管板与管子胀焊结合时的施工顺序
钛管管板接头胀接操作要领

钛管管板接头胀接操作要领(中英文)先焊后胀胀管器的型号和规格根据胀接长度要求确定3.13.2减薄率是否满足要求a.b.3.3ab3.43.4.1漏胀3.4.23.4.3ab示屏出现cd驱动电机会自动逆时针反转退出e转时f3.53.6First welding, then expanding (awelding firstcooling fulidelectricexpanderelectro griderThe model and type of expending tool should be decidedby the length of expended joint.deep-hole adjustable expanding tool3.1 Expanding parts should be as the drawing shown.3.2 Trail expanding: before the first expanding, a trail should be carried out on samples to ensure the expanding method and dethickness meet the requirement.drawing.3.3 To Do List prior to formal expandinga.qualified.b. To check whether foreign material exists.3.4 expanding tubes3.4.1 Expanding sequence: for adhesion expanding, the sequence should be from top to bottom and from left to right, in case of omission.3.4.2 For the first to-be-expanded titanium tube, use inside micrometer to confirm with the inside micrometer.3.4.3a.powered on.b. Before expanding started, press SET button, then the SELECT button, followed by UP button, and finally the RESET button. After resetting, the display screen will show "0000", which means expanding can be carried out at any time.c. Adjust the current to the appropriate value to apply to the relevant diameter of titanium tubes.d.expandedrepeat like this.e.rollback, the expander must be stopped immediately. Press ESC button and then pull the motor switch to quit the operation.f. The switch of tool head should be open at the beginning of expanding started , and only can be off till the expander auto drop out.3.5 Every ten to fifteen tubes expanded, use cooling fluid to lubricate expander.3.6 After expanding finished, inform QC to inspect.。
