高中数学复习提升线性规划知识点

合集下载

高中数学简单线性规划复习题及答案(最全面)

高中数学简单线性规划复习题及答案(最全面)

简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。

高中数学线性规划的知识点以及例题解析.doc

高中数学线性规划的知识点以及例题解析.doc

高中数学线性规划的知识点以及例题解析高考数学考查线性规划类问题,主要基于课本上的基础知识内容,同时又高于课本的知识难度,蕴含大量的数学思想方法,如数形结合思想等等。

加上线性规划问题能与实际生活问题进行良好结合,能很好考查考生运用知识解决实际问题能力水平的高低,所以线性规划问题在高考中的分值越来越大,逐渐受到更多的重视。

简单来说,定义目标函数在线性约束条件下的最大值或最小值问题,就统称为线性规划问题。

今天,为同学们整理了高中数学线性规划的知识点以及例题解析,大家要认真学习!。

最新高中文科数学线性规划部分常见题型整理资料讲解

最新高中文科数学线性规划部分常见题型整理资料讲解

高中文科数学线性规划部分常见题型整理1.图中的平面区域(阴影部分包括边界)可用不等式组表示为 (A .20≤≤xB .⎩⎨⎧≤≤≤≤1020y xC .⎪⎩⎪⎨⎧>≤-+yx y x 022D .⎪⎩⎪⎨⎧≥≥≤-+00022y x y x 3.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( D )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x一、求线性目标函数的取值范围4.若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选 A5.已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07102y x x y x ,则x y 的取值范围是( A )A.⎥⎦⎤⎢⎣⎡6,59B.[]6,3C.[)∞+⎥⎦⎤⎝⎛∞-,659, D.(][)∞+∞-,63,二、求可行域的面积7.不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4 B 、1 C 、5 D 、无穷大解:如图作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B8.已知R y x ∈,,则不等式组⎪⎩⎪⎨⎧≥+-≤-≥02|||1|x x y x y 表示的平面区域的面积是__45______.9.不等式组⎪⎩⎪⎨⎧<+>>123400y x y x 表示的平面区域的面积是____,平面区域内的整点坐标 .三、求可行域中整点个数10.满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y xy+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围11.已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值12.已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是 ( ) A 、13,1 B 、13,2C 、13,45D、解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C13.若变量x y 、满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =+的最小值为 (A )A.2B.3C.5D.614.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为( C )A . 5 B. 3 C. 7 D. -8六、求约束条件中参数的取值范围19.已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3) 解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七、线性规划的实际应用20.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产品木料(单位m3)第一种第二种圆桌0.18 0.08衣柜0.09 0.28解:设生产圆桌x只,生产衣柜y个,利润总额为z元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+5628.008.07209.018.0yxyxyx而z=6x+10y.如上图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l:6x+10y=0,即l:3x+5y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上点M,且与原点距离最大,此时z=6x+10y取最大值解方程组⎩⎨⎧=+=+5628.008.07209.018.0yxyx,得M点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.18.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A、B两种规格的金属板,每张面积分别为2m2、3 m2,用A种金属板可造甲产品3个,乙产品5个,用B种金属板可造甲、乙产品各6个,则A、B两种金属板各取多少张时,能完成计划并能使总用料面积最省?( A )A.A用3张,B用6张B.A用4张,B用5张C.A用2张,B用6张D.A用3张,B用5张一、单项选择题1.下列纳税人中应缴纳城建税的是()。

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总高中数学线性规划知识点汇总一、知识梳理1.目标函数:包含两个变量x和y的函数P=2x+y被称为目标函数。

2.可行域:由约束条件表示的平面区域被称为可行域。

3.整点:坐标为整数的点称为整点。

4.线性规划问题:在线性约束条件下,求解线性目标函数的最大值或最小值的问题被称为线性规划问题。

对于只包含两个变量的简单线性规划问题,可以使用图解法来解决。

5.整数线性规划:要求变量取整数值的线性规划问题被称为整数线性规划。

线性规划是一门研究如何使用最少的资源去最优地完成科学研究、工业设计、经济管理等实际问题的专门学科。

主要应用于以下两类问题:一是在资源有限的情况下,如何最大化任务的完成量;二是如何合理地安排和规划任务,以最小化资源的使用。

1.对于不含边界的区域,需要将边界画成虚线。

2.确定二元一次不等式所表示的平面区域的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。

若直线不过原点,通常选择原点代入检验。

3.平移直线y=-kx+P时,直线必须经过可行域。

4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域。

此时,变动直线的最佳位置一般通过这个凸多边形的顶点来确定。

5.简单线性规划问题就是求解在线性约束条件下线性目标函数的最优解。

无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:1)寻找线性约束条件和线性目标函数;2)由二元一次不等式表示的平面区域做出可行域;3)在可行域内求解目标函数的最优解。

