初中圆的定理和公式汇总
初中数学圆知识点总结

初中数学圆知识点总结圆是初中数学中的重要内容,它在几何和代数中都有着广泛的应用。
下面我们来详细总结一下初中数学中圆的相关知识点。
一、圆的定义圆是平面内到定点的距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆中最长的弦。
2、弧:圆上任意两点间的部分叫做弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
3、圆心角:顶点在圆心的角叫做圆心角。
4、圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
三、圆的性质1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
2、圆是中心对称图形,其对称中心是圆心。
3、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
4、同圆或等圆中,如果两条弦所对的圆心角相等,那么这两条弦相等。
5、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
6、半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
四、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:1、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
2、弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
3、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
五、圆周角定理1、一条弧所对的圆周角等于它所对的圆心角的一半。
2、同弧或等弧所对的圆周角相等。
3、半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
六、圆内接四边形如果一个四边形的四个顶点都在同一个圆上,那么这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。
圆内接四边形的性质:圆内接四边形的对角互补。
七、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:1、点在圆外⇔ d > r2、点在圆上⇔ d = r3、点在圆内⇔ d < r八、直线与圆的位置关系直线与圆有三种位置关系:相交、相切、相离。
初中圆的所有公式定理

初中圆的所有公式定理圆是初中数学中非常重要的一个概念,它是由平面上所有到定点距离相等的点组成的图形。
在初中数学中,我们学习了许多关于圆的公式和定理,下面就让我们来一一了解。
一、圆的基本概念圆是由平面上所有到定点距离相等的点组成的图形。
其中,定点叫做圆心,到圆心距离相等的点叫做圆上的点,距离叫做半径。
二、圆的周长和面积公式1. 周长公式:C=2πr,其中C表示圆的周长,r表示圆的半径,π≈3.14。
2. 面积公式:S=πr²,其中S表示圆的面积,r表示圆的半径,π≈3.14。
三、圆的弧长和扇形面积公式1. 弧长公式:L=α/360°×2πr,其中L表示圆的弧长,α表示圆心角的度数,r表示圆的半径,π≈3.14。
2. 扇形面积公式:S=α/360°×πr²,其中S表示扇形的面积,α表示圆心角的度数,r表示圆的半径,π≈3.14。
四、圆的切线和切点定理1. 切线定理:如果一条直线与圆相切,那么这条直线与圆心的连线垂直。
2. 切点定理:如果一条直线与圆相切,那么这条直线与圆心的连线在切点处与圆的切线垂直。
五、圆的切线长度定理如果一条直线与圆相切,那么这条直线与圆心的连线在切点处与圆的切线垂直,且切线长度等于圆心到直线的距离。
六、圆的切线角定理如果一条直线与圆相切,那么这条直线与圆心的连线在切点处与圆的切线夹角等于圆心角的一半。
七、圆的切线定理如果一条直线与圆相切,那么这条直线与圆心的连线在切点处与圆的切线垂直。
八、圆的切线长度定理如果一条直线与圆相切,那么这条直线与圆心的连线在切点处与圆的切线垂直,且切线长度等于圆心到直线的距离。
九、圆的切线角定理如果一条直线与圆相切,那么这条直线与圆心的连线在切点处与圆的切线夹角等于圆心角的一半。
十、圆的切线定理如果一条直线与圆相切,那么这条直线与圆心的连线在切点处与圆的切线垂直。
以上就是初中圆的所有公式定理,它们是我们学习圆的基础,掌握好这些公式和定理,对于我们后续的学习和应用都有很大的帮助。
九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
圆的十八个定理是什么

圆的十八个定理是什么定理是经过受逻辑限制的证明为真的陈述。
一般来说,在数学中,只有重要或有趣的陈述才叫定理。
证明定理是数学的中心活动。
扩展资料圆的十八个定理1、圆心角定理:在同圆或等圆中,相等的圆心角所对弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论2 :圆的两条平行弦所夹的弧相等。
4、切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。
5、切线长定理:从圆外一点引圆的两条切线,他们的切线长相等,这一点与圆心的连线平分这两条切线的夹角。
6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。
如果他们相交,那么交点一定在两圆的'连心线上。
7、相交弦定理:圆内两条弦相交,被交点分成的两条线段长的乘积相等。
8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。
9、割线长定理:从圆外一点向圆引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
10、切线的性质定理:圆的切线垂直于经过切点的半径推论1 :经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
11、弦切角定理:弦切角等于它所夹的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
初中圆的定理和公式汇总