凝汽器不锈钢管胀、切、焊的施工工艺

论600MW凝汽器不锈钢管胀、切、焊施工工艺摘要:本文着重介绍了某电厂600MW机组凝汽器不锈钢管切、胀、焊的施工工艺,对施工过程的施工方法、施工要求、质量控制要点及影响焊接质量的因素作了论述。
关键词:不锈钢管切、胀焊接控制引言:凝汽器是电厂中重要的热交换设备,根据对循环水水质的不同要求,凝汽器冷却管束可选用铜管、钛管及不锈钢管。
为了提高凝汽器的高可靠性、高气密性,大型火力发电机组的凝汽器在淡水区域选择不锈钢管以成为目前的发展趋势。
由于此种凝汽器属新工艺,在行业内尚未有统一的施工标准,施工工艺只能参照钛管执行。
工程概况:某电厂一期工程#2机组凝汽器为上海动力设备有限公司生产的N-38000-1型双背压、双壳体、单流程、表面式、横向布置的凝汽器,由低压凝汽器A和高压凝汽器B组成。
凝汽器冷却管全部采用不锈钢管,管板采用SA516Gr.70+SA240 304L复合板。
考虑排汽对管束的冲击影响,顶部及空冷区选用Φ25×0.7mm加厚管子,其余部位的管子规格为Φ25×0.5mm,共计41896根不锈钢管。
为保证密封性能不锈钢管安装采用先胀后密封焊的施工工艺,主要焊接工作量为不锈钢管板的焊接,共有83792道管板焊口。
胀、切工艺:按设计要求,凝汽器不锈钢管与管板采用胀-焊的工艺。
从密封角度来讲,采用胀-焊工艺相当于上了双保险,更能保证其密封性能。
从焊接工艺角度来讲,焊前先胀好处有三:一是因为不锈钢管的管壁薄,仅0.5~0。
7mm厚,如果不胀或欠胀,管子与管板之间就会出现间隙,焊接时就有可能出现烧穿或未熔合等缺陷;二是不锈钢管焊接需要背面氩气保护,而凝汽器受结构限制,不可能从管板里面进行充氩保护,采用先胀后焊,胀管后就能消除管子与管板孔之间的间隙,从而避免焊缝后面的氧化;三是能保证焊机定芯棒插入管子后防止管子的移动。
1、试胀正式胀接前的试胀工作极为重要,它是培训职工练习胀切、掌握工具性能及胀接参数的有效途径。
关于先焊后胀还是先胀后焊的探讨

关于先焊后胀还是先胀后焊的探讨先胀后焊管子与管板胀接后,在管端应留有15mm长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15mm的未胀管段与管板孔之间存在一个间隙。
在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。
据国外资料介绍,间隙腔内压力在焊接收口时可达到200~300MPa的超高压状态。
间隙腔的高温高压气体在外泄时对强度胀的密封性能造成致命的损伤,且焊缝收口处亦将留下肉眼难以觉察的针孔。
目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。
这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。
由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。
但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。
采用液袋式胀管机胀接时,为了使胀接结果达到理想效果,胀接前管子与管板孔的尺寸配合在设计制造上必须符合较为严格的要求。
