分子标记技术原理、方法及应用

合集下载

第五章分子标记技术原理与应用

第五章分子标记技术原理与应用



AFLP标记的基本原理是基于PCR技术扩增基因 组DNA限制性片段,基因组 DNA先用限制性内切酶切割,然后将双链接头 连接到DNA片段的末端,接 头序列和相邻的限制性位点序列,作为引物结 合位点。限制性片段用两种 酶切割产生,一种是罕见切割酶,一种是常用 切割酶。
分子标记的应用

获得与目标性状连锁的分子标记
分子标记辅助育种的经典例子
美国科学家将分子选择应用在玉米杂种优势遗传改良上,经过改良的B73 改良的Mo17的组合比原始的B73 Mo17组合和一个高产推广组合 Pioneer hybrid 3165皆增产10%以上(Stuber and Sisco 1991; Stuber et al. 1995)。 通过分子标记技术将3个抗稻瘟病基因(Pi-2、Pi-1和Pi-4)在水稻第6、 11和12号染色体上进行定位,然后利用连锁标记将这3个抗性基因聚合起 来。基因聚合试验从3个分别带有Pi-2、Pi-1和Pi-4基因的近等基因系 C101LAC、C101A51和C101PKT出发,已成功地获得聚合了这3个抗稻瘟病 基因的植株,它们可以作为供体亲本在育种中加以利用,可同时提供数 个抗性基因。 (Zheng et al. 1995)
一、限制性片段长度多态性技 术(RFLP)



限制性片段长度多态性技术(RFLP)是用已知的 限制性内切酶消化目标 DNA,电泳印迹,再用DNA探针杂交并放射自 显影,从而得到与探针同源 的DNA序列酶切后在长度上的差异。 RFLP标记在正常的分离群体中都呈典型的孟德 尔式遗传。PFLP的结果稳 定,在作物基因图谱构建和QTL基因定位分析 上使用较多。
三、简单重复序列SSR

