第五节 概率论在经济管理中的应用

第五节  概率论在经济管理中的应用
第五节  概率论在经济管理中的应用

教案(首页)

概率论重要知识点总结

概率论重要知识点总结 概率论重要知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点: (1)可重复性 (2)多结果性 (3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间.样本空间用Ω表示.一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B 包含A,记为,则称事件A与事件B 相等,记为A=B。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为A-B。用交并补可以表示为互斥事件:如果A,B两事件不

能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时可记为A+B。对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质:事件运算律:设A,B,C为事件,则有: (1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC (3)分配律:A(BC)=(AB)(AC)ABAC (4)对偶律(摩根律): 第二节事件的概率 概率的公理化体系:第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω个样本点组成.则定义事件A 的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作乘法公式: P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的相互独立:若两事件A、B 满足P(AB)=相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)=相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)=两两独立独立的性质:若A 均相互独立总结: 1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。 2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,应

概率论在实际生活中的应用

信息学院 14-15学年第1学期《概率论与数理统计》课程(单元)项目研究报告 项目名称 概率论在足球比赛中的应用 【项目内容】详细叙述拟完成项目的条件和问题,可配表或图。 足球号称世界第一运动,因为在全球范围内无论是哪个国家或者地区都有许多喜欢足球,热爱足球甚至从事足球这项运动的人.四年举行一次的世界杯更是球迷们的狂欢节.中国同样有许多热爱足球的人,中国国家队水平不高经常让中国老百姓失望,但是这丝毫不会减少大家对足球的热情,作为一个中国人我希望中国足球会越来越好. 下面我们来看看大家都喜爱的足球与概率论到底有哪些关联。 相关问题:在某届欧洲杯足球比赛上,西班牙,德国,英格兰和荷兰队进入到了四强,这四支球队中的一支将有希望最终夺冠.决赛四强对阵情况是西班牙对阵英格兰,而德国将与荷兰队争夺另一个进入决赛的名额,由于四支球队都是强队,所以两场半决赛将会十分激烈,先比赛完的一场半决赛中世界第一西班牙队战胜了英格兰队率先进入了决赛,大家此时都将目光放到了西班牙队上,根据以往的比赛成绩,西班牙战胜德国的概率为0.8,战胜荷兰队的概率为0.3,而德国队战胜荷兰队的概率为0.5,那么西班牙球迷迫切想知道西班牙队最终能获得冠军的概率究竟是多大? 对于上面西班牙球迷十分迫切关心的问题,让我们来利用概率的知识来帮助他们解决他们心中的疑虑. 由于西班牙队已经率先挺进决赛,所以还没有完成的德国和荷兰的比赛对于最终的冠军归属有很大的影响,如果德国战胜了荷兰队,那么西班牙队就有80%的可能性夺冠,但是如果荷兰队取得了半决赛的胜利,那么西班牙队夺冠的希望只有30% 根据以上条件,把西 班牙队夺冠记为事件C ,德国战胜荷兰记为事件C ,而荷兰战胜德国则记为事件A ,P(B)=0.5,P(A)=0.5由全概率公式,则A,B 是一个完备事件组,那么有公式就可以得出P(C)=P(B)P(C|B)+P(A)P(C|A)其中可以看出P(C|A)以及P(C|B)是条件概率,P(C|B)表示西班牙在决赛战胜了另一场半决赛的胜者德国队夺冠,P(C|B)=0.8,P(C|A)表示西班牙队在决赛战胜了另一场半决赛的胜出者荷兰队夺冠,P(C|A)=0.3. 所以根据上述公式(全概率公式)我们就可以计算出西班牙队最终夺冠的概率为 P(C)= P(B)P(C|B)+P(A)P(C|A)=0.5*0.8+0.5*0.3=0.55 所以西班牙队最终夺冠的概率应该为55%[10] 看到了西班牙队的最终夺冠的概率,西班牙队的球迷应该可以松一口气,好好享受西班牙队在决赛上的精彩表演啦,因为西班牙队夺冠概率还是比较大的.以上是利用了全概率公式的知识解决了足球比赛中的常见问题,希望能给读者和球迷一些帮助。 2.排列和组合在足球比赛中的应用 每次举行一些足球比赛时经常要事先安排好比赛场次,为了能使足球比赛顺利进行.下面就是举办足球比赛时经常遇到的一类问题。某大学要举行一次校园足球比赛以增强大学生的体质,学校规定每个学院至少要派出一支球队参加这项赛事,最终一共有12支球队参