只有这样对于常规设计的“贴胀+强度焊”可采用先胀后焊的方式,而对特殊设计的“强度胀+强度焊”则可采用先贴胀,再强度焊,最后强度胀的方法。
先焊后胀在制造过程中,一台换热器中有相当数量的换热管,其外径与管板管孔孔径之间存在着较大的间隙,且每根换热管其外径与管板管孔间隙沿轴向是不均匀的。
当焊接完成后胀接时,管子中心线必须与管板管孔中心线相重合。
当间隙很小时,上端15mm的未胀管段将可以减轻胀接变形对焊接的影响。
当间隙较大时,由于管子的刚性较大,过大的胀接变形将越过15mm未胀区的缓冲而对焊接接头产生损伤,甚至造成焊口脱焊。
所以对于先焊后胀工艺,控制管子与管板孔的精度及其配合为首要的问题。
当管子与管板腔的间隙小到一定值后,胀接过程将不至于损伤到焊接接头的质量。
胀接工艺守则

胀接工艺守则1总则管板和换热管是换热器的主要受压元件,二者之间的连接处是换热器的关键部位。
而胀接是实现换热管与管板连接的方法之一,胀接质量的好坏对换热器的正常运作起着关键作用。
2胀接型式和方法胀接型式按胀接进度可分为贴胀和强度胀2.1贴胀是为消除换热管与管板直径缝隙的轻度胀接,其目的是为了小处缝隙腐蚀和提高焊缝的抗疲劳性能,贴胀后胀接接头的抗拉脱力应达到IMPa 以上;2.2强度胀是包装换热管与管板连接的密封性能及抗拉脱轻度的胀接。
强度胀接后胀接接头的抗拉脱力应达到4MPa以上;2.3胀接方法按胀接工艺的不同可分为机械胀和柔性胀接(橡胶胀、液压胀、液袋式液胀等)。
3胀管器的选用胀管器主要根据换热管的直径、管板厚度、胀接长度及胀接特点来确定,通常有胀接器生产厂家按胀接条件选定。
4换热管与管板硬度测定4.1胀接的远离是胀接时硬度较低的管子产生塑性变形,而硬度较高的管板产生弹性形变,胀接后塑性变形管子收到弹性变形额管板孔壁的挤压而使管子和管板紧密地结合在一起,因此在试胀前应首先测定管子与管板的硬度值是否相匹配;4.2换热管与管板的材料应有适当的硬度差,管板硬度应大于换热管的硬度,其差值最好达到HB30以上,否则胀接后管子的回弹量接近或大于管板的回弹量而造成胀接接头不紧,如果二者硬度差相差很小时,应对管子端部进行退火处理,管子端部退火处理长度一般为管板厚度加IOOmmO5试胀5.1正式胀接之前应进行试胀。
试胀的目的是验证胀管器质量的好坏,验证预定的管子与管板孔的结构是否合理,检验胀接部位的外观质量及接头的密封性能,测试胀接接头的抗拉脱力,孕照合适的胀管率,以便制定合理的产品胀接工艺;5.2试胀应在试胀工艺试板上进行,试板应与产品管板的材料、厚度、管孔大小一致,试板上孔的数量应不少于5个,其管孔的排列形式应与产品管孔排列形式一致,试胀所用管子的材料、规格应与产品用换热器一致,但长度可以不一致,一般为管板厚度加50mm;5.3试胀前应根据胀管率计算公式推送出换热管胀接后的内件尺寸,胀管率计算公式可按我国锅炉规程中给出的公式计算:H=(dι-d2-δ)∕d3×100%δ一一胀前管孔直径与管子外径之差5.4胀管率应在0.9%~2.2%之间选取,胀管率小于0.9%为欠胀,管子胀后为产生足够的塑性变形,不能保证资金质量;胀管率大于2.2%为过胀,管子胀后产生过大的塑性变形,加工硬化现象严重,容易导致管子处理裂纹等缺陷,管板也可能产生塑性变形而使胀后的管板不能有效的回弹,从而影响胀接接头的性能。
胀管工艺

换热管的允许偏差 表 1-1
材料
标准
碳 GB8163-87
钢
外径×厚度
(mm)
3
57×3.5
Ⅰ级换热器 外径偏差 壁厚偏差 (mm) (mm)
±0.2 ±0.3
+12% -10%
Ⅱ级换热器 外径偏差 壁厚偏差 (mm) (mm)
±0.4 ±0.45
19.40
+0.20 0
25.40
+0.2 0
32.50