dna分子标记技术概述

dna分子标记技术概述

DNA分子标记技术概述1. 引言DNA分子标记技术是现代生物学和医学领域中非常重要的一项技术。

它可以通过特定的标记方法,在DNA分子上进行特异性地标记,从而实现对DNA序列的检测、定位和分析。

本文将对DNA分子标记技术进行全面、详细、完整和深入地探讨。

2. DNA分子标记技术的原理2.1 标记物选择在进行DNA分子标记之前,需要选择合适的标记物。

常用的DNA分子标记物包括荧光染料、辣根过氧化物酶标记物、生物素标记物等。

这些标记物具有不同的优势和适用范围,可以根据具体实验需求来选择合适的标记物。

2.2 标记方法DNA分子标记方法有多种,常用的包括直接标记法和间接标记法。

直接标记法是将标记物直接连接到DNA分子上,常用于荧光标记。

间接标记法是通过先引入标记物、再进行特定的反应来实现标记,常用于酶标记和生物素标记等。

2.3 标记效率和准确性DNA分子标记技术的效率和准确性是衡量其优劣的重要指标。

高效率和准确性可以保证实验结果的可靠性和准确性。

因此,在选择标记物和标记方法时,需要考虑到其标记效率和准确性,以及对实验结果的影响。

3. DNA分子标记技术的应用领域3.1 DNA测序和基因组学研究DNA分子标记技术在DNA测序和基因组学研究中有广泛的应用。

通过标记技术,可以对DNA序列进行检测和定位,从而实现对基因组的研究和分析。

3.2 分子诊断和疾病检测DNA分子标记技术在分子诊断和疾病检测中起到关键作用。

通过标记技术,可以检测和分析与疾病相关的基因或基因突变,从而实现早期诊断和治疗。

3.3 人类遗传学研究DNA分子标记技术对人类遗传学研究具有重要意义。

通过标记技术,可以进行人类遗传多样性和遗传变异的研究,为疾病发生机制和个体差异提供重要的参考和依据。

3.4 动植物遗传改良DNA分子标记技术在动植物遗传改良中有广泛应用。

通过标记技术,可以进行动植物基因分型和基因定位,为遗传改良工作提供重要的科学依据和技术支持。

3-分子标记技术原理、方法及应用

3-分子标记技术原理、方法及应用

细胞学标记
植物细胞染色体的变异:包括染色体核型(染 色体数目、结构、随体有无、着丝粒位置等) 和带型(C带、N带、G带等)的变化。
优点: 能进行一些重要基因的染色体或染色 体区域定位
缺点: (1)材料需要花费较大的人力和较长 时间来培育,难度很大; (2) 有些变异难以用细 胞学方法进行检测
生化标记
主要包括同工酶和等位酶标记。分析方法是从 组织蛋白粗提物中通过电泳和组织化学染色法 将酶的多种形式转变成肉眼可辩的酶谱带型。
优点: 直接反映了基因产物差异,受环境影 响较小
缺点: (1)目前可使用的生化标记数量还相 当有限; (2)有些酶的染色方法和电泳技术有一 定难度
分子标记
主要指能反映生物个体或种群间基因组中某种 差异特征的DNA片段,它直接反映基因组DNA 间的差异,也叫DNA标记。
2/片段迁移率的变化要反映分子量的差异 ————DNA在聚丙烯酰胺凝胶上迁移率也受构象 变化影响
RFLP 基 本 步 骤

RFLP patterns in Pinus densata
RFLP
优点: 无表型效应,不受环境条件和发育阶段的影响
共显性,非常稳定 起源于基因组DNA自身变异,数量上几乎不受限制
分子标记技术原理、方法 及应用
黄健子 2011.10
一、遗传标记的类型及发展 二、几种常见分子标记的原理及方法 三、分子标记技术的应用
一、遗传标记的类型及发展
遗传标记(genetic marker):指可追踪染色体、染
色体某一节段、某个基因座在家系中传递的任何一 种遗传特性。它具有两个基本特征,即可遗传性和 可识别性;因此生物的任何有差异表型的基因突变 型均可作为遗传标记。包括形态学标记、细胞学标 记、生化标记和分子标记四种类型。

