能顺利通过该桥,而“蓄电池动力”和“内燃机动力”的车辆可以顺利通过该桥.(16分)19. 解:(1) 由S n =2a n -2得S n +1=2a n +1-2,两式相减,得a n +1=2a n +1-2a n , 所以a n +1=2a n ,由又S 1=2a 1-2,得a 1=2a 1-2,a 1=2,(2分)所以数列{a n }为等比数列,且首项为2,公比q =2,所以a n =2n .(4分)(2) 由(1)知1a n =12n (n ∈N *).由12n =b 12+1-b 222+1+b 323+1+…+(-1)n +1b n 2n +1(n ∈N *), 得12n -1=b 12+1-b 222+1+b 323+1-…+(-1)n b n -12n -1+1(n ≥2). 故12n -12n -1=(-1)n +1b n 2n +1,即b n =(-1)n ⎝⎛⎭⎫12n +1(n ≥2).(7分) 当n =1时,a 1=b 12+1,b 1=32.所以b n=⎩⎨⎧32,(n =1)(-1)n⎝⎛⎭⎫12n+1.(n ≥2,n ∈N *)(9分)(3) 因为c n =2n +λb n ,所以当n ≥3时,c n =2n +(-1)n ⎝⎛⎭⎫12n +1λ, c n -1=2n -1+(-1)n -1⎝⎛⎭⎫12n -1+1λ,依据题意,有c n -c n -1=2n -1+(-1)nλ⎝⎛⎭⎫2+32n >0,即(-1)n λ>-2n -132n +2.(10分) ①当n 为大于或等于4的偶数时, 有λ>-2n -132n+2恒成立,又2n -132n +2=1322n -1+12n -2随n 增大而增大, 则当且仅当n =4时,⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,故λ的取值范围为λ>-12835;(12分) ②当n 为大于或等于3的奇数时,有λ<2n -132n+2恒成立,且仅当n =3时,⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219, 故λ的取值范围为λ<3219;(14分)又当n =2时,由c n -c n -1=c 2-c 1=(22+54λ)-⎝⎛⎭⎫2+32λ>0,得λ<8.(15分) 综上可得,所求λ的取值范围是-12835<λ<3219.(16分)20. 解:(1) f′(x)=1x·x +ln x -k -1=ln x -k ,(1分)①k ≤0时,因为x>1,所以f′(x)=ln x -k>0,函数f(x)的单调递增区间是(1,+∞),无单调递减区间,无极值;(2分) ②当k>0时,令ln x -k =0,解得x =e k , 当1<x<e k 时,f ′(x)<0; 当x>e k 时,f ′(x)>0,所以函数f(x)的单调递减区间是(1,e k ),单调递增区间是(e k ,+∞),(4分) 在区间(1,+∞)上的极小值为f(e k )=(k -k -1)e k =-e k ,无极大值.(5分)(2) 由题意,f(x)-4ln x<0,即问题转化为(x -4)ln x -(k +1)x<0对于x ∈[e ,e 2]恒成立, 即k +1>(x -4)ln xx 对于x ∈[e ,e 2]恒成立,(7分)令g(x)=(x -4)ln x x ,则g′(x)=4ln x +x -4x 2,令t(x)=4ln x +x -4,x ∈[e ,e 2],则t′(x)=4x+1>0,所以t(x)在区间[e ,e 2]上单调递增,故t(x)min =t(e )=e -4+4=e >0,故g′(x)>0, 所以g(x)在区间[e ,e 2]上单调递增,函数g(x)max =g(e 2)=2-8e 2.(9分)要使k +1>(x -4)ln xx 对于x ∈[e ,e 2]恒成立,只要k +1>g(x)max ,所以k +1>2-8e 2,即实数k 的取值范围为(1-8e2,+∞).(10分)(3) 证法1 因为f(x 1)=f(x 2),由(1)知,函数f(x)在区间(0,e k )上单调递减,在区间(e k ,+∞)上单调递增,且f(e k +1)=0.不妨设x 1<x 2,则0<x 1<e k <x 2<e k +1,要证x 1x 2<e 2k,只要证x 2<e 2k x 1,即证e k<x 2<e 2k x 1.因为f(x)在区间(e k,+∞)上单调递增,所以f(x 2)<f ⎝⎛⎭⎫e 2kx 1,又f(x 1)=f(x 2),即证f(x 1)<f ⎝⎛⎭⎫e 2kx 1,构造函数h(x)=f(x)-f ⎝⎛⎭⎫e 2kx =(ln x -k -1)x -⎝⎛⎭⎫ln e 2kx -k -1e 2kx , 即h(x)=x ln x -(k +1)x +e 2k ⎝⎛⎭⎫ln x x-k -1x ,x ∈(0,e k ).(12分) h ′(x)=ln x +1-(k +1)+e 2k (1-ln x x 2+k -1x 2)=(ln x -k)(x 2-e 2k )x 2,因为x ∈(0,e k ),所以ln x -k<0,x 2<e 2k ,即h ′(x)>0,所以函数h(x)在区间(0,e k )上单调递增,故h(x)<h(e k ), 而h(e k)=f(e k)-f ⎝⎛⎭⎫e 2ke k =0,故h(x)<0,(14分)所以f(x 1)<f ⎝⎛⎭⎫e 2k x 1,即f(x 2)=f(x 1)<f ⎝⎛⎭⎫e 2kx 1,所以x 1x 2<e 2k 成立.(16分) 证法2 要证x 1x 2<e 2k 成立 ,只要证:ln x 1+ln x 2<2k.因为x 1≠x 2,且f(x 1)=f(x 2),所以(ln x 1-k -1)x 1=(ln x 2-k -1)x 2, 即x 1ln x 1-x 2ln x 2=(k +1)(x 1-x 2),x 1ln x 1-x 2ln x 1+x 2ln x 1-x 2ln x 2=(k +1)(x 1-x 2), 即(x 1-x 2)ln x 1+x 2ln x 1x 2=(k +1)(x 1-x 2),k +1=ln x 1+x 2lnx 1x 2x 1-x 2,同理k +1=ln x 2+x 1lnx 1x 2x 1-x 2,从而2k =ln x 1+ln x 2+x 2lnx 1x 2x 1-x 2+x 1ln x 1x 2x 1-x 2-2,(12分)要证ln x 1+ln x 2<2k ,只要证x 2lnx 1x 2x 1-x 2+x 1ln x 1x 2x 1-x 2-2>0,不妨设x 1<x 2,则0<x 1x 2=t<1,即证ln t t -1+ln t1-1t -2>0,即证(t +1)ln t t -1>2,即证ln t<2t -1t +1对t ∈(0,1)恒成立,(14分)设h(t)=ln t -2t -1t +1(0<t<1),h ′(t)=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h(t)在t ∈(0,1)单调递增,h(t)<h(1)=0,得证,所以x 1x 2<e 2k .(16分) 附加题21. A . (选修4—1:几何证明选讲) 证明:由切割线定理得FG 2=FA·FD.(2分) 又EF =FG ,EF 2=FA·FD ,则EF FA =FD EF .(5分)因为∠EFA =∠DFE ,所以△DEF ∽△EAF , 故∠FED =∠FAE.(8分)因为∠FAE =∠DAB =∠DCB ,所以∠FED =∠BCD ,所以EF ∥CB.(10分) B . (选修4—2:矩阵与变换)解:因为|A |=2×3-1×1=5,(2分)所以A-1=⎣⎢⎡⎦⎥⎤35-15-1525=⎣⎢⎡⎦⎥⎤35-15-1525,(6分) 由AC =B ,得(A -1A )=A -1B ,所以C =A-1B =⎣⎢⎡⎦⎥⎤35-15-1525⎣⎢⎡⎦⎥⎤110-1=⎣⎢⎡⎦⎥⎤3545-15-35.(10分)C. (选修4—4:坐标系与参数方程)解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x .(4分)将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,即t 2+82t =0,(8分)解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.(10分) D. (选修4—5:不等式选讲)证明:因为a ,b ,x ,y 都是正数,所以,(ax +by )(bx +ay )=ab (x 2+y 2)+xy (a 2+b 2)(4分) ≥ab ·2xy +xy (a 2+b 2)=(a +b )2xy ,(7分) 又a +b =1,所以(ax +by )(bx +ay )≥xy .(9分) 当且仅当x =y 时等号成立.(10分)22. 解:(1) 依题意,随机变量ξ的取值是2,3,4,5,6.(2分) 因为P(ξ=2)=3282=964;(3分)P(ξ=3)=2×3282=1864;(4分)P(ξ=4)=32+2×3×282=2164;(5分)P(ξ=5)=2×3×282=1264;(6分)P(ξ=6)=2×282=464.(7分)所以,当ξ=4时,其发生的概率最大,最大值为P(ξ=4)=2164;(8分)(2) E(ξ)=2×964+3×1864+4×2164+5×1264+6×464=154,所以,随机变量ξ的期望E(ξ)=154.(10分)23. 解:(1) 由OC →=tOM →+(1-t)ON →(t ∈R ),可知点C 的轨迹是M ,N 两点所在的直线, 所以C 点的轨迹方程为y +3=1-(-3)4(x -1),即y =x -4.(2分)由⎩⎪⎨⎪⎧y =x -4,y 2=4x ,化简得x 2-12x +16=0,(3分) 设C 的轨迹与抛物线y 2=4x 的交点坐标为A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=12,x 1x 2=16,y 1y 2=(x 1-4)(x 2-4)=x 1x 2-4(x 1+x 2)+16=-16,因为OA →·OB →=x 1x 2+y 1y 2=16-16=0,所以OA ⊥OB .(5分)(2) 假设存在这样的P 点,并设AB 是过抛物线的弦,其方程为x =ny +m , 代入y 2=4x 得y 2-4ny -4m =0,(6分) 此时y 1+y 2=4n ,y 1y 2=-4m ,所以k OA k OB =y 1x 1·y 2x 2=y 1y 214·y 2y 224=16y 1y 2=-4m=-1,所以m =4(定值),故存在这样的点P (4,0)满足题意.(8分) 设AB 的中点为T (x ,y ),则y =12(y 1+y 2)=2n ,x =12(x 1+x 2)=12(ny 1+4+ny 2+4)=n2(y 1+y 2)+4=2n 2+4,消去n 得y 2=2x -8.(10分)。
2016-2017学年度苏锡常镇四市高三教学情况调研(一)参考答案

……2 分 ……4 分 ……7 分
(法二)因为在△ ABC 中, A B C π ,
则 sin Acos B sin Bcos A sin( A B) sin(C π)=sinC ,
……2 分
由 a b c 得: sin A a sin C , sin B bsin C ,代入上式得: ……4 分
B.(选修 4—2:矩阵与变换)
解:设
M=
a c
b d
,M
1 1
8
1 1
a c
b d
,M
1
2
2
4
a c
2b
2d
,
……3 分
a b 8,
a 6,
ac2db8,2 ,解得
……4分
……6 分 ……7 分
又 f (1) 0 ,当 x (0,1) , f (x) 0 ;当 x (1, ) 时, f (x) 0 . ……9 分
故不等式 (x 1) f (x) …0 恒成立.