+0.30 0
38.50
+0.30 0
45.50
+0.40 0
57.70
+0.40 0
2、对工艺评定的要求 实施本工艺时,必须按照正确方法完成下列工艺评定: (1)换热器与管板接头焊接工艺评定。 (2)换热器与管板接头贴胀工艺评定。 3、对管子与管板结合部位的清理
级
换 热 管板
器
管孔直径 (mm) 允许偏差 (mm)
19.25
+0.15 0
25.25
+0.15 0
32.35
+0.2 0
38.40
+0.20 0
45.40
+0.20 0
57.55
+0.25 0
Ⅱ 换热器 级 换 热 管板 器
允许偏差 (mm) 管孔直径 (mm) 允许偏差 (mm)
±0.40 ±0.40 ±0.45 ±0.45 ±0.45 ±0.57
8
6
(一)主要质量控制流程(见表 1-3) (二)主要的质量标准 1.外观检查 (1)换热管的胀接部位和非胀接部位手感检查应过渡圆滑,不得有 棱角。 (2)胀接长度应符合图纸要求。 (3)用 10 倍放大镜检查焊缝外观,应符合下列要求: a、焊缝尺寸应符合图纸及规范要求。 b、表面不允许有裂纹、气孔、弧坑、夹渣等缺陷,并不得保留有熔渣 和飞溅物。 c、在图纸对咬边缺陷无特殊规定时咬边深度不大于 0.5 ㎜ ,咬边总长度 不大于焊缝总长的 10%。 d、焊缝应向母材圆滑过渡。如设计需要打磨焊缝时,不得损伤管板母 材,且打磨处不得凹陷,局部凹陷不允许超过管板厚度的负偏差。 e、管板的最终不平度应符合设计要求。 2、无损探伤 1)完成焊接 24h 后,用 PT(MT)探伤进行检查,无裂纹为合格。 2)贴胀完成后应进行 PT 或 MT 探伤,合格要求同焊后探伤。 3)如有必要,可以在水压试验完成后再进行一次抽查性 PT 或 MT 探伤, 标准同前。抽查部位由设计部门指定,无裂纹为合格。若发现裂纹,应 全部进行 PT 或 MT 探伤。
管板与管子胀焊结合时的施工顺序

管板与管子胀焊结合时的施工顺序管子与管板的连接形式有以下几种:胀接、焊接、强度胀+密封焊及强度焊+贴胀。
3.1先焊后胀[15,16]先焊后胀工序,焊前管板坡口容易清洗洁净,焊接时管子与管板间隙处的空气能够从正、反两侧排除,关于防止焊缝产动气孔及保证焊接接头的质量十分有益。
同时,后胀能够使胀口胀后的残余应力可不能松驰,幸免了因焊接高温的阻碍而发生松驰。
然而关于焊接性较差的管子与管板接头,胀接时焊道容易产生微裂纹,甚至于将焊道胀裂。
关于这种情形,应采纳深度胀(即管口10~15 mm左右不胀),使胀接部位躲开焊道,从而减小胀接对焊道的阻碍,这也是先焊后胀工艺的最大不足之处。
文献[15]的试验研究说明,采纳先胀后焊工艺,管子与管板焊后的泄漏率比采纳先焊后胀工艺要高出10倍左右,而且检验结果说明,焊缝外观平均,有金属光泽,成形美观,着色检查的气孔与未熔合现象专门少。
因此,国外也多采纳先焊后胀工序。
3.2先胀后焊[15]采纳先胀后焊工序,由于胀接时在管端及坡口处将留下大量油污及铁锈等杂物,尽管焊前要进行清洗,但由于管桥较窄,加之管子伸出管板等缘故,难以保证坡口的完全清洗。
当焊接时,这些遗留杂物将发生巨烈的化学变化,水分和空气因受热而局部膨胀,并在管子与管孔的间隙内形成压力,由于胀后背面堵死,这些带压气体只能从焊道一侧排除,焊接时处于熔融状态下的金属无强度可言,气体便专门容易穿过焊道,专门在收弧处更是如此。
气体冲出焊道使焊缝金属呈沸腾状,造成焊缝高低不平,甚至呈蜂窝状。
同时,还使焊缝表面氧化,造成未熔合等缺陷。
在焊缝冷却过程中,有的气体未能及时逸出焊缝表面,从而在焊缝内部形成气孔。