3圆是以圆心为对称中心的中心对称图形4圆是定点的距离等于定长的点的集合5圆的内部可以看作是圆心的距离小于半径的点的集合6圆的外部可以看作是圆心的距离大于半径的点的集合7同圆或等圆的半径相等8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12 ①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r13切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线14切线的性质定理圆的切线垂直于经过切点的半径15推论1 经过圆心且垂直于切线的直线必经过切点16推论2 经过切点且垂直于切线的直线必经过圆心17切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18圆的外切四边形的两组对边的和相等19弦切角定理弦切角等于它所夹的弧对的圆周角20推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等31推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34如果两个圆相切,那么切点一定在连心线上35 ①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)36定理相交两圆的连心线垂直平分两圆的公共弦37 定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39 正n边形的每个内角都等于(n-2)×180°/n40定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41正n边形的面积Sn=pnrn/2 p表示正n边形的周长42正三角形面积√3a/4 a表示边长43如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=444弧长计算公式:L=n兀R/18045扇形面积公式:S扇形=n兀R^2/360=LR/246内公切线长= d-(R-r) 外公切线长= d-(R+r)47定理一条弧所对的圆周角等于它所对的圆心角的一半48推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等49推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。
九年级圆的定理总结

九年级圆的定理总结如下:1.圆上三点确定一个圆,且确定一个唯一的圆心,该圆心是三点所连线段垂直平分线的交点。
2.垂径定理:垂直于弦的直径平分该弦,且平分该弦所对的两条弧。
3.切线判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。
4.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
5.弦心距定理:弦心距平分弦所对的弧。
6.相交弦定理:弦与直径垂直于弦的直径平分该弦,且平分该弦所对的两条弧。
7.割线定理:从圆外一点引圆的两条割线,这一点和圆心的连线平分两条割线的夹角。
8.直径所对的圆周角等于90度,90度的圆周角所对的弦是直径。
9.同圆或等圆的半径相等,直径等于半径的两倍。
10.圆是中心对称图形,对称中心是圆心。
11.如果两圆相交,那么连接两圆圆心的线段(公共弦)垂直平分两圆的连心线。
12.如果两圆相切,那么两圆的半径之和等于圆心距,或两圆半径之差等于圆心距。
13.两圆的半径之比等于圆心距之比等于两圆周长之比。
14.圆内接四边形的对角互补,内角和等于360度。
15.弧长公式:l=nπr/18016.扇形面积公式:s=1/2lr=1/2nπr²17.圆锥侧面积公式:s=1/2rl=πrl18.点P在圆O内,PA切圆O于A,则OP<PA。
19.点P在圆O上,PA切圆O于A,则OP=PA。
20.点P在圆O外,PA切圆O于A,则OP>PA。
21.从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
22.从圆外一点因圆的两条割线,这一点到割线与圆交点的两条线段长的积等于这一点到圆心的距离与圆的半径的积。
23.直线和圆相交,则有公共点;直线和椭圆相交,则有公共点;直线和双曲线相交,则有公共点;直线和抛物线相交,则有公共点;平面解析几何适用范围要熟记。
九年级圆知识点总结

九年级圆知识点总结圆是几何学中最基本的图形之一,由于其特殊的性质和重要的应用,是中学数学中一个重点和难点的内容。
以下是针对九年级学习的圆知识点总结,包括圆的定义、性质、常见的定理和应用。
一、圆的定义及基本概念1. 圆的定义:圆是平面上与一个固定点距离恒定的点的集合。
2. 圆的要素:圆心、半径、弦、弧、切线等。
二、圆的性质1. 圆的周长公式:C=2πr,其中C是圆的周长,r是圆的半径。
2. 圆的面积公式:S=πr²,其中S是圆的面积,r是圆的半径。
3. 内接圆和外接圆:内接圆是一个圆,恰好与一个多边形的所有顶点相切;外接圆是一个圆,恰好与一个多边形的所有边相切。
4. 相交圆的性质:两个相交圆的交点到两个圆心的距离相等。
两个相交圆的交点确定的两条弦相互垂直的充要条件是两个弦的弧度相等。
三、常见的圆的定理1. 切线定理:切线与半径垂直。
2. 弦切角定理:弦切角等于弦对应的弧的一半。
3. 弦弧角定理:弦弧角等于弦对应的弧的一半。
4. 弦角定理:弦角等于其对应的弧缺角的一半。
5. 弧长定理:弧长等于圆心角的弧度数除以2π乘以圆的周长。
四、圆的应用1. 圆的引理:如欲使直线在给定的点上下夹定一个给定的角,只需作两条通过该点的圆,并使直线分别与两圆相切即可。
2. 圆的内切与外切:两个圆相切,其中一个圆在另一个圆内部,称为内切;两个圆相切,其中一个圆在另一个圆外部,称为外切。
3. 勾股定理的圆证法:利用圆的性质,可以简化勾股定理的证明过程。
4. 圆柱、圆锥和圆球的体积计算:圆柱的体积公式为V=πr²h,其中V是体积,r是底面半径,h是高;圆锥的体积公式为V=1/3πr²h,其中V是体积,r是底面半径,h是高;圆球的体积公式为V=4/3πr³,其中V是体积,r是半径。
以上只是关于九年级圆的知识点的简要总结,实际上圆还有许多其他的性质、定理和应用,需要通过练习和实际问题的解决来进一步加深理解和掌握。
与圆有关的20个定理