水稻遗传学研究中的分子标记技术应用

水稻遗传学研究中的分子标记技术应用

水稻遗传学研究中的分子标记技术应用水稻是全球最重要的粮食作物之一。

水稻遗传学研究对于提高水稻的产量、品质和抗逆能力具有重要作用。

分子标记技术是水稻遗传学研究中重要的工具。

本文将介绍分子标记技术在水稻遗传学研究中的应用。

一、分子标记技术的基本原理分子标记技术是通过特定的酶切位点、多态性DNA序列或基因座来标记和分离物种的DNA片段。

分子标记技术可以在不同个体之间寻找差异性,从而进行遗传分析。

在水稻遗传学研究中,分子标记可以用于鉴定遗传多样性、连锁分析、QTL(数量性状位点)定位和基因克隆等方面。

二、SSR分子标记在水稻遗传学研究中的应用SSR(Simple Sequence Repeat)分子标记是指重复长度为1-7个碱基的DNA序列。

SSR标记在水稻遗传学研究中广泛应用,已被用于水稻种质资源的品种鉴定和遗传多样性的分析。

SSR技术可以通过异源杂交的方式选育具有优异性状的水稻新品种。

SSR标记还可以帮助水稻研究者在QTL定位、基因克隆和表达分析等方面取得成功。

三、SNP分子标记在水稻遗传学研究中的应用SNP(Single Nucleotide Polymorphism)分子标记是指DNA序列上仅存在单个核苷酸的变异。

SNP标记在水稻遗传学研究中有广泛应用。

SNP技术可以通过筛选SNP标记,帮助水稻育种者进行基因敲除和区域特异表达的分析。

SNP技术还可用于遗传多态性鉴定、遗传地图构建和基因定位。

四、CRISPR/CAS9基因编辑在水稻研究中的应用CRISPR/Cas9是一种基因编辑技术,可用于在水稻基因组中实现精准编辑。

CRISPR/Cas9技术可以用于水稻育种和遗传学研究,如克隆和分析QTL、研究水稻抗逆性等。

在水稻育种方面,CRISPR/Cas9技术可以用于改善水稻品质、提高产量和抗病抗旱等方面。

五、总结分子标记技术在水稻遗传学研究中扮演了重要角色。

SSR、SNP和CRISPR/CAS9技术都是最新的生物技术工具,可用于水稻育种和遗传学研究。

cytb分子标记技术在物种鉴定中的应用

cytb分子标记技术在物种鉴定中的应用

cytb分子标记技术在物种鉴定中的应用随着生物多样性研究的不断深入,物种鉴定技术逐渐成为生物学研究领域的重要工具。

而在物种鉴定中,核糖体DNA(cytb)分子标记技术作为一种快速、准确的分子识别技术得到了广泛的应用。

本文将从cytb分子标记技术的原理、应用方法以及在物种鉴定中的应用进行探讨。

首先,我们要了解cytb分子标记技术的原理。

Cytb是线粒体基因组中的一种编码蛋白的基因,其序列具有较高的保守性和变异性,因此可以作为物种鉴定的良好分子标记。

在物种鉴定中,通常会选择cytb基因的特定区域进行PCR扩增,再通过测序技术获得该区域的序列信息。

基于这些序列信息,我们可以进行物种鉴定和进化研究,从而加深对物种关系和演化历史的理解。

其次,cytb分子标记技术的应用方法主要包括PCR扩增、测序和序列分析。

首先,通过提取样本中的线粒体DNA,利用特异引物进行PCR扩增cytb基因的特定区域。

然后,将PCR产物纯化并送测序,利用测序结果进行物种鉴定和进化分析。

此外,还可以利用构建系统发生树等方法进行物种鉴定和分类分析。

这些方法在物种鉴定和生物多样性研究中发挥了重要作用。

最后,cytb分子标记技术在物种鉴定中的应用非常广泛。

以鱼类为例,许多研究利用cytb分子标记技术对鱼类的物种鉴定和系统发生进行了深入研究。

通过分析不同鱼类的cytb基因序列,可以快速准确地鉴定不同的鱼种,揭示它们的遗传关系和演化历史。

此外,cytb分子标记技术也被广泛应用于原生动物、鸟类、爬行动物、兽类等各种动物的鉴定和分类研究中。

除了动物,cytb分子标记技术也在植物的物种鉴定中得到了广泛应用。

通过对植物线粒体DNA的鉴定分析,可以快速准确地识别植物种类,并研究它们的进化关系。

这对于植物分类学和保护生物学具有重要意义。

总的来说,cytb分子标记技术在物种鉴定中的应用极为重要。

其快速、准确、稳定的特点使其成为物种鉴定领域的重要工具。

在今后的生物多样性研究中,cytb分子标记技术有望发挥更大的作用,为我们更深入地了解生物世界的多样性和演化历史提供重要支持。

常用分子标记技术原理及应用

常用分子标记技术原理及应用

单链制备
通过加热或化学方法 将双链DNA变性为 单链。
凝胶电泳
将单链DNA在聚丙 烯酰胺凝胶上进行电 泳,并观察迁移率变 化。
结果分析
通过比较正常和突变 DNA的迁移率,确 定是否存在基因突变。
应用实例
遗传病诊断
SSCP技术可用于检测与遗传病相关的 基因突变,如囊性纤维化、镰状细胞 贫血等。
肿瘤研究
特点
高分辨率、高灵敏度、可重复性和可 靠性,能够检测出微小的基因组差异 ,广泛应用于遗传育种、生物多样性 保护、人类医学等领域。
分子标记技术的应用领域
遗传育种
通过分子标记技术对动植物进行遗传资源鉴定、品种纯度 鉴定、遗传连锁分析和基因定位等,提高育种效率和品质。
生物多样性保护
利用分子标记技术对物种进行遗传结构和亲缘关系分析, 评估物种的遗传多样性和濒危程度,为保护生物多样性提 供科学依据。
人类医学
分子标记技术在人类医学中用于疾病诊断、药物研发、个 体化医疗等方面,有助于提高疾病的预防、诊断和治疗水 平。
常用分子标记技术简介
RFLP(限制性片段长度多态性)
SSR(简单序列重复)
利用限制性内切酶对DNA进行切割,产生 不同长度的片段,通过电泳和染色检测多 态性。
利用串联重复的DNA序列多态性进行标记 ,通过PCR扩增和电泳检测多态性。
分子标记辅助育种
利用AFLP技术标记控制重要性状 的基因,辅助育种者快速筛选具 有优良性状的个体。
植物分子生态学研