另外,焊接时产生的高温会导致已胀接的部位变形,使胀接过程中产生的残余应力和弹性变形有所消逝,从而可能使胀紧力减小甚至消逝。
文献[15]的试验研究结果说明,先胀后焊工艺泄漏率是先焊后胀的10倍左右。
我们长期的大量生产实践也证明,先胀后焊确实存在着许多不足,专门是在焊接工艺性能较差的情形下问题更为严峻,如20MnMo、15CrMo与奥氏体不锈钢管的匹配就属于这种情形。
管壳式换热器胀焊并用时胀焊顺序

管壳式换热器胀焊并用时胀焊顺序分析了管壳式换热器管板胀焊并用时, 胀焊顺序对管板制造质量的影响。
0 前言换热器在化工设备中占很大比例。
作为化工生产过程中最基本的操作单元——换热器,其完好与否对化工生产的影响很大, 一旦泄漏,对化工产品的质量、工厂安全、环境和设备等将造成很大的损失。
在化工生产中换热器因其结构特殊、工况恶劣, 有时既要受压, 又要承受变载, 甚至还受到腐蚀的作用。
换热器受到的腐蚀一般有电化学腐蚀、应力腐蚀和冲刷腐蚀。
电化学腐蚀较为普遍存在。
产生应力腐蚀的应力有: 工作应力, 由进出口温差所产生; 材料残余应力, 在加工制作过程中产生; 结构应力, 由于结构在设计制造上的局限性等所产生。
冲刷腐蚀, 多发生在气体入口处或气液混合入口处。
管板上焊缝多, 一般换热器有几百至几千个焊口。
若焊接工艺掌握不好, 焊缝中极易产生气孔等缺陷。
一般厂家没有热处理条件, 也没有管板焊缝射线照相技术, 只能做一些焊缝表面检测, 无法消除残余应力和发现焊缝内部气孔。
而浅层的气孔极易在使用一段时间后显露出来, 造成泄漏。
所以, 焊缝质量有时难以从检测中得到有效控制。
要提高换热器管板的焊接质量, 必须通过改善和提高焊接、制造工艺来达到。
1 管板连接方法换热管与管板连接的适用范围和常用连接方式可分为以下几种:强度胀接: 适用于设计压力小于等于4M Pa, 设计温度小于等于300℃, 操作时无剧烈振动、无过大的温度变化及无明显的应力腐蚀的场合。
强度焊接: 适用于设计压力小于等于35M Pa, 无较大振动及无间隙腐蚀的场合。
胀焊并用: 适用于设计压力小于等于35M Pa, 密封性能要求较高, 承受振动或疲劳载荷, 有间隙腐蚀, 采用复合板的场合。
2 胀焊并用在实际生产中对换热器密封性能的要求往往较高, 有些使用场合有间隙腐蚀, 有时还伴有振动和疲劳载荷等, 所以要求换热器管板连接采用胀焊并用的结构形式。
2.1 胀焊并用结构2.1.1 强度胀加密封焊强度胀加密封焊主要适用于压力较低时,既要保证换热管与管板连接的密封性, 又要保证换热管与管板抗拉脱强度的场合, 其结构形式如图1 所示。
列管式换热器中管板与换热管束胀焊结合连接工艺探讨

列管式 换热器 中管板 与换 热管束 胀焊结合连接工3 7 1 0 0 )
摘 要: 列管式换热 器是化 工生产 中热量 交换 的关键设备 , 管板 与换 热管的连接是这类化 工容 器的关键 部位 , 通 常情况 下换热 器管子 与管板连接都 采用胀焊结合的加 工工 艺, 究竟是先焊后胀还是先胀后 焊的好, 在 实际使 用中存在争论。笔 者详细分析 了两种 连接 加工 方法, 各 自的优劣性及 适用范 围, 并 以实际生产 当中的设备为例进行 了说 明 , 目的在 于为实
间 隙 ,从 而 达 到密 封 紧 固 的 目的 。这种 接 头 的优 点