概率论在经济中的应用

学科分类号: 本科毕业论文 题目(中文):概率论在经济中的应用 (英文):Probability theory in the application 姓名缪艳芳 学号 100200540102 院(系)数学与计算机科学学院 专业、年级数学与应用数学 指导教师雍进军职称讲师 二○一三年十二月

贵州师范学院本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名:(亲笔签名) 年月日

目录 摘要 (1) ABSTRACT (2) 1绪论 (3) 2在经济管理决策中的应用 (4) 2.1最大利润与投资风险(数学期望与方差的应用) (4) 2.2 概率论知识在彩票问题中的应用 (6) 3 概率论在商品生产与检验中的应用 (8) 3.1应用极大似然估计,确定商品合格率 (8) 3.2 两子样秩和检验法的应用 (9) 4 中心极限定理的应用 (11) 4.1在医疗保险中的应用 (11) 4.2在工业生产效率中的应用 (12) 5 贝叶斯公式在疾病中的应用 (14) 参考文献: (17) 致谢 (17) 附录A (18)

摘要 本论文共分为四个章节,内容包括数学期望及方差,随机变量,中心极限定律,极大似然估计,两个秩和检验,贝叶斯公式等的应用。概率论与数理统计就是研究随机现象的统计规律的数学学科,由于随机现象的普遍现象的普遍性,使得概率论与数理统计具有极其广泛的应用。近年来,一方面它为科学技术、工业农业生产等的现代化做出了重要贡献。本文通过实例讨论了概率论与数理统计方面的知识经济决策,最大利润,商品生产与检验,在医疗保险中的应用工业生产效率等多方面的介绍。 关键词:概率统计;经济;应用

概率论在日常生活中的应用

概率论在日常生活中的应用 概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性现象。这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面;随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。大部分人认为一件事概率为0即为不可能事件,这是不对的。比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。这说明概率为0的事件也是有可能发生的。不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。 在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率极其小。由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 在我国南方流行一种成为“捉水鸡”的押宝,其规则如下:有庄家摸出一只棋子,放在密闭盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一。赌客们把钱压在一

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

概率论在经济投资中的应用

概率论在经济投资中的应用 中文摘要:概率论起源于生活,同时也可以应用于生活,其已不仅是一门简单的数学学科。了解概率论在描述经济变化,证券和保险等经济投资方面的应用,对于我们了解经济变化趋势和合理的理财有着至关重要的作用。 关键字:概率论经济投资应用 正文: 概率论是古老而庞大的数学大家庭中一个年轻的分支学科, 它产生于十七世纪中后期, 至今只有短短的三百多年历史。年轻的概率论具有顽强的适应力,随着时代的变迁,近十几年来,由于金融学、保险学等经济学分支学科越来越普遍的应用,研究随机事件的概率论在经济学中得到越来越快的发展。同时由于概率论考虑了样本与总体之间的关系的这一特性,对实证经济学特别是经济计量学可以说起到了非常大的推动作用。甚至可以说,当代实证经济学的发展就是概率统计知识在经济模型中的实际应用,如果考虑在实证经济学领域的诺贝尔获奖者,那概率论对经济学的影响就更大了,包括第一届诺贝尔奖获得者丁博根、第二届诺贝尔获奖者萨谬尔森等在内,前前后后大约有20名经济学家研究和应用概率论在经济学中的应用因此概率论在经济学中有十分广泛的作用。

一、概率论在描述经济数据特征的应用 经济学的实证研究需要很多的数据来支撑,毕竟现代经济学不同于古典经济学的一个主要特征是现代经济学依靠数据来说明经济原理,而古典经济学依靠价值判断和逻辑推理来解释经济学。数据的性质直接决定了经济原理的结果,因此说明数据的统计特征成为大部分实证研究文章的第一步,我们以1992年到2005年我国经济增长率的数据为例(见下表),考查概率论的一些基本概念在经济数据描述方面的应用。 表-1992年到2005年中国经济增长率 根据表1的数据我们可以得到1992年到2005年我国的平均增长率为9.72%,高于潜在增长率8%,中间值为9.55%,在样本区间最大的增长率为13.3%,最小的增长率为7.4%,标准差为0.0194,大于显著性水平为5%的两倍标准差,说明在1992年到2005年之间我国的经济增长率是比较快的;同时根据正态分布统计量: 其中N为样本总数,、分别为三阶矩、四阶矩,计算结果为1.48,卡方统计量的显著性为0.48,统计检验的原假设为:该数据服从正态分布,备选假设为该数据不服从正态分布,由于