利用AFLP技术分析植物种群遗传 结构、物种演化和生态适应性等 方面的研究。
04
SSR技术
原理
简单序列重复标记(SSR)是一种基于PCR的分子标记技 术,利用微卫星序列的重复单元进行扩增,通过检测等位 基因的长度多态性来识别基因组中的变异。

分子标记技术原理方法及应用

分子标记技术原理方法及应用

分子标记技术原理方法及应用分子标记技术是一种用于检测和定位特定分子的方法。

其原理是通过将一种特殊的化学物质(标记物)与目标分子结合,然后利用标记物的性质来对目标分子进行分析和检测。

分子标记技术被广泛应用于生物医学研究、生物学检测和药物研发等领域。

常用的分子标记技术有荧光标记、酶标记和放射性标记等。

荧光标记是一种将目标分子与荧光染料结合的技术。

荧光标记的原理是通过荧光染料的特性,使得目标分子在荧光显微镜下显示出特定的荧光信号,从而对其进行定位和分析。

荧光标记可以在细胞、组织和体内进行,具有灵敏度高、分辨率高和实时监测的优点。

常见的荧光标记方法有间接免疫荧光标记、原位杂交荧光标记和荧光蛋白标记等。

荧光标记技术广泛应用于细胞定位、蛋白质相互作用研究、细胞分析和分子诊断等领域。

酶标记是一种利用酶与底物反应的方法进行分子标记。

通常,酶标记将目标分子与特定的酶(如辣根过氧化酶、碱性磷酸酶等)结合,然后通过对底物的催化作用产生显色或荧光信号。

酶标记在生物学检测中得到广泛应用,特别是在酶联免疫吸附试验(ELISA)中。

酶标记具有灵敏度高、稳定性好的特点,可以用于检测蛋白质、核酸和小分子等生物分子。

放射性标记是利用放射性同位素与目标分子结合的技术。

放射性同位素具有高灵敏度和长时间半衰期的特点,可以用于追踪和测定目标分子的存在和分布。

放射性标记技术广泛应用于细胞和分子影像学、放射性定位和药物代谢等领域。

分子标记技术在生物医学研究、生物学检测和药物研发等领域有着广泛的应用。

在生物医学研究中,分子标记技术可以用于研究细胞和分子的结构和功能,探索疾病的发生机制和药物的作用机理。

在生物学检测中,分子标记技术可以用于检测和定位特定的生物分子,如蛋白质、核酸和小分子等,从而实现对生物过程的观察和分析。

在药物研发中,分子标记技术可以用于筛选和评价药物的活性和毒性,以及研究药物的代谢和药理学特性。

总之,分子标记技术的发展和应用为生物医学研究和生物学检测提供了强大的工具,有助于我们深入理解生命的奥秘和开发有效的治疗手段。

分子标记技术原理方法及应用-图文

分子标记技术原理方法及应用-图文

分子标记技术原理方法及应用-图文一、遗传标记的类型及发展遗传标记(geneticmarker):指可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。