是: 由于换热管与管板孔之间的间隙小 , 能够有效防 3 纯碱生产 中常用的接头连接工艺 止介质渗入期 间 , 进而产生的间隙腐蚀 。其缺点是 : 对 管板孔的加工精度要求较高 ;换热管具有一定的 3 . 1 胀接 塑形 ; 对 换 热 管 和 管板 的 硬度 都有 要 求 , 一 般要 求 换 常用 的胀 接加 工 方法 有 : 手 工胀 管 器 滚 压胀 接 、 热 管端 的 硬度 要 比管 板 硬度 低 HB 2 0—3 0 ; 抗拉 脱 离 计 算 机 胀 管 器 滚 压 胀 接 和 液 袋 式 胀 管 机 胀 接 等 几 偏低; 对使用介质温度有一定的局限性 , 例如 , 在使 种 。在 MI I 换 热器 的制造 中选用 液 袋 式 液 压胀 接 方 用 温度大于 3 0 0 c C 时 ,材料的蠕变会使挤压残余应 式。这是因为该方式效率高、 换热管端面与管板孑 L 胀 力逐渐消失产生连接失效现象 。
收 稿 日期 : 2 0 1 3 - 0 4 - 0 8
作者 简介 : 刘 玉梅 ( 1 9 7 5 一) 。 女, 甘肃武威人 。 工程师 , 本科 , 研究方 向为机械设计及制造 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析换热器管板与换热管连接方式及选择摘要:本论文阐述了在管壳式换热器的设计中换热管与管板的连接结构形式如何确定,主要通过对换热器管板和换热管的各种连接方式的具体分析,以及对换热器在运行过程中换热管连接处常发生的一些问题的分析,确定了最佳的换热管连接方式为强度焊加贴胀,并指出换热器换热管与管板连接方式的设计没有标准的统一结构,不能一概而论,应根据设备的使用环境,流通介质等多方面考虑,确定合适的结构方案。
关键字:换热器换热管管板强度胀强度焊在管壳式换热器的设计中,换热管与管板的连接是一个比较重要的结构部分。
不仅加工工作量大,而且必须使每一个连接处在设备运作过程中能保证介质无泄漏及承受介质压力的能力。
换热管与管板的连接质量是换热器质量的最重要的标志,换热器的失效大多数集中在管接头上,因此合理选用安全可靠的管接头方式,并使用相应的加工设备与技术是管壳式换热器设计、制造技术的关键。
根据管壳式换热器的使用条件不同,加工条件不同,管子与管板的连接方式有以下几种:强度胀、强度焊、强度胀+密封焊及强度焊+贴胀,其差异主要反映在管孔是否开槽和焊接坡口及管子伸出长度等方面,对一些比较苛刻的使用场合也有用强度焊+强度胀的管接头连接方式,如双管板换热器设计要求采取强度焊+强度胀。
我们在设计换热器时无论采取哪种方式,其要求满足的基本条件有两条:一是良好的气密性;二是足够的结合力。
笔者将这几种连接方式及其优缺点作以下分析。
一、胀接胀接包括贴胀和强度胀。
贴胀是指为了消除换热管与管板之间缝隙的轻度胀接;强度胀是为保证换热管与管板连接的密封性能及抗拉脱强度的胀接。
二者在结构上的最主要区别是贴胀的管板管孔是光滑的,而强度胀的管孔带环形槽,环形槽距管板上表面的距离应取8mm 。
胀接是一个连续的弹塑性力学过程,胀管时管子产生了严重的塑性变形,管板则主要处于弹性状态,卸载时由于回弹管孔将管子压紧而形成胀接接头。
强度胀是利用胀管器,使伸到管板中的管子端部直径扩大产生塑性变形而管板只达到弹性变形,因而胀管后管板与管子间就产生一定的挤压力,使管子能嵌入到管孔的环形槽内,与管板紧紧地贴在一起,达到密封紧固连接的目的。
胀接结构设计中的注意事项主要有以下几个方面:1、采用胀接时要求管板硬度较换热管硬度高,这样可免除在胀接时因管孔产生塑性变形而影响胀接的紧密性,如16Mn 管板与10# 换热管之间的胀接是合适的,但与20 #换热管胀接时,20 #管则应进行管端软化退火(当有应力腐蚀要求时,应整根进行软化处理或换成10 #换热管)。
2 、胀接要求换热管伸出管板的长度应不小于3mm ,是保证管板与换热管始胀处不受冲刷,同时无论是强度胀还是贴胀,胀接长度不准超出管板背面,并应离开3mm ,是为了避免换热管被胀接碾成环装压痕而产生破坏。