与圆有关的20个定理圆是几何学中非常重要的一个图形,其形状和性质在数学和实际生活中有广泛的应用。
以下是与圆有关的20个定理的集合,包括圆的基本性质、圆与其他几何图形的关系和圆上的特殊点和线。
1. 定理1:周长公式圆的周长公式是C = 2πr,其中C表示圆的周长,r表示圆的半径,π是一个常数,大约为3.14。
这个公式可以使用圆的直径d而不是半径r来表达:C = πd。
2. 定理2:面积公式圆的面积公式是A = πr²,其中A表示圆的面积,r表示圆的半径。
与周长公式一样,也可以使用圆的直径来表达圆的面积:A = (π/4)d²。
3. 定理3:圆周的弧度弧度是一种测量角度的单位,它是定义为一个圆弧所对应的圆心角的度数除以360度的比例。
例如,如果一个圆弧所对应的圆心角是90度,则该圆弧的弧度是1/4。
4. 定理4:内切圆内切圆是一个圆,恰好与给定的多边形的内部相切,且每个边都是它的切线。
内切圆的半径称为内切圆半径,且由公式r = A/P得出,其中A是多边形的面积,P是多边形的周长。
5. 定理5:外接圆外接圆是一个圆,它恰好与给定的多边形的每个顶点相切。
外接圆的半径称为外接圆半径且可以由a²+b²=c²公式或者P=2πr公式来计算。
6. 定理6:圆柱体的侧面积一个圆柱体的侧面积是由公式A=2πrh得出的,其中r是圆柱体的半径,h是圆柱体的高。
7. 定理7:球的表面积球的表面积是由公式A=4πr²得出的,其中r是球的半径。
8. 定理8:圆锥的侧面积一个圆锥的侧面积是由公式A=πrl得出的,其中r是圆锥的底面半径,l是圆锥的斜线长度。
9. 定理9:勾股定理勾股定理是一个直角三角形的定理,它表明a²+b²=c²,其中a和b是直角三角形的两个直角边,c是斜边。
10. 定理10:圆的切线对于给定的一个圆,一个切线是从圆外的一点切到圆上的一点。
干货:圆的相关定理,性质,公式盘点

干货:圆的相关定理,性质,公式盘点不要害怕拒绝他人,如果自己的理由出于正当。
当一个人开口提出要求的时候,他的心里根本预备好了两种答案。
所以,给他任何一个其中的答案,都是意料中的。
——三毛1、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.∵CD是圆O的直径,CD⊥AB∴AP=BP,弧AC=弧BC,弧AD=弧BD2、弧,弦,圆心角(1)在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等.(2)在圆中,如果弧相等,那么它所对的圆心角相等,所对的弦相等.(3)在一个圆中,如果弦相等,那么它所对的弧相等,所对的圆心角相等.∵ ∠COD =∠AOB∴AB=CD,弧AB=弧CD3、圆周角定理及推论在同圆或等圆中,同弧所对的圆周角等于它所对的圆心角的一半。
∠A =1/2∠O在同圆或等圆中,同弧或等弧所对的所有的圆周角相等。
相等的圆周角所对的弧相等。
∠C=∠D=∠E=1/2∠AOB半圆或直径所对的圆周角都相等,都等于90°(直角)。
90°的圆周角所对的弦是圆的直径。
∵AB是⊙O的直径∴∠C=∠D=∠E=90°(∵∠C=90°,∴AB是⊙O的直径)4、点与圆,直线与圆的位置关系一、(1)点在圆外,d>r;(2)点在圆上,d =r;(3)点在圆内,d<r.二、 (1)当直线与圆相离时d>r;(2)当直线与圆相切时d =r;(3)当直线与圆相交时d<r.三、切线的判定与性质判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
∵OA是⊙O的半径,OA⊥ l∴直线l是⊙O的切线.性质:圆的切线垂直于经过切点的半径.∵直线l是⊙O的切线,切点为A∴ OA⊥ l切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分这两条切线的夹角。
∵PA、PB为⊙O的切线∴PA=PB,∠APO= ∠BPO5、三角形的外心是三角形各边垂直平分线的交点.三角形的内心是三角形各角平分线的交点.6、弧长,扇形面积,圆锥侧面积计算公式S侧面积=πra。
初中圆知识点总结