浅谈概率论在生活中的应用

单位代码: 分类号: X X 大学 题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学 学生: 学生学号: 指导教师: 毕业时间:

浅谈概率论在生活中的应用 摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用. 关键词:随机现象;概率;日常生活;应用分析

Discuss the application in life probability Abstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis

经济应用数学—概率论与数理统计马统一的习题1一5答案

习题er 1. 解 (1) 设学生数为n ,则 {0/,1/,2/,,100/}n n n n n Ω=L (2) 枚骰子点数之和为 {3,4,5,,18}Ω=L (3) 三只求放入三只不同A ,B ,C 盒子,每只盒子中有一个球的情况有 {(,,),(,,),(,,),(,,,),(,,),(,,)}a b c a c b b a c b c a c b a c a b Ω= 其中(,,)a b c 表示A 盒子放入的球为a ,B 盒子放入的球为b ,C 盒子放入的球为c ,其余类似. (4) 三只求放入三只不同A ,B ,C 盒子情况有 {(,0,0),(0,,0),(0,0,),(,,0),,(,,)}abc abc abc ab c c a b Ω=L 其中(0,,0)abc 表示A 盒子没有放入球,B 盒子放入的球为,,a b c ,C 盒子没有放入球,其余类似,共3 ||327Ω==个样本点. (5) 汽车通过某一定点的速度设为v {|0}v v Ω=>. (6) 将一尺长的棍折成三段,各段的长度为,,x y z {(,,)|0,0,0,1}x y z x y z x y z Ω=>>>++=. (7) 对产品检验四个产品,连续检验到两个产品为不合格品是,需停止检验,检验的 结果为 {(0,0),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1), (1,0,0),(1,0,1,0),(1,1,0,0),(1,0,1,1),(1,1,1,0),(1,1,1,1),(1,1,0,1)} Ω= 其中(0,1,0,0)表示第一次取到不合格品,第二次取到合格品,第三次取到不合格品,第四 次取到不合格品,其余类似. 2. 解 (1) 一只口袋中装有编号为1,2,3,4,5的五只球,任取三只,最小的为1的样本点有 {(123),(134),(135)}A = 其中(123)表示取出的球为编号为1,2,3的球(无顺序). (2) 抛一枚硬币两次, A =“第一次出现正面”的样本点有{(10),(11)}A =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. B =“两次出现不同的面”的样本点有{(10),(01)}B =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. C =“至少出现一次正面”的样本点有{(10),(0,1),(11)}C =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. (3) 检验一只灯泡的寿命,其寿命为t 不小于500小时, A =“灯泡寿命不小于500小时”的样本点有{|500}A t t =≥. (4) 某交换台在一分钟接到的呼唤次数不大于10, A =“某交换台在一分钟接到的呼唤次数不大于10”的样本点有{|0,1,2,,10}A n n ==L . (5) 重复抛掷一枚硬币,当出现正面时停止, A =“抛了偶数次时首次出现正面”的样本点有{(0,1),(0,0,0,1),(0,0,0,0,0,1),}A =L ,其中(0,1)表示第一次出现反面,第二次出现正面. 3. 解 (1) ABC AB C =-; (2) A B C U U ;

毕业论文.概率统计在生活中的应用Word版

毕业论文 课题 学生姓名胡泽学 系别 专业班级数学与应用数学指导教师 二0 一六年三月

目录 摘要.................................................................... I ABSTRACT................................................................... II 第一章绪论. (1) 第二章概率在生活中的应用 (4) 2.1在抽签和摸彩中的应用 (4) 2.2经济效益中的应用 (8) 2.3在现实决策中的应用 (4) 2.4在相遇问题中的应用 (12) 2.5在预算及检测中的应用 (10) 结论 (13) 参考文献 (14) 致谢 (15)

概率统计在生活中的应用 摘要 随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。 本文先简述了概率论的发展,之后从概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。多方面论述了概率的应用。 关键词:概率;概率的含义;概率的应用