3、胀接联接时,管孔表面粗糙度Ra 值不大于12.5uM ,管孔表面不应有影响胀接紧密性的缺陷,如贯通的纵向或螺旋状刻痕等。
4、应严格控制管孔与换热管的径向间隙,径向间隙是影响管接头胀接质量的最重要因素,间隙大易造成过胀,GB151 —1999中I级管束的胀接质量肯定比H级的好,而且在换热管与管板不存在硬度差时,间隙的大小是至关重要的,例如不锈钢换热管与不锈钢管板胀接时,应采用“特殊紧配合”,即小间隙弥补无硬度差。
由于胀接靠的是管板孔收缩所产生的残余应力,这一应力会随着温度的升高而松弛,这样会致使管端处密封和结合力的降低,所以该结构受到压力和温度的限制,一般适用于设计压力w 4Mpa ,设计温度w 300 C场合,要求在操作中无剧烈的震动,无过大的温度变化、无交变载荷、无明显的应力腐蚀,且该连接形式不能用于d<14mm 的换热管。
胀接连接具有生产简单、效率高、连接可靠的优点,在换热器实际制造过程中,胀接一般用于管壳之间介质渗漏不会引起不良后果的情况,特别适用于材料可焊性差及制造厂的工作量过大的情况。
二、强度焊管板与换热管的焊接,也是我们在设计中常采用的方式,因为换热管端部无需退火,管孔不需开槽,管孔的表面粗糙度Ra 值也没有胀接时要求高,不大于35uM 即可,所以制造加工简便。
焊接结构强度高,抗拉脱力强,且当焊接接头有泄漏、换热管有裂纹或赌赛时,其修补或更换换热管都比胀接方式容易。
强度焊一般使用于P w35MPa ,T不限制,换热管直径(d)不限制的情况,但不适用于有振动或有间隙、应力腐蚀的场合。
强度焊管接头承受换热管轴向剪切载荷和密封要求的焊缝高度L1 + L2应大于或等于1.4倍的管壁厚,且强度焊必须是填丝的氩弧焊,否则只作为密封焊。
对©19X2、©25X2的换热管,GB151 —1999规定强度焊换热管伸出管板的长度不小于 1.5mm ,但笔者认为为了保证换热管与管板间的焊缝焊肉不被介质冲蚀,卧式换热器,在设计换热管伸出管板的长度时可取不小于3mm 。
如果管箱介质不是纯净的气体或液体,或为大流速的气液混合相,换热器在运行过程中常会出现换热管与管板间的焊缝焊肉被介质冲蚀,例如2008 年我厂造气 B 套洗涤水预热器靠管箱进口端管板与换热管间的焊缝焊肉已被介质大面积冲蚀,在管束更新设计时,将换热管伸出管板的长度由原来的 1.5mm 改为3mm ,就解决了这一难题。
对于立式换热器,若没有停车期间管板上不允许有残液存在的要求时,换热管伸出管板的长度可取不小于1.5mm; 若要求停车期间管板上不允许有残液存在时,换热管的管端应与管板面平齐或低于管板面,可适当加大管板破口深度或改变结构形式,但不论焊接接头的结构尺寸如何调整,焊缝的剪切断面不应低于换热管横截面面积的 1.25 倍。
通过焊接,使管子对管板有较好的增强作用,并且还具有可降低管孔加工要求,节约加工工时,检修方便等优点,故应优先采用。
此外,当介质毒性很大、介质和大气混合易发生爆炸、介质有放射性或管内外物料混合会产生不良影响时,为确保接头密封,也常采用焊接法。
三、强度焊+ 贴胀焊接法虽然优点甚多,但不能完全避免缝隙腐蚀和焊接节点的应力腐蚀,而且薄管壁和厚管板之间也很难得到可靠的焊缝。
焊接法虽然较胀接可以耐更高的温度,但是在高温循环应力的作用下,焊口极易发生疲劳裂纹,列管与管孔存在间隙,当受到腐蚀介质的侵蚀时,也会加速接头的损坏。
因此,就产生了焊接和胀接同时使用的方法。
这样不但能提高接头的抗疲劳性能,同时可以降低缝隙腐蚀倾向,因而其使用寿命比单用焊接时长的多。
当在压力和温度都很高、有一般应力和间隙腐蚀、有过大温度变化的情况下,可采用强度焊+贴胀,强度焊既可以使焊缝有严密性,又能保证接头具有较大的拉脱力,贴胀的作用主要是消除缝隙腐蚀和提高焊缝的抗疲劳性能。