初中圆知识点总结
一、圆的定义
圆是一个平面上所有离圆心距离相等的点的集合。
圆由圆心O和半径r确定,圆心是平面内离圆最近的点,半径是从圆心到圆上任意一点的距离。
二、圆的性质
1. 圆心角:圆内的两条弦所对的圆心角相同。
2. 圆的周长:圆的周长等于直径的长度乘以π(π≈
3.14)。
3. 圆的面积:圆的面积等于半径的平方乘以π。
4. 圆的切线:与圆相交的直线与圆相切的直线是两种情况。
三、相关公式
1. 圆的周长公式:C=2πr(C表示周长,r表示半径,π≈3.14)。
2. 圆的面积公式:S=πr²(S表示面积,r表示半径,π≈
3.14)。
四、解题技巧
1. 计算圆的周长和面积时,要根据给定的半径或直径使用相应的公式进行计算。
2. 在解题过程中,应灵活运用圆的相关性质,如圆心角的性质、切线与圆的性质等。
3. 在应用题中,需注意将问题中的条件转化成数学表达式,并根据问题的要求求解出所需的答案。
4. 在解题过程中,要注意计算时的单位问题,如需要将结果转换成具体的长度单位或面积单位。
通过以上总结,相信初中阶段的学生能够更好地掌握圆的相关知识,并能够在解题过程中更加灵活地运用圆的性质和相关公式。
希望本文对初中学生学习圆有所帮助,让他们能够更加轻松地应对数学课上的学习和考试。
初三圆的知识点总结

初三圆的知识点总结圆是初中数学中的重要概念之一,而初三阶段则是圆的学习重点。
在初三阶段,学生需要掌握圆的定义、性质、相关定理和应用。
下面我们来总结一下初三圆的知识点。
一、圆的定义和性质1. 圆的定义圆是由平面上到定点的距离等于定长的所有点构成的集合。
定点叫圆心,定长叫半径。
通常记作圆O,圆心为O,半径为r。
2. 圆的性质(1)圆的直径、半径、弧长和圆心角的关系:一个圆的直径是圆的一条弧上的两个端点,直径等于圆的半径的两倍。
(2)圆的周长公式:圆的周长等于2πr,其中r为圆的半径。
(3)圆的面积公式:圆的面积等于πr²,其中r为圆的半径。
(4)切线定理:在圆上的切线和半径垂直,切点、圆心和切线上的半径构成直角三角形。
二、圆的相关定理1. 圆心角定理定理:在同一个圆或等圆上的圆心角等于其对应弧所对的圆周角的一半。
结论:圆心角相等的弧是等弧。
2. 弧长定理定理:在同一个圆或等圆上,相等圆心角所对的弧相等,反之,相等弧对应的圆心角相等。
3. 弧度和角度定理:弧长与半径之比叫做弧度制下的角度。
1弧度(rad)=57.3°。
结论:弧长l=rθ,其中θ为弧度。
4. 正弦定理和余弦定理正弦定理:在一个三角形ABC中,a/sinA=b/sinB=c/sinC。
余弦定理:在一个三角形ABC中,a²=b²+c²-2bc*cosA。
5. 切线定理定理:在圆上的切线和半径垂直。
6. 切线与弦的关系定理:在圆上,如果一条切线和一条弦相交,那么切线和弦的交点与圆心的连线垂直。
三、圆的相关应用1. 圆的相关应用(1)圆的插值:根据圆的相关性质和定理求出圆的周长、面积及其相关角度。
(2)圆的相关推理:利用圆的性质和相关定理解决与圆相关的问题。
2. 圆的实际应用(1)工程中的车轮和齿轮。
(2)地理中的经纬度。
(3)天文中的星座和行星轨道。
(4)生活中的钟面和圆形的器物。
以上就是初三圆的知识点总结,希望对你的学习有所帮助。
中考数学之圆的公式定理整理