……10 分
若 a 2 , f (x) x ln x (1 a)x 1 , x
4. 24 8. 2
二、解答题:本大题共 6 小题,共计 90 分.
15.解:(1)(法一)在△ ABC 中,由余弦定理, a cos B 3 ,则 a a2 c2 b2 3 ,得 a2 c2 b2 6c ;① 2ac bcos A 1,则 b b2 c2 a2 1 ,得 b2 c2 a2 2c ,② 2bc ①+②得: 2c2 8c , c 4 .
江苏省苏锡常镇四市2017年高考数学一模试卷(解析版)

2017年江苏省苏锡常镇四市高考数学一模试卷一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M=.2.若复数z满足z+i=,其中i为虚数单位,则|z|=.3.函数f(x)=的定义域为.4.如图是给出的一种算法,则该算法输出的结果是5.某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为.6.已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.7.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.8.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l的右焦点,则双曲线的离心率为.9.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为.10.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中A点在第一象限,且=2,则直线l的方程为.11.在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为.12.已知sinα=3sin(α+),则tan(α+)=.13.若函数f(x)=,则函数y=|f(x)|﹣的零点个数为.14.若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为.二.解答题:本大题共6小题,共计90分15.(14分)在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.16.(14分)如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.17.(14分)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.18.(16分)在平面直角坐标系xOy中,已知椭圆+=l (a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.19.(16分)己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.2=0,20.(16分)己知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+1设数列{b n}满足b n=(1)求证:数列{}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,求满足条件的所有整数a1的值.四.选做题本题包括A,B,C,D四个小题,请选做其中两题,若多做,则按作答的前两题评分.A.[选修4一1:几何证明选讲]21.(10分)如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.[选修4-2:矩阵与变换]22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=[],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.[选修4-4:坐标系与参数方程]23.已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.[选修4-5:不等式选讲]24.已知a,b,c为正数,且a+b+c=3,求++的最大值.四.必做题:每小题0分,共计20分25.如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且==.(1)求异面直线MN与PC所成角的大小;(2)求二面角N﹣PC﹣B的余弦值.26.设|θ|<,n为正整数,数列{a n}的通项公式a n=sin tan nθ,其前n项和为S n(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(﹣1)tan nθ;(2)求证:对任何正整数n,S2n=sin2θ•[1+(﹣1)n+1tan2nθ].2017年江苏省苏锡常镇四市高考数学一模试卷参考答案与试题解析一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M= {6,7} .【考点】补集及其运算.【分析】解不等式化简集合M,根据补集的定义写出运算结果即可.【解答】解:集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z}={x|1≤x≤5,x∈Z}={1,2,3,4,5},则∁U M={6,7}.故答案为:{6,7}.【点评】本题考查了集合的运算与解不等式的应用问题,是基础题.2.若复数z满足z+i=,其中i为虚数单位,则|z|=.【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.【解答】解:由z+i=,得=,则|z|=.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.函数f(x)=的定义域为{x|x>且x≠1} .【考点】函数的定义域及其求法.【分析】根据对数函数的性质以及分母不是0,得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:x>且x≠1,故函数的定义域是{x|x>且x≠1},故答案为:{x|x>且x≠1}.【点评】本题考查了求函数的定义域以及对数函数的性质,是一道基础题.4.如图是给出的一种算法,则该算法输出的结果是24【考点】伪代码.【分析】模拟程序代码的运行过程,可知程序的功能是利用循环结构计算并输出变量t的值,由于循环变量的初值为2,终值为4,步长为1,故循环体运行只有3次,由此得到答案.【解答】解:当i=2时,满足循环条件,执行循环t=1×2=2,i=3;当i=3时,满足循环条件,执行循环t=2×3=6,i=4;当i=4时,满足循环条件,执行循环t=6×4=24,i=5;当i=5时,不满足循环条件,退出循环,输出t=24.故答案为:24.【点评】本题考查了循环语句的应用问题,模拟程序的运行过程,是解答此类问题的常用方法.5.某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为300.【考点】分层抽样方法.【分析】用分层抽样的方法抽取一个容量为45的样本,根据高一年级抽20人,高三年级抽10人,得到高二年级要抽取的人数,根据该高级中学共有900名学生,算出高二年级学生人数.【解答】解:∵用分层抽样的方法从某校学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,∴高二年级要抽取45﹣20﹣10=15,∵高级中学共有900名学生,∴每个个体被抽到的概率是=∴该校高二年级学生人数为=300,故答案为:300.【点评】本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.6.已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,求出PO,由此能求出该正四棱锥的体积.【解答】解:如图,正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,则AO=AC=.在直角三角形POA中,PO===1.所以VP﹣ABCD=•SABCD•PO=×4×1=.故答案为:.【点评】本题考查正四棱锥的体积的求法,考查数据处理能力、运算求解能力以及应用意识,考查数形结合思想等,是中档题.7.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n==6,再利用列举法求出这两个数的和为3的倍数包含的基本事件个数,由此能求出这两个数的和为3的倍数的槪率.【解答】解:从集合{1,2,3,4}中任取两个不同的数,基本事件总数n==6,这两个数的和为3的倍数包含的基本事件有:(1,2),(2,4),共2个,∴这两个数的和为3的倍数的槪率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.8.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l 的右焦点,则双曲线的离心率为2.【考点】双曲线的简单性质.【分析】求得抛物线的焦点坐标,可得c=2,由双曲线的方程可得a=1,由离心率公式可得所求值.【解答】解:抛物线y2=8x的焦点为(2,0),则双曲线﹣=l的右焦点为(2,0),即有c==2,不妨设a=1,可得双曲线的离心率为e==2.故答案为:2.【点评】本题考查双曲线的离心率的求法,同时考查抛物线的焦点坐标,考查运算能力,属于基础题.9.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为2.【考点】等比数列的通项公式.【分析】利用等比数列的前n项和公式和通项公式列出方程组,求出,由此能求出a8的值.【解答】解:∵等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,∴,解得,∴a8==(a1q)(q3)2=8×=2.故答案为:2.【点评】本题考查等比数列中第8项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.10.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中A点在第一象限,且=2,则直线l的方程为x﹣y﹣1=0.【考点】直线与圆的位置关系.【分析】由题意,设直线x=my+1与圆x2+y2=5联立,利用韦达定理,结合向量知识,即可得出结论.【解答】解:由题意,设直线x=my+1与圆x2+y2=5联立,可得(m2+1)y2+2my ﹣4=0,设A(x1,y1),B(x2,y2),则y1=﹣2y2,y1+y2=﹣,y1y2=﹣联立解得m=1,∴直线l的方程为x﹣y﹣1=0,故答案为:x﹣y﹣1=0.【点评】本题考查直线与圆的位置关系,考查学生的计算能力,属于中档题.11.在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为﹣或1.【考点】平面向量数量积的运算.【分析】根据题意,利用平面向量的线性运算,把、用、与λ表示出来,再求•即可.【解答】解:△ABC中,AB=1,AC=2,∠A=60°,点P满足=+,∴﹣=λ,∴=λ;又=﹣=(+λ)﹣=+(λ﹣1),∴•=λ•[+(λ﹣1)]=λ•+λ(λ﹣1)=λ×2×1×cos60°+λ(λ﹣1)×22=1,整理得4λ2﹣3λ﹣1=0,解得λ=﹣或λ=1,∴实数λ的值为﹣或1.故答案为:﹣或1.【点评】本题考查了平面向量的数量积运算与线性表示的应用问题,也考查了运算推理能力,是基础题.12.已知sinα=3sin(α+),则tan(α+)=2﹣4.【考点】两角和与差的正切函数;两角和与差的正弦函数.【分析】利用同角三角的基本关系、两角和差的三角公式求得tanα、tan的值,可得tan(α+)的值.【解答】解:sinα=3sin(α+)=3sinαcos+3cosαsin=sinα+cosα,∴tanα=.