Abstract

第一章绪论 概率统计是一门和生活关联紧密的学科同样也是一门特别有趣的数学分支学科,17-18世纪,数学得到了快速的发展。数学家们打破了古希腊的演绎框架,社会生活对与自然界的多方面吸取灵感,数学领域涌现了许多新面孔,之后都形成了完整的数学分支。除了分析学这之外,概率论就是同时期能使"欧几里德几何不相上下"的几个伟大成就之一。 概率的发源与赌博有关,伴随着科学技术的发展进步以及计算机普及,它在最近几十年来的社会科学和自然科学中得到了特别广泛的应用,在生活与社会生产中起着很重要的作用。我们生活在一个千变万化千变万化、千变万化的时代里,而我们每个人无时无刻都要直面生活中遇到的问题。而其中很多的问题都是随机的与随机的随机的。如决策时如何获取最大利益,公司要如何组合生产才能取得最大收益,如何加大买彩票的获奖概率,怎样进行误差分析、所购买物品的产品检验,生产质量把控等,当我们在遇到这些问题时应该如何解决它呢?幸好我们如今有了概率,概率是一门探索和揭示随机现象和规律的一门学科。 实践证明,概率是对生活中碰到的问题进行量的解答的有效工具,对经济决策和预测提供了新型的手段。下文就通过列举实例来表述概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。

考研数学概率论重要知识点梳理

2017考研数学:概率论重要知识点梳理 来源:文都图书 概率论在历年考研数学真题中特点比较明显。概率论与数理统计对计算技巧的要求低一些,一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。所以考生应在这门中尽量做到那全分,这样才能保证数学的分数,下面我们整理了一些概率论的重要知识点: 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视, 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布 其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质

(4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理 其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。 第六部分:数理统计的基本概念 (1)总体与样本 (2)样本函数与统计量 (3)样本分布函数和样本矩 其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下 第七部分:参数估计 (1)点估计 (2)估计量的优良性 (3)区间估计

概率在现实生活中的应用

概率在现实生活中的应用

我认为学习概率应该有两种认识,一是要理性的理解概率的意义,二是要学以致用。 一、概率的意义 (1)一般地,频率是随着实验者、实验次数的改变而变化的; (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率. (4)概率从数量上刻画了一个随机事件发生的可能性的大小. 二、学以致用 学以致用不仅是会做“单项选择题选对正确答案的概率是多少?”的问题,还要会解决生活中的实际问题。例如: 1、在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少? 这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一 计算就可以得知公司是几乎必定盈利的。 2、李炎是一位喜欢调查研究的好学生,他对高三年级的12个班(每班50人)同学的生日作过一次调查,结果发现每班都有三位同学的生日相同,难道这是一种巧合吗? 解析:本题即求50个同学中出现生日相同的机会有多大? 我们知道,任意两个人的生日相同的可能性为1/365×1/365≈0.0000075,确实非常小,那么对于一个班而言,这种可能性是不是也不大呢? 正面计算这种可能性的大小并不简单,因为要考虑可能有2个人生日相同,3个人生日相同,……有50个人生日相同的这些情况。如果我们从反而来考察,即计算找不到俩个人生日相同的可能性,就可知道最少有两个人生日相同的可能性。 对于任意2个人,他们生日不同的可能性是(365/365)×(364/365)=365×364/3652对于任意3个人,他们中没有生日相同的可能性是 365/365×364/365×363/365=365×364×363/3653; 类似可得,对于50个人,找不到两个生日相同的可能性是 365×364×363×…×316/36550≈0.03,因此,50个人中至少有两个人生日相同的机会达97%,这么大的可能性有点出乎意料,然而事实就是如此,高三年级的12个班级(每班50人)都有两位同学生日相同的事件发生,并非巧合。那么,50人中有3人生日相同的概率有多大? 3、深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑。请问警察的认定对红色出租车公平吗?试说明理由

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

概率论知识点总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随 机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示.

一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件 B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计 在日常经济生活中的应用 摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论数理统计经济生活随机变量贝叶斯公式

§2.1 在中奖问题中的应用 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小.形状.质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元? 分析:(1)分别求出“摸彩”者获奖5元和获奖10元的概率,即可说明; (2)求出理论上的收益与损失,再比较即可解答. 20 (5+10)-1=-0.25<0,故每次平均损失0.25元. §2.2 在经济管理决策中的应用 某人有一笔资金,可投入三个项目:房产x 、地产 y 和商业z ,其收益和市场状态有关,若把未来市 场划分为好、中、差三个等级,其发生的概率分别为10.2p =,20.7p =, 30.1p = ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见下表: 请问:该投资者如何投资好? 解 我们先考察数学期望,可知 ()()110.230.730.1 4.0E x =?+?+-?=; ()()60.240.710.1 3.9E y =?+?+-?=; ()()100.220.720.1 3.2E z =?+?+-?=; 根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差: ()()()()222 1140.2340.7340.115.4D x =-?+-?+--?=;

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

相关文档
最新文档