中考数学之圆的公式定理整理初中数学学习中,大家首先必须搞懂的就是公式定理,只有先记住了公式,才有可能在运算中活学活用。
下面是小编给大家带来的中考数学复习资料之圆的公式定理,欢迎大家阅读参考,我们一起来看看吧!中考数学复习资料之圆的基本性质与定理1。
点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2。
圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4。
在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5。
一条弧所对的圆周角等于它所对的圆心角的一半。
6。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
7。
不在同一直线上的3个点确定一个圆。
8。
一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9。
直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO10。
圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11。
圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R-r中考数学复习资料之圆的定义1。
平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2。
圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
初中数学:点关于圆的定理推论和公式基础知识汇总

初中圆的定理和公式汇总1不在同一直线上的三点确定一个圆。
①?圆:由定点到定长点的集合叫做圆。
符号⊙0?②?弦:连接圆上任意两点的线段叫做弦。
弦:⌒经过圆心的弦叫直径③?半径不同,圆心相同的两个圆叫做同心圆同圆、等圆或半径相同的叫做等圆?两个完全重合的弧叫等弧?④?经过平面上一点可画无数个圆;?经平面上二点可画无数个圆;⑤?在三角形外画一个圆的圆心叫做此三角形的外心,此圆为三角形的外接圆。
⑥?外心:三角形三条中垂线的交点。
⑦?三角形三个顶点在圆上,这个三角形叫圆的内接三角形。
2垂径定理:?垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1?①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②?弦的垂直平分线经过圆心,并且平分弦所对的两条弧③?平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2?圆的两条平行弦所夹的弧相等3圆是以圆心为对称中心的中心对称图形4圆是定点的距离等于定长的点的集合5圆的内部可以看作是圆心的距离小于半径的点的集合 6圆的外部可以看作是圆心的距离大于半径的点的集合 7同圆或等圆的半径相等8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9定理?在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10推论?在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 11定理?圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12?①?直线L和⊙O相交?d<r②?直线L和⊙O相切?d=r③?直线L和⊙O相离?d>r13切线的判定定理:?经过半径的外端并且垂直于这条半径的直线是圆的切线14切线的性质定理?圆的切线垂直于经过切点的半径15推论1?经过圆心且垂直于切线的直线必经过切点16推论2?经过切点且垂直于切线的直线必经过圆心17切线长定理?从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18圆的外切四边形的两组对边的和相等19弦切角定理?弦切角等于它所夹的弧对的圆周角20推论?如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 30相交弦定理?圆内的两条相交弦,被交点分成的两条线段长的积相等31推论?如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32切割线定理?从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33推论?从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34如果两个圆相切,那么切点一定在连心线上35?①?两圆外离?d>R+r ②?两圆外切?d=R+r ③?两圆相交?R-r<d<R+r(R>r)④?两圆内切?d=R-r(R>r) ⑤?两圆内含d<R-r(R>r)36定理?相交两圆的连心线垂直平分两圆的公共弦37?定理?把圆分成n(n≥3):⑴?依次连结各分点所得的多边形是这个圆的内接正n边形⑵?经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38定理?任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39?正n边形的每个内角都等于(n-2)×180°/n40定理?正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41正n边形的面积Sn=pnrn/2?p表示正n边形的周长42正三角形面积√3a/4?a表示边长43如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 44弧长计算公式:L=n兀R/18045扇形面积公式:S扇形=n兀R^2/360=LR/246内公切线长=?d-(R-r)?外公切线长=?d-(R+r)47定理?一条弧所对的圆周角等于它所对的圆心角的一半48推论1?同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等49推论2?半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径from sign 20211029122208。
初三圆知识点总结归纳