又tan=tan(﹣)===2﹣,∴tan(α+)====﹣=2﹣4,故答案为:2﹣4.【点评】本题主要考查两角和差的三角公式的应用,同角三角的基本关系,属于基础题.13.若函数f(x)=,则函数y=|f(x)|﹣的零点个数为4.【考点】根的存在性及根的个数判断.【分析】利用分段函数,对x≥1,通过函数的零点与方程根的关系求解零点个数,当x<1时,利用数形结合求解函数的零点个数即可.【解答】解:当x≥1时,=,即lnx=,令g(x)=lnx﹣,x≥1时函数是连续函数,g(1)=﹣<0,g(2)=ln2﹣=ln>0,g(4)=ln4﹣2<0,由函数的零点判定定理可知g(x)=lnx﹣,有2个零点.(结合函数y=与y=可知函数的图象由2个交点.)当x<1时,y=,函数的图象与y=的图象如图,考查两个函数由2个交点,综上函数y=|f(x)|﹣的零点个数为:4个.故答案为:4.【点评】本题考查分段函数的应用,函数的零点个数的求法,考查数形结合以及转化思想的应用,考查计算能力.14.若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为1.【考点】函数的最值及其几何意义.【分析】由题意可得x>,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),求出y3﹣y2≥﹣y,当且仅当y=时取得等号,设f(x)=x3﹣x2,求出导数和单调区间、极值和最值,即可得到所求最小值.【解答】解:由正数x,y满足15x﹣y=22,可得y=15x﹣22>0,则x>,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),其中y3﹣y2+y=y(y2﹣y+)=y(y﹣)2≥0,即y3﹣y2≥﹣y,当且仅当y=时取得等号,设f(x)=x3﹣x2,f(x)的导数为f′(x)=3x2﹣2x=x(3x﹣2),当x>时,f′(x)>0,f(x)递增,<x<时,f′(x)<0,f(x)递减.即有f(x)在x=处取得极小值,也为最小值,此时y=15×﹣22=,则x3+y3﹣x2﹣y2≥(x3﹣x2)+(y3﹣y2)≥﹣y=﹣=1.当且仅当x=,y=时,取得最小值1.故答案为:1.【点评】本题考查最值的求法,注意运用变形和导数,求得单调区间、极值和最值,考查化简整理的运算能力,属于难题.二.解答题:本大题共6小题,共计90分15.(14分)(2017•江苏一模)在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.【考点】余弦定理;正弦定理.【分析】(1)由acosB=3,bcosA=l,利用余弦定理化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得:==,又A﹣B=,可得A=B +,C=,可得sinC=sin .代入可得﹣16sin 2B=,化简即可得出.【解答】解:(1)∵acosB=3,bcosA=l ,∴a ×=3,b ×=1,化为:a 2+c 2﹣b 2=6c ,b 2+c 2﹣a 2=2c . 相加可得:2c 2=8c ,解得c=4. (2)由(1)可得:a 2﹣b 2=8.由正弦定理可得: ==,又A ﹣B=,∴A=B +,C=π﹣(A +B )=,可得sinC=sin .∴a=,b=.∴﹣16sin 2B=,∴1﹣﹣(1﹣cos2B )=,即cos2B ﹣=,∴﹣2═,∴=0或=1,B ∈.解得:B=.【点评】本题考查了正弦定理余弦定理、倍角公式、诱导公式、和差公式、三角函数求值,考查了推理能力与计算能力,属于中档题.16.(14分)(2017•江苏一模)如图,在斜三梭柱ABC ﹣A 1B 1C 1中,侧面AA 1C 1C 是菱形,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE ∥平面BCC 1B 1 (1)求证:E 是AB 中点;(2)若AC 1⊥A 1B ,求证:AC 1⊥BC .【考点】空间中直线与直线之间的位置关系;直线与平面平行的性质.【分析】(1)利用同一法,首先通过连接对角线得到中点,进一步利用中位线,得到线线平行,进一步利用线面平行的判定定理,得到结论.(2)利用菱形的对角线互相垂直,进一步利用线面垂直的判定定理,得到线面垂直,最后转化成线线垂直.【解答】证明:(1)连结BC1,取AB中点E′,∵侧面AA1C1C是菱形,AC1与A1C交于点O,∴O为AC1的中点,∵E′是AB的中点,∴OE′∥BC1;∵OE′⊄平面BCC1B1,BC1⊂平面BCC1B1,∴OE′∥平面BCC1B1,∵OE∥平面BCC1B1,∴E,E′重合,∴E是AB中点;(2)∵侧面AA1C1C是菱形,∴AC1⊥A1C,∵AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,∴AC1⊥平面A1BC,∵BC⊂平面A1BC,∴AC1⊥BC.【点评】本题考查的知识要点:线面平行的判定定理,线面垂直的判定定理和性质定理,属于中档题.17.(14分)(2017•江苏一模)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.【考点】函数模型的选择与应用.【分析】(1)求出上底,即可将l表示成关于α的函数l=f(α);(2)求导数,取得函数的单调性,即可解决当α为何值时l最小?并求最小值.【解答】解:(1)设上底长为a,则S=,∴a=﹣,∴l=﹣+(0<α<);(2)l′=h,∴0<α<,l′<0,<α<,l′>0,∴时,l取得最小值m.【点评】本题考查利用数学知识解决实际问题,考查导数知识的运用,取得函数的模型是关键.18.(16分)(2017•江苏一模)在平面直角坐标系xOy中,已知椭圆+=l(a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.【考点】直线与椭圆的位置关系.【分析】(1)由题意可知2c=2,c=1,离心率e=,求得a=2,则b2=a2﹣c2=1,即可求得椭圆的方程:(2)则直线PQ的方程:y=k(x﹣)﹣,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.【解答】解:(1)由题意可知:椭圆+=l (a>b>0),焦点在x轴上,2c=1,c=1,椭圆的离心率e==,则a=,b2=a2﹣c2=1,则椭圆的标准方程:;(2)证明:设P(x1,y1),Q(x2,y2),A(,0),由题意PQ的方程:y=k(x﹣)﹣,则,整理得:(2k2+1)x2﹣(4k2+4k)x+4k2+8k+2=0,由韦达定理可知:x1+x2=,x1x2=,则y1+y2=k(x1+x2)﹣2k﹣2=,则k AP+k AQ=+=,由y1x2+y2x1=[k(x1﹣)﹣]x2+[k(x2﹣)﹣]x1=2kx1x2﹣(k+)(x1+x2)=﹣,k AP+k AQ===1,∴直线AP,AQ的斜率之和为定值1.【点评】本题考查椭圆的简单几何性质,直线与椭圆位置关系,韦达定理及直线的斜率公式,考查计算能力,属于中档题.19.(16分)(2017•江苏一模)己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数f(x)的导数,问题转化为a≤lnx++1在(0,+∞)恒成立,(a>0),令g(x)=lnx++1,(x>0),根据函数的单调性求出a的范围即可;(2)问题转化为(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通过讨论x的范围,结合函数的单调性求出a的范围即可.【解答】解:(1)f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx++1﹣a,若f(x)在(0,+∞)上单调递增,则a≤lnx++1在(0,+∞)恒成立,(a>0),令g(x)=lnx++1,(x>0),g′(x)=,令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,故g(x)在(0,1)递减,在(1,+∞)递增,故g(x)min=g(1)=2,故0<a≤2;(2)若不等式(x﹣1)f(x)≥0恒成立,即(x﹣1)[(x+1)lnx﹣a]≥0恒成立,①x≥1时,只需a≤(x+1)lnx恒成立,令m(x)=(x+1)lnx,(x≥1),则m′(x)=lnx++1,由(1)得:m′(x)≥2,故m(x)在[1,+∞)递增,m(x)≥m(1)=0,故a≤0,而a为正实数,故a≤0不合题意;②0<x<1时,只需a≥(x+1)lnx,令n(x)=(x+1)lnx,(0<x<1),则n′(x)=lnx++1,由(1)n′(x)在(0,1)递减,故n′(x)>n(1)=2,故n(x)在(0,1)递增,故n(x)<n(1)=0,故a≥0,而a为正实数,故a>0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,考查函数恒成立问题,是一道中档题.20.(16分)(2017•江苏一模)己知n 为正整数,数列{a n }满足a n >0,4(n +1)a n 2﹣na n +12=0,设数列{b n }满足b n =(1)求证:数列{}为等比数列;(2)若数列{b n }是等差数列,求实数t 的值:(3)若数列{b n }是等差数列,前n 项和为S n ,对任意的n ∈N *,均存在m ∈N *,使得8a 12S n ﹣a 14n 2=16b m 成立,求满足条件的所有整数a 1的值. 【考点】数列的求和;等比数列的通项公式.【分析】(1)数列{a n }满足a n >0,4(n +1)a n 2﹣na n +12=0,化为: =2×,即可证明.(2)由(1)可得:=,可得=n•4n ﹣1.数列{b n }满足b n =,可得b 1,b 2,b 3,利用数列{b n }是等差数列即可得出t .(3)根据(2)的结果分情况讨论t 的值,化简8a 12S n ﹣a 14n 2=16b m ,即可得出a 1.【解答】(1)证明:数列{a n }满足a n >0,4(n +1)a n 2﹣na n +12=0,∴=a n +1,即=2,∴数列{}是以a 1为首项,以2为公比的等比数列.(2)解:由(1)可得: =,∴ =n•4n ﹣1.∵b n =,∴b 1=,b 2=,b 3=,∵数列{b n }是等差数列,∴2×=+,∴=+,化为:16t=t2+48,解得t=12或4.(3)解:数列{b n}是等差数列,由(2)可得:t=12或4.①t=12时,b n==,S n=,∵对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴=,n=1时,化为:﹣=>0,无解,舍去.②t=4时,b n==,S n=,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴n=4m,∴a1=.∵a1为正整数,∴=k,k∈N*.∴满足条件的所有整数a1的值为{a1|a1=2,n∈N*,m∈N*,且=k,k∈N*}.【点评】本题考查了三角函数的诱导公式、等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.四.选做题本题包括A,B,C,D四个小题,请选做其中两题,若多做,则按作答的前两题评分.A.[选修4一1:几何证明选讲]21.(10分)(2017•江苏一模)如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.【考点】弦切角.【分析】连接OC,先证得三角形OBC是等边三角形,从而得到∠DCA=60°,再在直角三角形ACD中得到∠DAC的大小;考虑到直角三角形ABE中,利用角的关系即可求得边AE的长.【解答】解:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是.(10分)【点评】本题主要考查了弦切角、解三角形知识等,属于基础题.