但在有较大振动情况下不宜用强度焊+贴胀。
先焊后胀的工序,焊前管板坡口容易清洗干净,焊接时管子与管板间隙处的空气可以从正、反两侧排除,对于防止焊缝产生气孔及保证焊接接头的质量十分有益。
同时,后胀可以使胀口胀后的残余应力不会松驰,避免了因焊接高温的影响而发生松弛。
但是对于焊接性较差的管子与管板接头,胀接时焊道容易产生微裂纹,甚至于将焊道胀裂。
对于这种情况,应采用深度胀,即距管口15 mm不胀,使胀接部位避开焊道,从而减小胀接对焊道的影响,这也是先焊后胀工艺的最大不足之处。
经调查表明,采用先胀后焊工艺,管子与管板焊后的泄漏率比采用先焊后胀工艺要高出10倍左右,因此,国内外管壳式换热器的设计中多采用先焊后胀工序。
有些换热器需作焊后整体热处理或其管板因材料规定需作焊后热处理,若胀接采用机械胀,则在热处理前先胀一次,热处理之后再轻胀一次;若采用柔性胀接(液袋胀接等),则可在热处理之后胀一次即可。
但当换热管为不锈钢而管板为必须进行焊后热处理的材料时(如15CrMo锻件、15CrMoR 等),则先对管板管箱侧进行A022 + A302 堆焊,堆焊完毕热处理管板,而后再焊接换热管。
所以这种情况只能采用柔性胀接。
四、强度胀+密封焊换热管与管板的连接也可以采用强度胀+密封焊,强度胀接是保证换热管与管板连接的密封性能及抗拉脱强度,密封焊保证换热管与管板连接密封性更好。
采用先胀后焊工序,由于胀接时在管端及坡口处将留下大量油污及铁锈等杂物,尽管焊前要进行清洗,但由于管桥较窄,加之管子伸出管板等原因,难以保证坡口的彻底清洗。
当焊接时,这些遗留杂物将发生巨烈的化学变化,水分和空气因受热而局部膨胀,并在管子与管孔的间隙内形成压力,由于胀后背面堵死,这些带压气体只能从焊道一侧排除,焊接时处于熔融状态下的金属无强度可言,气体便很容易穿过焊道,尤其在收弧处多发生。
气体冲出焊道使焊缝金属呈沸腾状,造成焊缝高低不平,甚至呈蜂窝状。
同时,还使焊缝表面氧化,造成未熔合等缺陷。
在焊缝冷却过程中,有的气体未能及时逸出焊缝表面,从而在焊缝内部形成气孔。
另外,焊接时产生的高温会导致已胀接的部位变形,使胀接过程中产生的残余应力和弹性变形有所松弛,从而可能使胀紧力减小甚至消失。
我们长期的大量生产实践也证明,先胀后焊确实存在着许多不足,尤其是在焊接工艺性能较差的情况下问题更为严重,女口20MnMo、15CrMo的管板与奥氏体不锈钢管的焊接就属于这种情况。
强度胀+密封焊一般用在要求高的密封性能,P VMPa , T <300 C,无严重应力腐蚀,无剧烈振动,无过大温度变化的场合,不适用于有间隙腐蚀情况。
换热管与管板的连接在什么场合下采用何种形式,目前尚无统一标准,综合以上各种连接方式优缺点的分析,尽管也可以采用胀接、焊接、强度胀+密封焊这三种形式,但笔者以为,在设计和制造时,应优先考虑先焊后胀的加工工序,选择强度焊+贴胀的连接形式,对于要求高的连接,如双管板或复合板可采用强度焊+强度胀的形式,这样既能保证良好的气密性、又能保证足够的结合力,可以使所设计的换热器长周期运行。
不过在换热管与管板连接形式的设计中并没有标准的统一结构,不能一概而论,应根据设备的使用环境、流通介质及管板材料和结构等多方面考虑,确定合适的连接结构方案。
参考文献】1国家质量技术监督局发布,GB151 -1999《管壳式换热器》,中国标准出版社,1999 ;2董大勤袁凤隐《压力容器设计手册》,化工工业出版社,2005 ;3中国五环化学工程总公司《化工压力容器设计技术问答》,《氮肥设计》编辑部,1993 ;4叶文邦张建荣曹文辉《压力容器设计指导手册》(下),云南科技出版社,2006 。