初三圆知识点总结归纳在初三数学学习中,圆是一个重要的几何形状。
本文将对初三圆的相关知识点进行总结归纳,帮助同学们更好地理解和掌握圆的性质与计算方法。
一、圆的基本概念圆是指平面上与给定点距离相等的所有点的集合。
其中,给定的点叫做圆心,所有与圆心距离相等的点叫做圆上的点,而半径则是圆心到圆上任意一点的距离。
二、圆的性质1. 圆的直径、半径和弦- 直径:通过圆心的一条线段,且与圆上两个点相交。
- 半径:圆心到圆上任意一点的距离,也是圆的直径的一半。
- 弦:圆上的一条线段,两端点在圆上。
2. 圆的周长和面积- 周长:圆的周长也叫圆周长,等于圆的直径与圆周之间的比例(π)。
- 面积:圆的面积等于圆周长度(C)与直径的关系(π)。
三、圆的重要定理1. 切线定理- 定理一:圆的半径与切线的垂直段的平方之和等于切线段的平方。
- 定理二:直线与圆相切,则切线垂直于直径。
2. 弧长定理- 在同一个圆或者等圆中,属于同一个圆弧的两条弧所对的圆心角相等。
- 在同一个圆或者等圆中,圆心角相等的弧所属的圆弧长也相等。
3. 弦切角定理- 当一个半径与一条弦相交时,弦上的弧所对的圆心角等于半径与弦的夹角。
- 等弧所对的圆心角相等。
四、圆的计算方法1. 利用圆的周长计算半径和直径:- 已知周长求半径:半径 = 周长/ (2 * π)- 已知周长求直径:直径 = 周长/ π2. 利用圆的面积计算半径和直径:- 已知面积求半径:半径= √(面积/ π)- 已知面积求直径:直径= √(4 * 面积/ π)五、例题演练1. 题目一:已知圆的直径为10cm,求其面积和周长。
解答:半径 = 直径 / 2 = 10cm / 2 = 5cm面积= π * 半径² = π * 5² ≈ 78.54cm²周长= 2 * π * 半径= 2 * π * 5 ≈ 31.42cm2. 题目二:已知圆的周长为18.84cm,求其半径和直径。
初三下册数学圆知识点定理总结

一基本概念:圆的几何定义和集合定义, 弦, 弦心距, 弧, 等弧, 弓形, 弓形高三角形的外接圆, 三角形的外心, 三角形的内切圆, 三角形的内心, 圆心角, 圆周角, 弦切角, 圆的切线, 圆的割线, 两圆的内公切线, 两圆的外公切线, 两圆的内(外)公切线长, 正多边形, 正多边形的中心, 正多边形的半径, 正多边形的边心距, 正多边形的中心角.二定理:1.不在始终线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面绽开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R, r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加协助线. 7.关于圆的常见协助线:。
初中圆知识点公式总结

初中圆知识点公式总结1. 圆的周长和面积圆的周长和面积是圆的基本属性,其中:周长的计算公式为:C=2πr,其中r为半径。
面积的计算公式为:A=πr²,其中π≈3.14,r为半径。
2. 圆心角和圆周角在圆上有两种特殊的角:圆心角和圆周角。
圆心角指以圆心为顶点的角,它的度数等于所对圆弧的弧度数。
圆周角指以圆周上的两点为端点的角,其度数等于所对圆弧的弧度数的一半。
圆周角的计算公式为:θ=πr / 180,其中θ为角的度数,r为所对圆弧的半径圆心角的计算公式为:θ=2πr/180,其中θ为角的度数,r为所对圆弧的半径。
3. 圆心角定理和圆周角定理圆心角定理指:圆周角的度数等于所对圆弧的度数的一半,即m(<AOB)=1/2m(ACB)。
圆周角定理指:对于同一个圆周角,其所对的圆弧的度数相等。
即m(ACB)=m(A'B')。
4. 弧长和扇形面积弧长是圆周上的一段弧的长度,扇形是以圆心为顶点的一个角和这个角所对的圆弧所围成的图形。
弧长的计算公式为:L=rθ,其中r为半径,θ为圆心角的度数。
扇形的面积的计算公式为:S=1/2r²θ,其中r为半径,θ为圆心角的度数。
5. 切线和切线定理切线是与圆相切的直线,切线与半径的交点处成90度。
切线定理指:切线与半径的关系,即切线与半径的乘积等于弦与这个弦所对的圆周角的乘积,即PA²=PB×PC。
其中P为切点,A为切线与圆相切的点。
6. 弦心角和弧心角弦心角指:以弦为一边的角,弧心角指:以弧为一边的角。
弦心角的关系:在同一个圆上,相同弦上的两个弦心角相等,不同弦上的弦心角不等。
弧心角的关系:在同一个圆上,相同弧上的两个弧心角相等,不同弧上的弧心角不等。
7. 圆的切线和切圆切圆是指从圆外一点到圆上有且只有一条切线的情况,切圆的判定和切线的判定是相似的。
以上就是初中阶段学习中关于圆的知识点和公式的总结,这些知识点和公式贯穿了初中数学的整个教学内容,掌握这些知识对于学生在学习和解题过程中具有很大的指导作用。
九年级上册数学圆知识点总结