[选修4-2:矩阵与变换]22.(2017•江苏一模)已知二阶矩阵M有特征值λ=8及对应的一个特征向量=[],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.【考点】特征值与特征向量的计算;几种特殊的矩阵变换.【分析】(1)先设矩阵A=,这里a,b,c,d∈R,由二阶矩阵M有特征值λ=8及对应的一个特征向量e1及矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).得到关于a,b,c,d的方程组,即可求得矩阵M;(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,从而求得另一个特征值为2.【解答】解:(1)设矩阵A=,这里a,b,c,d∈R,则=8=,故,由于矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).则=,故联立以上两方程组解得a=6,b=2,c=4,d=4,故M=.(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,故矩阵M的另一个特征值为2.【点评】本题主要考查了二阶矩阵,以及特征值与特征向量的计算,属于基础题.[选修4-4:坐标系与参数方程]23.(2017•江苏一模)已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.【考点】简单曲线的极坐标方程;相交弦所在直线的方程.【分析】(1)先利用三角函数的差角公式展开圆O2的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆O2的直角坐标方程及圆O1直角坐标方程.(2)先在直角坐标系中算出经过两圆交点的直线方程,再利用直角坐标与极坐标间的关系求出其极坐标方程即可.【解答】解:(1)ρ=2⇒ρ2=4,所以x2+y2=4;因为,所以,所以x2+y2﹣2x﹣2y﹣2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即.(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.[选修4-5:不等式选讲]24.(2017•江苏一模)已知a,b,c为正数,且a+b+c=3,求++的最大值.【考点】二维形式的柯西不等式.【分析】利用柯西不等式,结合a+b+c=3,即可求得++的最大值.【解答】解:由柯西不等式可得(++)2≤[12+12+12][()2+()2+()2]=3×12∴++≤3,当且仅当==时取等号.∴++的最大值是6,故最大值为6.【点评】本题考查最值问题,考查柯西不等式的运用,考查学生的计算能力,属于基础题.四.必做题:每小题0分,共计20分25.(2017•江苏一模)如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且==.(1)求异面直线MN与PC所成角的大小;(2)求二面角N﹣PC﹣B的余弦值.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,,,方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.利用向量法能求出异面直线MN与PC所成角.(2)求出平面PBC的法向量和平面PNC的法向量,利用向量法能求出二面角N ﹣PC﹣B的余弦值.【解答】解:(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,,,方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.则A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),…(2分)设P(0,0,p),则=(﹣1,1,p),又AP=2,∴1+1+p2=4,∴p=,∵===(),=(),∴=(﹣1,1,﹣),=(0,,﹣),设异面直线MN与PC所成角为θ,则cosθ===.θ=30°,∴异面直线MN与PC所成角为30°.(2)=(﹣1,1,﹣),=(1,1,﹣),=(,﹣),设平面PBC的法向量=(x,y,z),则,取z=1,得=(0,,1),设平面PNC的法向量=(a,b,c),则,取c=1,得=(,2,1),设二面角N﹣PC﹣B的平面角为θ,则cosθ===.∴二面角N﹣PC﹣B的余弦值为.【点评】本题考查异面直线所成角的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.26.(2017•江苏一模)设|θ|<,n为正整数,数列{a n}的通项公式a n=sin tan nθ,其前n项和为S n(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(﹣1)tan nθ;(2)求证:对任何正整数n,S2n=sin2θ•[1+(﹣1)n+1tan2nθ].【考点】数列的求和.【分析】(1)利用sin=,即可得出.+a2k=(﹣1)tan nθ.利用等比数列的求和公式即可得出.(2)a2k﹣1【解答】证明:(1)a n=sin tan nθ,当n=2k(k∈N*)为偶数时,a n=sinkπ•tan nθ=0;当n=2k﹣1为奇函数时,a n=•tan nθ=(﹣1)k﹣1tan nθ=(﹣1)tan nθ.+a2k=(﹣1)tan nθ.∴奇数项成等比数列,首项为tanθ,公比为(2)a2k﹣1﹣tan2θ.∴S2n==sin2θ•[1+(﹣1)n+1tan2nθ].【点评】本题考查了三角函数的诱导公式、等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.。
江苏省苏锡常镇四市2017-2018学年度高三教学情况调研数学试题【范本模板】

江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡...相应位置上...... 1. 若复数z 满足(1+i)z=2(i 是虚数单位),则z 的虚部为 .2. 设集合{24}A =,,2{2}(B a =,其中0)a <,若A B =,则实数a = . 3. 在平面直角坐标系xOy 中,点(24)P -,到抛物线28y x =-的准线的距离为 . 4. 一次考试后,从高三(1)班抽取5人进行成绩统计,其茎叶图如右图所示,则这五人成绩的方差为 .5. 下图是一个算法流程图,若输入值[02]x ∈,,则输出值S 的取值范围是 .6. 欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径4厘米,中间有边长为1厘米的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是 .7.已知函数()sin(π)(02π)f x x x ϕ=+<<在2x =时取得最大值,则ϕ= .S ←2x −x 2S ←1输出S 结束 开始 输入xx <1Y N 7 88 2 4 4 9 28.已知公差为d 的等差数列{}n a 的前n 项和为n S ,若1054S S =,则14a d = .9.在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥D MBC -的体积为 .10.设△ABC 的内角A ,B ,C 的对边分别是a b c ,,,且满足3cos cos 5a B b A c -=,则tan tan AB= . 11.在平面直角坐标系xOy 中,已知圆22:(1)2C x y ++=,点(20)A ,,若圆C 上存在点M ,满足2210MA MO +≤,则点M 的纵坐标的取值范围是 .12.如图,扇形AOB 的圆心角为90°,半径为1,点P 是圆弧AB 上的动点,作点P 关于弦AB 的对称点Q ,则OP OQ ⋅的取值范围为 .13.已知函数1(|3|1)0()2ln 0x x f x x x ⎧++≤⎪=⎨⎪>⎩,,, ,若存在实数a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值是 .14.已知a b ,为正实数,且()234()a b ab -=,则11a b+的最小值为 . 二、填空题(每题4分,满分20分,将答案填在答题纸上)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,90ADB ∠=,CB CD =,点E 为棱PB 的中点.(1)若PB PD =,求证:PC BD ⊥;ABCDP E(2)求证:CE //平面PAD .16.在△ABC 中,三个内角A ,B ,C 的对边分别为a b c ,,,设△ABC 的面积为S ,且22243()S a c b =+-。
江苏省苏锡常镇四市2017届高三教学情况调研(二) (5月) 数学 Word版含答案bybao

2016—2017学年度苏锡常镇四市高三教学情况调研(二)数学Ⅰ试卷2017.5一、填空题:(本大题共14小题,每小题5分,共70分)1. 已知集合{}{}|13,|2A x x B x x =-<<=<,则A B = .2. 已知i 是虚数单位,复数()123,2z yi y R z i =+∈=-,且121z i z =+,则y = .3.下表是一个容量为10的样本数据分组后的频率分布,若利用组中中近似计算本组数据的平均数x ,则x 的值为 .4.已知直线20x =为双曲线()222210,0x y a b a b-=>>的一条渐近线,则该双曲线的离心率为 .5.据记载,在公元前3世纪,阿基米德已经得出了前n 个自然数平方和的一般公式.右图是一个求前n 个自然数平方和的算法流程图,若输入x 的值为1,则输出的S 的值为 .6.已知1Ω是集合(){}22,|1x y x y +≤所表示的区域,2Ω是集合(){},|x y y x ≤所表示的区域,向区域1Ω内随机投一个点,则该点落在区域2Ω内的概率为 .7.已知等比数列{}n a 的前n 项和为n S ,公比34533,3q S S =+=,则3a = .8.已知直四棱柱底面是边长为2的菱形,侧面对角线的长为的侧面积为 .9.已知α是第二象限角,且()sin tan 2ααβ=+=-,则tan β= . 10.已知直线:210l mx y m +--=,圆22:240C x y x y +--=,当直线l 被圆C 所截得的弦长最短时,实数m = .11.在ABC ∆中,角A,B,C 的对边分别为,,a b c,若满足2cos 2b A c =,则角B 的大小为 .12.在ABC ∆中,1,,,AB AC AB AC t P t⊥==是ABC ∆所在平面内的一点,若4AB AC AP AB AC=+ ,则PBC ∆的面积的最小值为 .13.已知函数()24,03,0x x x f x x x ⎧-≥⎪=⎨<⎪⎩,若函数()()3g x f x x b =-+有三个零点,则实数b 的取值范围为 .14.已知,a b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为 .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.(本题满分14分)已知向量)()2,1,sin ,cos .m x n x x =-=(1)当3x π=时,求m n ⋅的值;(2)若0,4x π⎡⎤∈⎢⎥⎣⎦,且132m n ⋅=- ,求cos 2x 的值.16.(本题满分14分)如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,,,E F G 分别为,,AB AD AC 的中点,,90.AC BC ACD =∠=(1)求证:AB ⊥平面EDC ;(2)若P 为FG 上任一点,证明://EP 平面BCD .17.