积累知识:1.如果点P(x0,y0)在直线Ax+By+C=0上,则点P的坐标满足方程Ax0+y0+C=0.2.如果点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+y0+C>0;当B<0时,Ax0+y0+C<0.3.如果点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),则当B>0时,Ax0+y0+C0.注意:在直线Ax+By+C=0同一侧的所有点,将它们的坐标(x,y)代入Ax+By+C=0,所得实数的符号都相同。

高中数学知识要点重温(13)直线及线性规划知识点分析

高中数学知识要点重温(13)直线及线性规划知识点分析

A O x y 高中数学知识要点重温(13)直线及线性规划1.直线的倾斜角的范围:[0,)π,x 轴及平行于x 轴的直线倾斜角是0而不是π;y 轴及平行于y 轴的直线的倾斜角为2π而不是没有倾斜角(只是斜率不存在);已知斜率(的范围)会求倾斜角(的范围),记住:当倾斜角α是锐角时,斜率k 与α同增同减,当α是钝角时,k与α也同增同减。

斜率的求法:①依据直线方程②依据倾斜角③依据两点的坐标④方向向量(以a =(m,n )(m ≠0)为方向向量的直线的斜率为m n)。

关注斜率在求一类分式函数值域时的运用。

[举例1]已知两点A(-1,-5),B(3,-2),直线l 的倾斜角是直线倾斜角的一半,则直线l 的斜率为: . 解析:记直线l 的倾斜角为α,则直线AB 的倾斜角为2α,其斜率tan2α=43⇒43tan 1tan 22=-αα ⇒tan α=-3或tan α=31而由tan2α=43>0得2α是锐角,则α∈(0,4π),∴tan α=31。

[举例2] 函数θθCos Sin y +-=31的值域为 。

解析:记P (cos θ,sin θ),A(-3,1)则y=kPA ,P 点的轨迹是圆心为原点 的单位圆,如右图:当直线PA 与圆相切时,其斜率分别为0和43-,[ ∴y=kPA ∈[43-,0]。

注:这里存在一个kPA 在0与43-“之间”还是“之外”的问题,原则是其间是否有斜率不存在的情况,若有则在“之外”,若无则在“之间”。

[巩固1] 已知直线l :02cos =++y x θ则l 倾斜角的范围是: 。

[巩固2]实数x,y 满足24,012222--=+--+x y y x y x 则的取值范围为 ( )A .),34[+∞B .]34,0[ C .]34,(--∞ D .)0,34[- [迁移] 点P 是曲线323+-=x x y 上的动点,设点P 处切线的倾斜角为α,则α的取值范围是A 、⎥⎦⎤⎢⎣⎡2,0π B 、⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫⎢⎣⎡πππ,432,0 C 、⎪⎭⎫⎢⎣⎡ππ,43 D 、⎥⎦⎤ ⎝⎛43,2ππ 2.“点斜式”是直线方程的最基本形式,是其它各种形式的源头,但它不能表示斜率不存在的直线;解决“直线过定点”的问题多用“点斜式”。