九年级上册数学圆知识点总结
九年级上册数学圆的知识点总结:
1. 圆的定义:圆是由平面上到定点的所有点构成的集合,其中的一个定点称为圆心,到圆心的距离称为半径。
2. 圆的元素:圆心、半径、直径、弦、弧、圆周、扇形、圆心角、半径角等。
3. 圆的性质:
- 圆的圆心到圆上任意一点的距离相等。
- 圆的直径是圆上两个相对点的最长弦,其长度等于半径的两倍。
- 圆的直径的中点即为圆心。
- 圆的弦的中点与圆心连线垂直。
- 圆的弧与该弧所对的圆心角度数相等。
- 全等圆弧所对的圆心角度数相等。
4. 圆的周长和面积:
- 圆的周长公式:C = 2πr,其中r为圆的半径,π约等于3.14。
- 圆的面积公式:A = πr^2,其中r为圆的半径,π约等于3.14。
5. 圆的切线:
- 切线是与圆只有一个公共点的直线。
- 切线与半径垂直,并且与切点的切线上半径是直角。
6. 弦的性质:
- 直径是弦的特殊情况,即直径是经过圆心的弦。
- 两条弦相等的条件是:它们所夹的圆心角相等。
7. 弧的性质:
- 弧长等于弧所对的圆心角度数除以360°乘以圆周长。
- 弧长等于半径乘以弧所对圆心角的弧度数。
这些是九年级上册数学圆的基本知识点总结,希望对你有帮助!。
圆的定理公式大全

圆的定理公式大全1.圆的定义:圆是平面上与一个固定点的距离恒定的点的集合。
2.圆的直径定理:圆的直径是圆上任意两个点的连线中最长的一段。
3.圆的半径定理:圆的半径是圆上任意一条弦的垂直平分线。
4.圆心角定理:在一个圆上,一个弧所对的圆心角是它所对弧的两倍。
5.弧长定理:圆的弧长是它的圆心角所对的弧的弧度数与半径的乘积。
6.弦长定理:圆上一条弦的弦长等于弦与圆心连线的垂直距离的两倍。
7.弦心角定理:在一个圆上,当两个弦截取的弧相等时,弦所夹的弧所对的弦心角也相等。
8.弧与切线的关系:一个切线与圆的弦的相交弧的弧长相等。
9.切线定理:如果一个切线和半径相交,那么相交点与圆心的连线垂直于切线。
10.垂径定理:在一个圆上,由圆心至弦的中点的线段垂直于弦。
11.弦割定理:当两个弦相交时,两个弦的乘积等于它们所对的两个弧的乘积。
12.弦切角定理:当一个切线与一条弦相交时,切线与弦之间的夹角等于所对弧的圆心角。
13.同切圆定理:两个同切圆的半径之比等于它们对应圆的半径之比。
14.位似圆定理:如果两个圆的半径之比相等,那么这两个圆是位似的。
15.勾股圆定理:在一个直角三角形中,斜边的一半等于直角边的几何平均数。
16.外接圆定理:在一个三角形中,三个顶点到外接圆圆心的距离相等。
17.内切圆定理:在一个三角形中,三个角的平分线交于一个点,这个点到三边的距离相等,且这个点是内切圆的圆心。
18.旁切圆定理:在一个三角形中,三个顶点到旁切圆切点的距离相等。
19.拉比定理:两个圆的外公切线上的切点连线与两个圆心的连线垂直。
20.均角定理:在一个圆上,两个截取同一弦的弧所对圆心角相等。
21.与弦垂直的半径定理:一个圆的半径与其上的弦垂直,则半径平分弦。
22.正弦定理:在一个任意三角形中,三角形的每个角的正弦等于相应的边与直径的乘积。
23.余弦定理:在一个任意三角形中,三角形的每个角的余弦等于两个相邻边与直径的乘积之和减对角边与直径的乘积。
初三下册数学圆知识点定理总结