(本题满分14分)某科研小组研究发现:一棵水蜜桃树的产量ω(单位:千克)与肥料费用x (单位:百元)满足如下关系:341x ω=-+,且投入的肥料费用不超过5百元.此外,还需要投入其他成本2x (如是非的人工费用等)百元.已知这种水蜜桃的市场价格为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为()L x (单位:百元).(1)求利润函数()L x 的关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?18.(本题满分16分)已知函数()3ln ,,f x a x bx a b =-为实数,0,b e ≠为自然对数的底数, 2.71828e =. (1)当0,1a b <=-时,设函数()f x 的最小值为()g a ,求()g a 的最大值; (2)若关于x 的方程()0f x =在区间(]1,e 上有两个不同的实数解,求ab的取值范围.19.(本题满分16分)已知椭圆()2222:10,0x y C a b a b-=>>的左焦点为()1,0F -,左准线为2x =-.(1)求椭圆C 的标准方程;(2)已知直线l 交椭圆C 于A,B 两点.①若直线l 经过椭圆C 的左焦点F,交y 轴于点P,且满足PA AF λ= PB BF μ=,求证:λμ+为常数;②若OA OB ⊥(O 为原点),求AOB ∆的面积的取值范围.20.(本题满分16分) 已知数列{}n a 满足21141,2n n n n a a a a a λμ+++==+,其中,,n N λμ*∈为非零常数.(1)若3,8λμ==,求证:{}1n a +为等比数列,并求数列{}n a 的通项公式; (2)若数列{}n a 是公差不等于零的等差数列. ①求实数,λμ的值;②数列{}n a 的前n 项和n S 构成数列{}n S ,从{}n S 中取不同的四项按从小到大的顺序组成四项子数列.试问:是否存在首项为1S 的四项子数列,使得该子数列中点所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.2016—2017学年度苏锡常镇四市高三教学情况调研(二)数学Ⅱ试卷21.【选做题】在A,B,C,D 四个小题中只能选做2题,每小题10分,共计20分.请在答题纸的指定区域内作答,解答应写出文字说明、证明过程或演算步骤. A.选修4-1:几何证明选讲如图,直线DE 切圆O 于点D,直线EO 交圆O 于A,B 两点,DC ⊥OB 于点C,且DE=2BE ,求证:2OC=3BC.B.选修4-2:矩阵与变换已知矩阵13a M b ⎡⎤=⎢⎥⎣⎦的一个特征值11λ=-,及对应的特征向量11e ⎡⎤=⎢⎥-⎣⎦ 求矩阵M 的逆矩阵.C.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴,取相同的单位长度,建立极坐标系.已知曲线1C的参数方程为2cos 32sin x y αα⎧=⎪⎨=+⎪⎩,([]0,2,απα∈为参数),曲线2C 的极坐标方程为()sin 3a a R πρθ⎛⎫+=∈ ⎪⎝⎭,若曲线1C 与曲线2C 有且仅有一个公共点,求实数a 的值.D.选修4-5:不等式选讲已知,,a b c 为正实数,求证:222.b c a a b c a b c++≥++【必做题】第22题、第23题,每题10分共计20分.请答题卡的指定区域内作答解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)已知袋中装有大小相同的2个白球,2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第n 局得()n n N *∈分的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.(1)求在一局游戏中得3分的概率;(2)求游戏结束时局数X 的分布列和数学期望()E X .23.(本小题满分10分)已知()()()()()()01111nkknnn k n n n n n n f x C x C x C x k C x n =--++--++-- ,其中,,,.x R n N k N k n *∈∈∈≤(1)试求()()()123,,f x f x f x 的值;(2)试猜测()n f x 关于n 的表达式,并证明你的结论.。
2017届苏锡常镇高三年级第一次模拟考试

5 20功和功率Ⅱ25功能关系Ⅱ
6 34万有引力定律及其应用Ⅱ32向心力Ⅱ
多
7 42电场线 电势能 等势面Ⅰ 43电场强度Ⅱ44电势差Ⅱ
选 题
8
60洛伦兹力Ⅱ29圆周运动 线速度 角速度Ⅰ50电源电动势与内 阻Ⅰ53闭合电路欧姆定律Ⅱ 40带电粒子在复合场中的运动Ⅱ
9
15牛顿第二定律及其应用Ⅱ30向心加速度Ⅰ32向心力Ⅱ 35曲线运动Ⅰ
较难题
题号
1 2 6 7 10 12-A 12-C 13 3 4 8 11 14 5 9 15
常见模型生活化 1
2飞镖 3水壶 4钳形电流测量仪
试 8自行车速度计
14抽夹纸
卷
3 实验选修基础化
针对主干知识,没有在冷 僻的地方下手,考的都是 学生平时重点复习的地方。
特点
似曾相识有变化 2
5计阻力竖直上抛
9弹簧挂小球回摆
15 “轨迹圆”动起来
4 知识覆盖合理化
一、苏南一模试卷分析
针对主干知识,没有在冷 僻的地方下手,考的都是 学生平时重点复习的地方。
特点
似曾相识有变化 2
5计阻力竖直上抛
9弹簧挂小球回摆
15 “轨迹圆”动起来
4 知识覆盖合理化
苏南一模的考点总数和种类数 均比高考卷多,体现了模考的 主要意义是帮助学生查漏补缺、 复习高考考试内容。
主要内容
苏南一模试卷分析 本校一模得失总结 二轮复习安排交流
题型小计 总分值 总得分率
61 71.6%
36 63.6% 23 25.7%
二、本校一模得失总结
优 势 ① B等级所达比例超过去年同期水平;
② 平均分在同类学校中略占优势; ③ 平时训练较多的常规题得分率比较高。
2020届江苏省苏锡常镇四市2017级高三一调考试数学试题(含附加题)及解析

2020届江苏省苏锡常镇四市2017级高三一调考试数学试题(含附加题)数学I一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.已知i 为虚数单位,复数11i z =+,则z = . 2.已知集合A ={}01x x ≤≤,B ={}13x a x -≤≤,若A I B 中有且只有一个元素,则实数a 的值为 .3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是 .4.在平面直角坐标系xOy 中,已知双曲线22214x y a -=(a >0)的一条渐近线方程为23y x =,则a = . 5.甲乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是 .6.右图是一个算法的流程图,则输出的x 的值为 .7.“直线l 1:10ax y ++=与直线l 2:430x ay ++=平行”是“a =2”的 条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).8.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n a = . 9.已知点M 是曲线y =2ln x +x 2﹣3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为 .10.已知3cos 24sin()4παα=-,α∈(4π,π),则sin 2α= . 11.如图在矩形ABCD 中,E 为边AD 的中点,AB =1,BC =2.分别以A,D 为圆心,1为半经作圆弧EB,EC,将两圆弧EB,EC 及边BC 所围成的平面图形(阴影部分)绕直线AD 旋转一周,所形成的几何体的体积为 .12.在△ABC 中,(AB AC λ-u u u r u u u r )⊥BC uuu r (λ>1),若角A 的最大值为6π,则实数λ的值是 .13.若函数()x f x a =(a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是 .14.如图,在△ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC,CD 与BE 交于点O,若OB OC,则△ABC 面积的最大值为 .二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)在△ABC 中,角A,B,C 所对应的边分别为a ,b ,c ,且满足cos A sin B 0b =. (1)求A ;(2)已知a ==3π,求△ABC 的面积.。
江苏省苏锡常镇四市2017-2018学年高三教学情况调研(二)数学试题含答案

江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)数学试题一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1. 若复数z 满足(1+i)z=2(i 是虚数单位),则z 的虚部为.2. 设集合{24}A =,,2{2}(B a =,其中0)a <,若A B =,则实数a =. 3. 在平面直角坐标系xOy 中,点(24)P -,到抛物线28y x =-的准线的距离为.4. 一次考试后,从高三(1)班抽取5人进行成绩统计,其茎叶图如右图所示,则这五人成绩的方差为.5. 下图是一个算法流程图,若输入值[02]x ∈,,则输出值S 的取值范围是.6. 欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径4厘米,中间有边长为1厘米的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是.7.已知函数()sin(π)(02π)f x x x ϕ=+<<在2x =时取得最大值,则ϕ=. 8.已知公差为d 的等差数列{}n a 的前n 项和为n S ,若1054S S =,则14a d =.9.在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN上一点,且2PD DN =,则三棱锥D MBC -的体积为.10.设△ABC 的内角A ,B ,C 的对边分别是a b c ,,,且满足3cos cos 5a Bb Ac -=,则tan tan AB=. 11.在平面直角坐标系xOy 中,已知圆22:(1)2C x y ++=,点(20)A ,,若圆C 上存在点M ,满足2210MA MO +≤,则点M 的纵坐标的取值范围是.12.如图,扇形AOB 的圆心角为90°,半径为1,点P 是圆弧AB 上的动点,作点P 关于弦AB 的对称点Q ,则OP OQ ⋅的取值范围为.13.已知函数1(|3|1)0()2ln 0xx f x x x ⎧++≤⎪=⎨⎪>⎩,,, ,若存在实数a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值是.14.已知a b ,为正实数,且()234()a b ab -=,则11a b+的最小值为. 二、填空题(每题4分,满分20分,将答案填在答题纸上)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,90ADB ∠= ,CB CD =,点E 为棱PB 的中点.(1)若PB PD =,求证:PC BD ⊥; (2)求证:CE //平面PAD .16.在△ABC 中,三个内角A ,B ,C 的对边分别为a b c ,,,设△ABC 的面积为S,且2224)S a c b +-.(1)求B ∠的大小;(2)设向量(sin 23cos )A A =,m ,(32cos )A =-,n ,求⋅m n 的取值范围. 17.