高中数学必修5 线性规划 课件

高中数学必修5 线性规划 课件
A B A(3,4) B(4,8)
调整优值法
由z x y得y z x x z 可知,直线截距越小, z越小 先令z 0, 作过原点的直线 y x 再对直线进行平移,可 知, 当直线经过点M时截距最小,z最小 18 x 2 x y 15 18 39 5 由 , 求得 , 故M( , ) 5 5 x 3 y 27 y 39 5 又x、y只能取正整数, 所以,找离点M最接近并且在区域里的 正整数,得A(3, 9),B(4, 8) 将A(3, 9)代入得z 3 9 12 将B(4, 8)代入得z 4 8 12 答:截第一种钢板 3张,第二种钢板 9张; 或截第一种4张,第二种 8张,总张数最小,为 12张
y x 1 0 x 1 由 y x 1 0 求得 y 0 ,故
A(1,0)
故 z 的最大值为 zmax =2×1+0=2
[例] 设 x,y
x y 1 0 y 2x 1 0 满足约束条件 y x 1 0
线性规划问题的解决步骤数变形为y=kx+b的形式,
找截距与z的关系
3、令z=0, 先作出过原点的直线,定下直线形状
4、对直线进行平移,找出最优的点
5、联立边界直线方程,求出点坐标 6、将点坐标代入,求出最值
线性规划在实际中的应用
——生活中的最优化问题
每生产一件甲产品需要4个A配件,耗时1h;
例(课本87-88页)某工厂用A、B两种配件生产甲、乙两种产品,
每生产一件乙产品需要4个B配件,耗时2h;
该厂每天最多从配件厂获得16个A配件和12个B配件, 而且每天工作时长为不能超过8小时; 若每件甲产品获利2万元,每件乙产品获利3万元, 问每天分别生产甲、乙产品多每天的获利达到最大?

高中数学线性规划知识总结+练习

高中数学线性规划知识总结+练习

(一) 知识内容1.二元一次不等式表示的区域对于直线(A 〉0)当B >0时, 表示直线上方区域; 表示直线的下方区域。

当B <0时, 表示直线下方区域; 表示直线的上方区域。

2.线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。

z =Ax +By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =Ax +By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数。

另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示。

(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域。

在上述问题中,可行域就是阴影部分表示的三角形区域。

其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。

线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(二)主要方法:用图解法解决简单的线性规划问题的基本步骤:1。

首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)。

2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解。

4。

最后求得目标函数的最大值及最小值.(三)典例分析:1。

二元一次不等式(组)表示的平面区域【例1】 画出下列不等式(或组)表示的平面区域⑴⑵求不等式表示的平面区域的面积。

2.区域弧长、面积问题【例2】 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )A .B .C .D .【例3】 若,,且当时,恒有,则以,为坐标点所形成的平面区域的面积等于 .例题精讲高考要求板块一:线性规划【例4】已知钝角的最长边为,其余两边的长为、,则集合所表示的平面图形面积等于()A.B.C.D.【例5】如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),、、、是该圆的四等分点.若点、点满足且,则称优于.如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧()A.B.C.D.【例6】已知是由不等式组所确定的平面区域,则圆在区域内的弧长为( )A. B.C.D.3.线性规划【例7】设变量,满足约束条件:.则目标函数的最小值为()A.6 B.7 C.8 D.23【变式】已知实数、满足,则的最大值是( )A.B.C.D.【例8】已知点的坐标满足条件,点为坐标原点,那么的最小值等于______,最大值等于______.【例9】设变量,满足约束条件,则函数的最大值为()A.B.C.D.【例10】若实数满足,则的最小值为.4。

高中数学 必修5 27.简单的线性规划问题(二)

高中数学 必修5  27.简单的线性规划问题(二)

27.简单的线性规划问题(二)
教学目标 班级______ 姓名____________
1.能熟练运用线性规划求最值.
2.理解线性规划问题中构造的几何意义,体会数形结合思想的奥妙.
教学过程
1.构造几何意义:(数形结合思想)
(1)二元一次式by ax z +=通常构造成“截距”:原式化为b
z x b a y +-=, z 表示直线b
z x b a y +-=在y 轴上的截距“b z ”的b 倍. (2)分式a x b y z ++=通常构造成“斜率”:原式化为)
()(a x b y z ----=, z 表示点),(y x 和),(b a --连线的斜率.
(3)平方和式2
2)()(b y a x z -+-=通常构造成“两点距离”:原式化为222))()((b y a x z -+-=,z 表示点),(y x 和点),(b a 之间距离的平方.
(4)绝对值式||c by ax z ++=通常构造成“点到直线的距离”:2222|
|b a c by ax b a z +++⋅+=,z 表示点),(y x 到直线0=++c by ax 的距离的22b a +倍. 052≤-+y x
例1:变量x ,y 的线性约束条件为 02≤--y x ,求目标函数1
42+-=
x y z 的最大值. 0≥x
052≥-+y x
练1:已知 053≤--y x ,求22)1()1(+++y x 的最大值和最小值.
052≥+-y x
02≤--y x
作业:已知 22≤+y x ,求(1)261022+-+=y y x z 的最小值;(2)11+-=x y z 的 0≥x
取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档