它具有两个基本特征,即可遗传性和可识别性;因此生物的任何有差异表型的基因突变型均可作为遗传标记。

包括形态学标记、细胞学标记、生化标记和分子标记四种类型。

形态学标记:主要包括肉眼可见的外部形态特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。

优点:形态学标记简单直观、经济方便。

缺点:(1)数量在多数植物中是很有限的;(2)多态性较差,表现易受环境影响;(3)有一些标记与不良性状连锁;(4)形态标记的获得需要通过诱变、分离纯合的过程,周期较长细胞学标记:植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。

优点:能进行一些重要基因的染色体或染色体区域定位。

缺点:(1)材料需要花费较大的人力和较长时间来培育,难度很大;(2)有些变异难以用细胞学方法进行检测生化标记:主要包括同工酶和等位酶标记。

分析方法是从组织蛋白粗提物中通过电泳和组织化学染色法将酶的多种形式转变成肉眼可辩的酶谱带型。

优点:直接反映了基因产物差异,受环境影响较小。

缺点:(1)目前可使用的生化标记数量还相当有限;(2)有些酶的染色方法和电泳技术有一定难度分子标记:主要指能反映生物个体或种群间基因组中某种差异特征的DNA片段,它直接反映基因组DNA间的差异,也叫DNA标记。

(1)数量多,高多态性,信息量大(2)与生长发育无关,取材不受限制(3)能明确辨别等位基因(4)均匀分布于整个基因组(5)选择中性,不影响目标性状的表达(6)检测手段简单、快速(7)成本低廉(8)稳定,重复性好(9)共显性遗传在遗传学研究中广泛应用的DNA分子标记已经发展了很多种,一般依其所用的分子生物学技术大致可以分为三大类:第一类是以分子杂交为核心的分子标记,包括RFLP、DNA指纹技术等,这类分子标记被称为第一代分子标记;几种主要的DNA分子标记二、几种常见分子标记的原理及方法1.RFLP2.RAPD3.AFLP4.SSR5.ISSR6.SNP1.RFLP:RetrictionFragmentLengthPolymorphimbyBottein(1980)基本原理:物种的基因组DNA在限制性内切酶作用下,产生相当多的大小不等的片段,用放射性同位素标记的DNA作探针,把与被标记DNA相关的片段检测出来,从而构建出多态性图谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子标记技术原理、方法及应用一、遗传标记的类型及发展遗传标记(genetic marker):指可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。

它具有两个基本特征,即可遗传性和可识别性;因此生物的任何有差异表型的基因突变型均可作为遗传标记。

包括形态学标记、细胞学标记、生化标记和分子标记四种类型。

形态学标记:主要包括肉眼可见的外部形态特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。

优点: 形态学标记简单直观、经济方便。

缺点: (1)数量在多数植物中是很有限的; (2) 多态性较差,表现易受环境影响; (3)有一些标记与不良性状连锁; (4)形态标记的获得需要通过诱变、分离纯合的过程,周期较长细胞学标记:植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。

优点: 能进行一些重要基因的染色体或染色体区域定位。

缺点: (1)材料需要花费较大的人力和较长时间来培育,难度很大; (2) 有些变异难以用细胞学方法进行检测生化标记:主要包括同工酶和等位酶标记。

分析方法是从组织蛋白粗提物中通过电泳和组织化学染色法将酶的多种形式转变成肉眼可辩的酶谱带型。

优点: 直接反映了基因产物差异,受环境影响较小。

缺点: (1)目前可使用的生化标记数量还相当有限; (2)有些酶的染色方法和电泳技术有一定难度分子标记:主要指能反映生物个体或种群间基因组中某种差异特征的DNA片段,它直接反映基因组DNA间的差异,也叫DNA标记。