(本小题满分14分)下图(I )是一斜拉桥的航拍图,为了分析大桥的承重情况,研究小组将其抽象成图(II )所示的数学模型.索塔AB ,CD 与桥面AC 均垂直,通过测量知两索塔的高度均为60m ,桥面AC 上一点P 到索塔AB ,CD 距离之比为21:4,且P 对两塔顶的视角为135. (1)求两索塔之间桥面AC 的长度;(2)研究表明索塔对桥面上某处的“承重强度”与多种因素有关,可简单抽象为:某索塔对桥面上某处的“承重强度”与索塔的高度成正比(比例系数为正数a ),且与该处到索塔的距离的平方成反比(比例系数为正数b ).问两索塔对桥面何处的“承重强度”之和最小?并求出最小值.ABCDP E18.如图,椭圆22221(0)x y a b a b +=>>的离心率为2,焦点到相应准线的距离为1,点A ,B ,C 分别为椭圆的左顶点、右顶点和上顶点,过点C 的直线l 交椭圆于点D ,交x 轴于点1(0)M x ,,直线AC 与直线BD 交于点22()N x y ,.(1)求椭圆的标准方程;(2)若2CM MD =,求直线l 的方程;(3)求证:12x x ⋅为定值.19.已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,① 当0a >时,求函数()f x 的极值(用a 表示);② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;(2)函数()f x 图象上点A 处的切线1l 与()f x 的图象相交于另一点B ,在点B 处的切线为2l ,直线12l l ,的斜率分别为12k k ,,且21=4k k ,求a b ,满足的关系式. 20.已知等差数列{}n a 的首项为1,公差为d ,数列{}n b 的前n 项和为n S ,且对任意的*n ∈N ,692n n n S b a =--恒成立.(1)如果数列{}n S 是等差数列,证明数列{}n b 也是等差数列; (2)如果数列12n b ⎧⎫+⎨⎬⎩⎭为等比数列,求d 的值; (3)如果3d =,数列{}n c 的首项为1,1(2)n n n c b b n -=-≥,证明数列{}n a中存在无穷多项可表示为数列{}n c 中的两项之和.数学Ⅱ(附加题)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图所示,AB 为⊙O 的直径,AE 平分BAC ∠交⊙O 于E 点,过E 作⊙O 的切线交AC 于点D ,求证AC DE ⊥.B .选修4—2:矩阵与变换 已知矩阵214x ⎡⎤⎢⎥⎣⎦M =的一个特征值为3,求1-M . C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,圆C 的参数方程为32cos (22sin x t t y t=+⎧⎨=-+⎩,为参数).以原点O 为极点,以x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos()()4a a πθ-=∈R ,已知圆心C 到直线la 的值.D .选修4—5:不等式选讲已知实数a b c ,,满足21a b c ++=,2221a b c ++=,求证:213c -≤≤. 【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.甲、乙、丙三位学生各自独立地解同一道题,已知甲做对该题的概率为13,乙、丙做对该题的概率分别为()m n m n >,,且三位学生能否做对相互独立,设X 为这三位学生中做对该题的人数,其分布列为:(1)求m n ,的值; (2)求X 的数学期望.23.已知函数21()((R)n f x x n x +*=∈∈N ,.(1)当2n =时,若(2)(2)f f +-=,求实数A 的值; (2)若(2)(01)f m m αα*=+∈<<N ,,求证:()1m αα+=.2017-2018 学年度苏锡常镇四市高三教学情况调研(二)参考答案一、填空题:1. 1- 2.2- 3.4 4.20.8 5.[]01,6.14π 7.π2 8.2 9.411. ⎡⎢⎣⎦12.11⎤⎦, 13.22e 12- 14.二、解答题15. 证明:(1)取BD 的中点O ,连结CO PO ,,因为CD CB =,所以△CBD 为等腰三角形,所以BD CO ⊥. 因为PB PD =,所以△PBD 为等腰三角形,所以BD PO ⊥. 又PO CO O = ,所以BD ⊥平面PCO . 因为PC ⊂平面PCO ,所以PC BD ⊥. (2)由E 为PB 中点,连EO ,则EO PD ∥,又EO ⊄平面PAD ,所以EO ∥平面PAD . 由90ADB ∠=︒,以及BD CO ⊥,所以CO AD ∥, 又CO ⊄平面PAD ,所以CO ∥平面PAD . 又=CO EO O ,所以平面CEO ∥平面PAD , 而CE ⊂平面CEO ,所以CE ∥平面PAD .16.解(1)由题意,有22214sin )2ac B a c b ⨯=+-,则sin B =sin B B =.因为sin 0B ≠,所以cos 0B ≠,所以tan B = 又0πB <<,所以π3B =. (2)由向量(sin 23cos )A A =,m ,(32cos )A =-,n ,得2π3sin 26cos 3sin 23cos 23)34A A A A A -=--=-- m n =.由(1)知π3B =,所以2π3A C +=,所以2π03A <<.所以ππ13π2()4412A -∈-,.所以πsin(2)14A ⎛⎤-∈ ⎥ ⎝⎦.所以(63⎤∈-⎦m n.即取值范围是(63⎤-⎦. 17.解(1)设21AP t =,4(0)BP t t =>,,记==APB CPD αβ∠∠,,则60206015tan =tan 2174t t t tαβ===,, 由22015tan tan 7tan()tan 4513001tan tan 17t t t αβαβαβ+++=︒===--, 化简得 271253000t t --=,解得20t =或157t =-(舍去), 所以,2520500AC AP PC =+=⨯=. 答:两索塔之间的距离AC =500米.(2)设AP=x ,点P 处的承重强度之和为()L x . 则22()60[](500)ab ab L x x x =+-,且(0,500)x ∈, 即2211()60[],(0,500)(500)L x ab x x x =+∈- 记2211(),(0,500)(500)l x x x x =+∈-,则3322'()(500)l x x x -=+-, 令()0l x '=,解得250x =,当(0,250)x ∈,()0l x '<,()l x 单调递减; 当(250,500)x ∈,()0l x '>,()l x 单调递增; 所以250x =时,()l x 取到最小值,()L x 也取到最小值63125ab. 答:两索塔对桥面AC 中点处的“承重强度”之和最小,且最小值为63125ab. 18. 解(1)由椭圆的离心率为21. 得21c a a c c⎧=⎪⎪⎨⎪-=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩,所以,椭圆的标准方程为2212x y +=.(2)由(1)知(0,1)C ,设00(,)D x y ,因为2CM MD = ,得021y =-,所以012y =-,代入椭圆方程得0x =或,所以1)2D -或1()2D -, 所以l的方程为:1y =+或1y =+. (3)设D 坐标为(x 3,y 3),由(0,1)C ,M (x 1,0)可得直线CM 的方程111y x x =-+, 联立椭圆方程得:1221112y x x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,,解得132142x x x =+,2132122x y x -=+.由B ,得直线BD的方程:2y x =, ①直线AC方程为1y x =+, ② 联立①②得212x x =, 从而12x x =2为定值.解法2:设D 坐标为(x 3,y 3), 由C ,M ,D 三点共线得31311y x x x =--,所以3131x x y =-,① 由B ,D ,N,将221y =+ 代入可得2x , ②①和②相乘得,231231x x x y =-2333323333222)2x y x xx y x +-==-+-. 19. 解:(1)①由2()32f x x ax b '=++及02=+b a , 得22()32f x x ax a '=+-, 令()0f x '=,解得3ax =或a x -=. 由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03ax f x '∈+∞>,,)(x f 单调递增,因此,)(x f 的极大值为3()1f a a -=+,)(x f 的极小值为35()1327a a f =-.② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点;当0a <时,与①同理可得)(x f 的极小值为3()1f a a -=+,)(x f 的极大值为35()1327a a f =-.要使)(x f 有三个不同零点,则必须有335(1)(1)027a a +-<, 即332715a a <->或.不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<, 则123()()()0f x f x f x ===,3221111()10f x x ax a x =+-+=,① 3222222()10f x x ax a x =+-+=, ② 3223333()10f x x ax a x =+-+=, ③②-①得222212*********()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以222212121()0x x x x a x x a ++++-=, ④ 同理222332232()0x x x x a x x a ++++-=, ⑤⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=, 因为310x x ->,所以2310x x x a +++=, 又1322x x x +=,所以23ax =-. 所以()03af -=,即22239a a a +=-,即327111a =-<-,因此,存在这样实数a =满足条件. (2)设A (m ,f (m )),B (n ,f (n )),则b am m k ++=2321,b an n k ++=2322,又b n m a n mn m nm n m b n m a n m n m n f m f k +++++=--+-+-=--=)()()()()()(2222331, 由此可得b n m a n mn m b am m +++++=++)(23222,化简得m a n 2--=, 因此,b a am m b m a a m a k +++=+--+--=2222812)2(2)2(3, 所以,2221284(32)m am b a m am b +++=++, 所以b a 32=.20. 解:(1)设数列{}n S 的公差为d ',由692n n n S b a =--, ①111692(2)n n n S b a n ---=--≥,②①-②得1116()9()()n n n n n n S S b b a a ----=---, ③ 即169()n n d b b d -'=--,所以169n n d db b -'+-=为常数, 所以{}n b 为等差数列.(2)由③得1699n n n b b b d -=--,即139n n b b d -=+,所以11111111133()11322332311112222n n n n n n n d d d b b b b b b b ------++++--+===+++++是与n 无关的常数, 所以103d -=或112n b -+为常数. ①当103d -=时,3d =,符合题意; ②当112n b -+为常数时, 在692n n n S b a =--中令1n =,则111692a b a =--,又11a =,解得11b =,…8分 所以11113222n b b -+=+=, 此时111333311322n d d b ---+=+=+,解得6d =-. 综上,3d =或6d =-.(3)当3d =时,32n a n =-,由(2)得数列1{}2n b +是以32为首项,公比为3的等比数列,所以11313=3222n n n b -+=⋅⋅,即1=(31)2n n b -. 当2n ≥时,11111(31)(31)322n n n n n n c b b ---=-=---=,当1n =时,也满足上式,所以13(1)n n c n -=≥.设(1)n i j a c c i j =+<≤,则113233i j n ---=+,即133(31)2i j i n ---+=,如果2i ≥,因为3n 为3的倍数,13(31)i j i --+为3的倍数,所以2也为3的倍数,矛盾.所以1i =,则1333j n -=+,即213(2,3,4,)j n j -=+= .所以数列{}n a 中存在无穷多项可表示为数列{}n c 中的两项之和.2017-2018学年度苏锡常镇四市高三教学情况调研(二)附加题参考答案21.A 解 连接OE ,因为ED 是⊙O 切线,所以OE ⊥ED .因为OA =OE ,所以∠1=∠OEA .又因为∠1=∠2,所以2=∠OEA ,所以OE ∥AC ,∴AC ⊥DE .21.B 解 由2104xl l --=--,得(2)()40x l l ---=的一个解为3,代入得1x =-, 因为⎥⎦⎤-⎢⎣⎡=1142M ,所以⎥⎥⎥⎥⎦⎤-⎢⎢⎢⎢⎣⎡=-316132611M . 21.C 解消去参数t ,得到圆的普通方程为()()22324x y -++=, 由a =-)4cos(2πθρ,得0sin cos =-+a θρθρ,所以直线l 的直角坐标方程为0x y a +-=. 依题意,圆心C 到直线l解得13a 或=-. 21.D 证明:因为a +2b +c =1,a 2+b 2+c 2=1,所以a +2b =1-c ,a 2+b 2=1-c 2.由柯西不等式:(12+22)(a 2+b 2)≥(a +2b )2,5(1-c 2)≥(1-c )2, 整理得,3c 2-c -2≤0,解得-23≤c ≤1. 所以-23≤c ≤1. 22. 解(1)由题意,得11(1)(1)(1),3311.336m n mn ⎧---=⎪⎪⎨⎪=⎪⎩ 又m n >,解得13m =,1.4n = (2)由题意,1232132214.3343343349a =⨯⨯+⨯⨯+⨯⨯=14171(0)(1)(3)1.393636b P X P X P X =-=-=-==---= ()E X =1471110123.39363612⨯+⨯+⨯+⨯= 23.解(1)当2n =时,50512323234455555555()(f x x C x C x C x C x C x C ==++++,所以55114332550555(2)(2)(2+(22[22+2]f f C C C +-=-=+=2(54⨯⨯⨯所以610A =.(2)因为21021122212212121212121()(n n n n n n n n n f x x C x C x C x C ++-++++++==+++ ,所以021122212212121212121(2)222n n n n n n n n f C C C C +-++++++=+++ ,由题意21(2)2) (*,01)n f m m αα+==+∈<<N ,首先证明对于固定的*n ∈N ,满足条件的,m α是唯一的.假设21112212121212(2)(2(,*,0,1,,)n f m m m m m m αααααα+==+=+∈<<≠≠N , 则12210m m αα-=-≠,而12m m -∈Z ,21(1,0)(0,1)αα-∈- ,矛盾. 所以满足条件的,m α是唯一的.下面我们求m 及α的值: 因为21212121(2)(2)(2(2(2(2n n n n f f ++++--=--=+02122124234112212121212[222++2]n n n n n n n n C C C C +--++++=++ , 显然(2)(2)f f --∈N *.2(0,1)∈,故212)(0,1)n +∈,即2121(2)(22)(0,1)n n f ++-=-=∈.所以令02122124234112212121212[222++2]n n n n n n n n m C C C C +--++++=++ ,21(2n α+=-,则(2)(2),(2)m f f f α=--=-,又(2)m f α+=,所以212121()(2)(2)(2(2(54)1n n n m f f αα++++=-⋅=⋅-=-=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1、已知集合{}1,2,3,4,5,6,7U =,{}2650,Z M x x x x =-+∈≤,∁U 2、若复数z 满足2i z i i++=(i 为虚数单位),则z = .3、函数1()ln(43)f x x =-的定义域为 . 4、下图是给出的一种算法,则该算法输出的结果是 .5、某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为的样本,其中高一年级抽20人,高三年级抽10人.则该校高二年级学生人数为 . 6、已知正四棱锥的底面边长是2,则该正四棱锥的体积为 . 7、从集合{}1,2,3,4中任取两个不同的数,则这两个数的和为3的倍数的概率为 .8、在平面直角坐标系xOy 中,已知抛物线28y x =的焦点恰好是双曲线22213x y a -=的右 焦点,则双曲线的离心率为 .9、设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,且254a a +=,则8a 的 值为 .10、在平面直角坐标系xOy 中,过点(1,0)M 的直线l 与圆225x y +=交于,A B 两点,其 中A 点在第一象限,且2BM MA =,则直线l 的方程为 .11、在△ABC 中,已知1,2,60AB AC A ==∠=,若点P 满足AP AB AC λ=+,且1BP CP ⋅=,则实数λ的值为 .12、已知sin 3sin()6παα=+,则tan()12πα+= .13、若函数211,12()ln ,1xx f x x x x ⎧-<⎪⎪=⎨⎪⎪⎩≥,则函数1()8y f x =-的零点个数为 .14、若正数,x y 满足1522x y -=,则3322x y x y +--的最小值为 .二、解答题15、在△ABC 中,,,a b c 分别为角,,A B C 的对边.若cos 3,cos 1a B b A ==,且6A B π-=.(1)求边c 的长;(2)求角B 的大小.16、如图,在斜三棱柱111ABC A B C -中,侧面11AAC C 是菱形,1AC 与1A C 交于点O ,E 是棱AB 上一点,且OE ∥平面11BCC B . (1)求证:E 是AB 中点;(2)若11AC A B ⊥,求证:1AC BC ⊥.17、某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图).设计要求彩门的面积为S (单位:2m ),高为h (单位:m )(,S h 为常数).彩门的下底BC 固定在广场底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢 支架的长度和记为l .(1)请将l 表示成关于α的函数()l f α=; (2)问当α为何值l 最小,并求最小值.18、在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.19、已知函数()(1)ln f x x x ax a =+-+(a 为正实数,且为常数). (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若不等式(1)()0x f x -≥恒成立,求实数a 的取值范围.20、已知n 为正整数,数列{}n a 满足0n a >,2214(1)0n n n a na ++-=,设数列{}n b 满足2nn n a b t=.(1)求证:数列为等比数列; (2)若数列{}n b 是等差数列,求实数t 的值;(3)若数列{}n b 是等差数列,前n 项和为n S ,对任意的N n *∈,均存在N m *∈,使得24211816n m a S a n b -=成立,求满足条件的所有整数1a 的值.2016—2017学年度苏锡常镇四市高三教学情况调研(一)数 学 Ⅱ 试 题 2017.31、已知二阶矩阵M 有特征值8λ=及对应的一个特征向量111e ⎡⎤=⎢⎥⎣⎦,并且矩阵M 对应的变换将点(1,2)-变换成(2,4)-. (1)求矩阵M ;(2)求矩阵M 的另一个特征值.2、已知圆1O 和圆2O 的极坐标方程分别为22,cos()24πρρθ=--=.(1)把圆1O 和圆2O 的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.3、如图,已知正四棱锥P ABCD -中, 2PA AB ==,点,M N 分别在,PA BD 上,且13PM BN PA BD ==. (1)求异面直线MN 与PC 所成角的大小; (2)求二面角N PC B --的余弦值.4、设2πθ<,n 为正整数,数列{}n a 的通项公式sintan 2n n n a πθ=,其前n 项和为n S . (1)求证:当n 为偶数时,0n a =;当n 为奇数时,12(1)tan n n n a θ-=-;(2)求证:对任何正整数n ,1221sin 2[1(1)tan ]2n n n S θθ+=⋅+-.2016-2017学年度苏锡常镇四市高三教学情况调研(一)数学参考答案2017.3一、填空题.1.{}6,7 23.()3,1 1.4⎛⎫+∞ ⎪⎝⎭4.245.3006.437.138.29.2 10.1y x =- 11.1或14-12.4 13.414.1二、解答题:本大题共6小题,共计90分. 15.解:(1)(法一)在△ABC 中,由余弦定理,cos 3a B =,则22232a c b aac +-=,得2226a c b c +-=;① ……2分 cos 1b A =,则22212b c a b bc +-=,得2222b c a c +-=,② ……4分①+②得:228c c =,4c =. ……7分 (法二)因为在△ABC 中,πA B C ++=,则sin cos sin cos sin()sin(π)=sin A B B A A B C C +=+=-, ……2分 由sin sin sin a b c A B C ==得:sin sin a C A c =,sin sin b CB c=,代入上式得: ……4分 cos cos 314c a B b A =+=+=. ……7分(2)由正弦定理得cos sin cos tan 3cos sin cos tan a B A B Ab A B A B===, ……10分又2tan tan 2tan tan()1tan tan 13tan A B B A B A B B --===++ ……12分解得tan B ,π)(0,B ∈,π6B =. ……14分16.(1)连接1BC ,因为OE ∥平面11BCC B ,OE ⊂平面1ABC ,平面11BCC B 平面11ABC BC =,所以OE ∥1BC . ……4分因为侧面11AA C C 是菱形,11AC AC O =,所以O 是1AC 中点, ……5分 所以11AE AOEB OC ==,E 是AB 中点. ……7分 (2)因为侧面11AA C C 是菱形,所以1AC 1A C ⊥,……9分又11AC A B ⊥,111AC A B A =,11,AC A B ⊂面1A BC ,所以1AC ⊥面1A BC ,…12分因为BC ⊂平面1A BC ,所以1AC BC ⊥. ……14分17.