(1)数量多,高多态性,信息量大(2)与生长发育无关,取材不受限制(3)能明确辨别等位基因(4)均匀分布于整个基因组(5)选择中性,不影响目标性状的表达(6)检测手段简单、快速(7)成本低廉(8)稳定,重复性好(9)共显性遗传在遗传学研究中广泛应用的DNA分子标记已经发展了很多种,一般依其所用的分子生物学技术大致可以分为三大类:第一类是以分子杂交为核心的分子标记,包括RFLP、DNA指纹技术等,这类分子标记被称为第一代分子标记;第二类是以PCR为核心的分子标记,包括随机扩增多态性RAPD、简单序列重复SSR、扩增片段长度多态性AFLP、序列标签位点STS等,为第二代分子标记;第三类是一些新型的分子标记,如:SNP标记、表达序列标签EST 标记等,也以PCR技术为基础,为第三代分子标记。

几种主要的DNA分子标记二、几种常见分子标记的原理及方法1.RFLP2.RAPD3.AFLP4.SSR5.ISSR6.SNP1.RFLP:Restriction Fragment Length Polymorphismby Botstein(1980) 基本原理:物种的基因组DNA在限制性内切酶作用下,产生相当多的大小不等的片段,用放射性同位素标记的DNA作探针,把与被标记DNA相关的片段检测出来,从而构建出多态性图谱。

用某一种限制性内切酶来切割来自不同个体的DNA分子上,内切酶的识别序列有差异,即是由限制性酶切位点上碱基的插入、缺失、重排或点突变所引起的。

这种差异反映在酶切片段的长度和数目上。

优点: 无表型效应,不受环境条件和发育阶段的影响;共显性,非常稳定;起源于基因组DNA自身变异,数量上几乎不受限制缺点:检测步骤多,周期长,需DNA量大,费时;用作探针的DNA 克隆制备、保存不方便;放射性同位素,易造成环境污染2.RAPD:Random Amplified Polymorphic DNA by Williams et al.(1990)基本原理:此技术建立于PCR基础之上,使用一系列具有10个左右碱基的单链随机引物,对基因组的DNA全部进行PCR扩增,以检测多态性。

由于整个基因组存在众多反向重复序列,因此须对每一随机引物单独进行PCR。

单一引物与反向重复序列结合,使重复序列之间的区域得以扩增。

引物结合位点DNA序列的改变以及两扩增位点之间DNA碱基的缺失、插入或置换均可导致扩增片段数目和长度的差异,经聚丙烯酰胺或琼脂糖凝胶电泳分离后通过EB染色以检测DNA 片段的多态性基本步骤:基本步骤:与常规PCR的两点不同:1.引物长度短————常规PCR中需要两个引物,长度20-30个核苷酸。

RAPD只需一个引物,长度9-10个核苷酸,而且是随机引物。

2.退火温度低————在RAPD引物短,因此退火温度要低,一般为35-37℃。

优点: 不需DNA探针,设计引物也无须知道序列信息;技术简便,不涉及杂交和放射性自显影等技术;DNA样品需要量少,引物价格便宜,成本较低缺点:显性,不能鉴别杂合子和纯合子;实验重复性较差,结果可靠性较低与核酸序列分析相比,RFLP可省去序列分析中许多非常繁琐工序,但相对RAPD 而言,RFLP方法更费时、费力,需要进行DNA多种酶切、转膜以及探针的制备等多个步骤,仅对基因组单拷贝序列进行鉴定。

但RFLP又有比RAPD优越之处,它可以用来测定多态性是由父本还是母本产生的,也可用来测定由多态性产生的突变类型究竟是由碱基突变或倒位、还是由缺失、插入造成的。

3.AFLP:Amplified Fragments Length Polymorphism by Zabeau & Vos(1993)基本原理:基因组DNA经限制性内切酶双酶切,其中包括一个酶切位点稀有的内切酶(识别位点一般为6个碱基或8个碱基)和一个酶切位点丰富的内切酶(识别位点一般为4个碱基)的酶切组合,形成分子量大小不等的随机限制性片段。

酶切片段先与有共同粘性末端的人工接头连接,连接后的粘性末端顺序和接头顺序作为PCR反应的引物结合位点,通过PCR反应把酶切片段扩增,然后将扩增的酶切片段在高分辨率的顺序分析胶上进行电泳,其多态性即以扩增片段的长度不同而被检测出来。

三种检测方法:1.放射性自显影检测————同位素标记引物。

2.银染检测3.荧光检测————荧光染料标记引物。

优点: 由于AFLP标记的限制性内切酶与选择性碱基组合的数目和种类很多,AFLP标记产生的标记数目是无限的;每次反应产物的谱带在50-100条之间,所以一次分析可以同时检测到多个座位,且多态性极高;分辩率高,结果可靠;模板用量少,并且对模板浓度变化不明显;特定引物扩增,退火温度高,假阳性低AFLP标记缺点:专利技术,试剂盒价格贵;技术复杂、成本高;基因组的不完全酶切会影响实验结果,所以实验对DNA纯度和内切酶的质量要求较高技术比较:1/它将RAPD随机性和专一性扩增巧妙结合,再选用内切酶以达选择的目的。

2/AFLP结合了RFLP的稳定性和PCR技术高效性的特点。

AFLP的多态性极高,一次可以检测到100-150个扩增产物,因而非常适合绘制品种指纹图谱及进行分类研究。

4.SSR:Simple Sequence Repeat基本原理:微卫星DNA是一种广泛分布于真核生物基因组中的串状简单重复序列,每个重复单元的长度在1—10bp之间,常见的微卫星如TGTG……TG= (TG)n或AATAAT……AAT= (AAT)n等,不同数目的核心序列呈串联重复排列,而呈现出长度多态性。

在基因组中,因每个SSR序列的基本单元重复次数在不同基因型间差异很大,从而形成其座位的多态性。

而且每个SSR座位两侧一般是相对保守的单拷贝序列,据此可设计引物,其关键是首先要了解SSR座位的侧翼序列(Flanking Region),寻找其中的特异保守区。

优点: 数量丰富,广泛分布于整个基因;共显性标记,可鉴别出杂合子和纯合子;实验重复性好,结果可靠;所需DNA量少,对DNA质量要求不高缺点:由于创建新的标记时需知道重复序列两端的序列信息,对于许多物种需构建文库,因此其开发有一定困难,费用也较高5.ISSR:Inter Simple Sequence Repeat by Zietkiewicz et al. (1994)基本原理:在SSR的5’或3’端加锚l~4个嘌呤或嘧啶碱基,然后以此为引物,对两侧具有反向排列SSR的一段基因组DNA序列进行扩增。

在SSR的3’端或5’端锚定1-4个简并碱基的优点是在基因组上只有那些与锚定的核苷酸匹配的位点才能被靶定,因而避免了SSR在基因组上的滑动大大提高了PCR扩增的专一性。

ISSR的重复序列和锚定碱基是随机选择的,扩增产物经聚丙烯酰胺或琼脂糖凝胶电泳分离后,每个引物可以产生比RAPD方法更多的扩增片段,它在引物设计上比SSR技术简单得多,不需知道DNA序列即可用引物进行扩增,又可以揭示比RFLP、RAPD、SSR更多的多态性。

因此,ISSR标记是一种快速、可靠、可以提供有关基因组丰富信息的DNA指纹技术。

ISSR标记呈孟德尔式遗传,在多数物种中是显性的,目前己广泛用于植物品种鉴定、遗传作图、基因定位、遗传多样性、进化及分子生态学研究中。

6.SNP:Single Nucleotide Polymorphism也是以PCR技术为基础的分子标记技术。

它是指不同生物个体基因组DNA序列之间单个核苷酸的差异,这种差异可以通过设计特异PCR引物扩增和电泳检测显示出来。

SNP标记是根据基因组测序结果发展起来的,因而它的数量非常丰富。

检测SNP的最佳方法是新近发展起来的DNA芯片技术。

优点: 共显性;基因有功能意义.。

缺点:引物设计困难三、分子标记技术的应用司法鉴定分子遗传图谱构建基因定位(QTL)与克隆遗传多样性研究种质资源研究(品种、品质鉴定)比较基因组研究。

相关文档
最新文档