解:(1)过D 作DH BC ⊥于点H ,则DCB α∠=(π02α<<), DH h =, 设AD x =, 则sin h DC α=,tan h CH α=,2tan h BC x α=+, ……3分 因为S=12()2tan h x x h α++⋅,则 tan S hx h α=-; ……5分则21()2()sin tan S l f DC AD h h ααα==+=+- (π02α<<); ……7分 (2)2222cos 112cos ()()sin sin sin f h h αααααα---'=⋅-=⋅, ……8分 令212cos ()0-'=⋅=f h αα,得π=α. ……9分所以, min π()3Sl f h ==+. ……12分答:(1)l 表示成关于α的函数为21()()sin tan S l f h h ααα==+- (π02α<<); CBDA(第17题图)H……11分1(第16题图)(2)当π3α=时,lSh+. ……14分18.解:(1)由题1c =,c e a =所以a =1b =. ……2分 所以椭圆C 的方程为22 1.2x y +=……4分(2)当直线PQ 的斜率不存在时,不合题意; ……5分当直线PQ 的斜率存在时,设直线PQ的方程为(y k x =,……6分 代入2222x y +=,得2222(12))4820k x k k x k k +-++++=, ……8分 设11(,)P x y ,22(,)Q x y ,则:4(81)0k ∆=-+>,18k <-,1,2x =, ……9分所以2122)12k k x x k ++=+,212248212k k x x k ++⋅=+,……11分又AP AQ k k +=+=422k k ===1.所以直线AP ,AQ 的斜率之和为定值1. ……16分19.解:(1)()(1)ln f x x x ax a =+-+,1()ln +x f x x a x+'=-. ……1分 因()f x 在(0,)+∞上单调递增,则()0f x '≥,1ln +1a x x+恒成立. 令1()ln +1g x x=+,则21()x g x -'=, ……2分 因此,min ()(1)2g x g ==,即02a<.……6分……4分(2)当02a <时,由(1)知,当(0,)x ∈+∞时,()f x 单调递增. ……7分又(1)0f =,当(0,1)x ∈,()0f x <;当(1,)x ∈+∞时,()0f x >. ……9分 故不等式(1)()0x f x -恒成立. ……10分若2a >,ln (1)1()x x a x f x x+-+'=,设()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则2e 1a x -=>. …12分 当2(1,e )a x -∈时,()0p x '<,()p x 单调递减,则()(1)20p x p a <=-<,则()()0p x f x x'=<,所以当2(1,e )a x -∈时,()f x 单调递减, ……14分 则当2(1,e )a x -∈时,()(1)0f x f <=,此时(1)()0x f x -<,矛盾. ……15分 因此,02a <. ……16分20.解:(1)由题意得2214(1)n n n a na ++=,因为数列{}n a 各项均正,得22141n n a a n n +=+2= ……2分2=,所以是以1a 为首项公比为2的等比数列.……4分(2)由(1112n a -=⋅,12n n a a -=,22114n n n n n a a n b t t -==, ……5分 如果数列{}n b 是等差数列,则2132b b b =+,……6分得:2212023111123244423a a a t t t --⋅⋅=+,即2316148t t t=+,则216480t t -+=, 解得 14t =,212t =. ……7分当14t =时,214n a nb =,2221111(1)444n n a n a n a b b ++-=-=,数列{}n b 是等差数列,符合题意; ……8分当2t =12时,2143n na nb =⋅,2222111241244242211434343162a a a b b a +=+==⋅⋅⋅,2132133428231b a a ==⋅⋅,2432b b b +≠,数列{}n b 不是等差数列,2t =12不符合题意;……9分 综上,如果数列{}n b 是等差数列,4t =.……10分(3)由(2)得214n a nb =,对任意的n ∈N *,均存在m ∈N *,使24211816n m a S a n b -=,则4242111(1)816424a n n a m a n +⋅-=,所以214na m =. ……12分当12a k =,k ∈N *,此时2244k n m k n ==,对任意的n ∈N *,符合题意; ……14分当121a k =-,k ∈N *,当1n =时,22441144k k m k k -+==++. 不合题意. …15分综上,当12,a k k =∈N *,对任意的n ∈N *,均存在m ∈N *,使24211816n m a S a n b -=.……16分(第Ⅱ卷 理科附加卷)21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分.A .(选修4-1 几何证明选讲). 解:连结OC ,由于l 是圆的切线,故OC l ⊥,因为AD l ⊥,所以AD ∥OC , ……2分 因为AB 是圆O 的直径,6AB =,3BC =, 所以60∠=∠=︒ABC BCO ,则DAC ∠=906030ACO ∠=︒-︒=︒. ……4分23cos30AC =⋅︒=sin30DC AC =︒=,9cos302DA AC =︒=. ……7分 由切割线定理知,2DC DA DE =⋅, ……9分所以32DE =,则3AE =. ……10分 B .(选修4—2:矩阵与变换)解:设M =a b c d ⎡⎤⎢⎥⎣⎦,M 11811a b c d +⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,M 122242a b c d ---+⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦, ……3分 ABC D O(第21—A 题图)E882224a b c d a b c d +=⎧⎪+=⎪⎨-+=-⎪⎪-+=⎩,,,,解得6244a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,,,,即M =6244⎡⎤⎢⎥⎣⎦. ……5分(2)则令特征多项式62()(6)(4)8044f λλλλλ--==---=--, ……8分解得1282λλ==,.矩阵M 的另一个特征值为2. ……10分C .(选修4—4:坐标系与参数方程)解:(1)圆1O 的直角坐标方程为224x y +=,①……3分由2πcos()24ρθ--=,得22(cos sin )2-+=ρρθθ,……4分222()2x y x y +-+=,故圆2O 的直角坐标方程为222220x y x y +---=,② ……6分 (2)②-①得经过两圆交点的直线为10x y +-=, ……8分该直线的极坐标方程为cos sin 10ρθρθ+-=. ……10分D .(选修4—5:不等式选讲)解:因为:2(111)(313131)a b c +++++++, ……7分由于3a b c ++=16,当且仅当1a bc ===时6. ……10分【必做题】第22,23题,每小题10分,计20分.22.解:(1)设AC ,BD 交于点O ,在正四棱锥P ABCD -中,OP ⊥平面ABCD .又2PA AB ==,所以OP =以O 为坐标原点,DA ,AB 方向分别是x 轴、y 轴正方向,建立空间直角坐标系O xyz -,如图: ……1分 则(1,1,0)A -,(1,1,0)B ,(1,1,0)C -,(1,1,0)D --,P故21122(,,)3333OM OA AM OA AP =+=+=-,111(,,0)333ON OB ==, ……3分 所以222(0,,)33MN =-,(1,1,2)PC =--, 3cos ,2MN PC MN PC MN PC⋅<>==,所以MN 与PC 所成角的大小为π6. ……5分(2)(1,1,2)PC =--,(2,0,0)CB = ,42(,,0)33NC =-.设(,,)x y z =m 是平面PCB 的一个法向量,则0PC ⋅=m ,0CB ⋅=m , 可得20,0,x y z x ⎧-+-=⎨=⎩令0x =,2y =,1z =,即(0,2,1)=m , ……7分设111(,,)x y z =n 是平面PCN 的一个法向量,则0PC ⋅=n ,0CN ⋅=n , 可得1111120,20,x y z x y ⎧-+-=⎨-+=⎩ 令12x =,14y =,12z =,即(2,4,2)=n , …9分52533cos ,33322⋅<>===⨯m nm n m n ,则二面角N PC B --的余弦值为53333.……10分23.证明:(1)因为πsintan 2nn n a θ=. 当n 为偶数时,设2n k =,2222πsintan sin πtan 02kk n k k a a k θθ===⋅=,0n a =.…1分 当n 为奇数时,设21n k =-,21(21)ππsintan sin(π)tan 22n n n k k a a k θθ--===-⋅. 当2k m =时,21ππsin(2π)tan sin()tan tan 22n n n n k a a m θθθ-==-⋅=-⋅=-,此时1212n m -=- ,121221tan (1)tan (1)tan n n m nn n k a a θθθ---==-=-=-.……2分 当21k m =-时,213π3πsin(2π)tan sin()tan tan 22n n n n k a a m θθθ-==-⋅=-⋅=,DNMABC P(第22题图)Ox yz此时1222n m -=-, 122221tan (1)tan (1)tan n n m nn n k a a θθθ---===-=-. 综上,当n 为偶数时,0n a =;当n 为奇数时,12(1)tan n n n a θ-=-. ……3分(2)当1n =时,由(1)得:212tan S a a θ=+=,121sin21(1)tan 2n n θθ+⎡⎤+-⎣⎦=()2211sin 21tan sin cos tan 2cos θθθθθθ+=⋅⋅=. 故1n =时,命题成立……5分假设n k =时命题成立,即1221sin21(1)tan 2k kk S θθ+⎡⎤=⋅+-⎣⎦. 当1n k =+时,由(1)得:2(1)22122221k k k k k k S S a a S a ++++=++=+=12211sin21(1)tan (1)tan 2k k k k θθθ++⎡⎤⋅+-+-⎣⎦ ……6分=122112sin 21(1)tan (1)tan 2sin 2k k k k θθθθ++⎡⎤⋅+-+-⋅⎢⎥⎣⎦ =2222112sin 21(1)tan ()2tan sin 2tan k k θθθθθ++⎡⎤⋅+-⋅-+⎢⎥⎣⎦ 2222221cos 1sin 21(1)tan ()2sin sin k k θθθθθ++⎡⎤=⋅+-⋅-+⎢⎥⎣⎦ =()2221sin21(1)tan 2k k θθ++⋅+-⋅ 即当1n k =+时命题成立. ……9分 综上所述,对正整数n 命题成立. ……10分。