几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高三角形的外接圆、三角形的外心、三角形的内切圆、三角形的内心、圆心角、圆周角、弦切角、圆的切线、圆的割线、两圆的内公切线、两圆的外公切线、两圆的内(外)公切线长、正多边形、正多边形的中心、正多边形的半径、正多边形的边心距、正多边形的中心角.二定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线. 7.关于圆的常见辅助线:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4圆是定点的距离等于定长的点的集合5圆的内部可以看作是圆心的距离小于半径的点的集合6圆的外部可以看作是圆心的距离大于半径的点的集合7同圆或等圆的半径相等8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12 ①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r13切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线14切线的性质定理圆的切线垂直于经过切点的半径15推论1 经过圆心且垂直于切线的直线必经过切点16推论2 经过切点且垂直于切线的直线必经过圆心17切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18圆的外切四边形的两组对边的和相等19弦切角定理弦切角等于它所夹的弧对的圆周角20推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等31推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34如果两个圆相切,那么切点一定在连心线上35 ①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)36定理相交两圆的连心线垂直平分两圆的公共弦37 定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39 正n边形的每个内角都等于(n-2)×180°/n40定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41正n边形的面积Sn=pnrn/2 p表示正n边形的周长42正三角形面积√3a/4 a表示边长43如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=444弧长计算公式:L=n兀R/18045扇形面积公式:S扇形=n兀R^2/360=LR/246内公切线长= d-(R-r) 外公切线长= d-(R+r)47定理一条弧所对的圆周角等于它所对的圆心角的一半48推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等49推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。
2.切线长定理如图1对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。
3.弦切角(如图2):顶点在圆上,一边和圆相交,另一边和圆相切的角。
直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)∠APC,∠APD,∠BPD,∠BPC 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。
即如上图中∠APC=∠CDP等证明:如图2,连接CD、OC、OP,因为∠CPO=∠PCO,所以∠COP=180︒-2∠CPO而∠CPO=90︒-∠APC,故∠COP=2∠APC,即∠CDP=∠APC。
5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。
6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。
7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P. PA·PB=PC·PD连结AC、BD,∠C=∠B,∠A=∠D,所以△APC∽△DPB相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以PT2=PA·PB图1 图2切割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、CPA·PB =PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆幂定理⊙O 中,割线PB 交⊙O 于A ,CD 为弦P'C·P'D =r 2-OP'2PA·PB =OP 2-r 2r 为⊙O 的半径延长P'O 交⊙O 于M ,延长OP'交⊙O 于N ,用相交弦定理证;过P 作切线用切割线定理勾股定理证8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。
例1.如图1,正方形ABCD 的边长为1,以BC 为直径。
在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。
图1例2.⊙O 中的两条弦AB 与CD 相交于E ,若AE =6cm ,BE =2cm ,CD =7cm ,求CE 。
图2例3.已知PA 是圆的切线,PCB 是圆的割线,则::22PB AC AB ________。
例4.如图3,P 是⊙O 外一点,PC 切⊙O 于点C ,PAB 是⊙O 的割线,交⊙O 于A 、B 两点,如果PA :PB =1:4,PC =12cm ,⊙O 的半径为10cm ,则圆心O 到AB 的距离是___________cm 。
图3例5.如图4,AB 为⊙O 的直径,过B 点作⊙O 的切线BC ,OC 交⊙O 于点E ,AE 的延长线交BC 于点D ,求证:(1)CB CD CE •=2;(2)若AB =BC =2厘米,求CE 、CD 的长。
图4例6.如图5,AB 为⊙O 的直径,弦CD ∥AB ,AE 切⊙O 于A ,交CD 的延长线于E 。
求证:DE AB BC •=2图5例7.如图6,PA 、PC 切⊙O 于A 、C ,PDB 为割线。
求证:AD·BC =CD·AB图6例8.如图7,在直角三角形ABC中,∠A=90°,以AB边为直径作⊙O,交斜边BC于点D,过D点作⊙O的切线交AC于E。
求证:BC=2OE。
图7例9.如图8,在正方形ABCD中,AB=1,⋂AC是以点B为圆心,AB长为半径的圆的一段弧。
点E是边AD上的任意一点(点E与点A、D不重合),过E作⋂AC所在圆的切线,交边DC于点F,G为切点。
当∠DEF=45°时,求证:点G为线段EF的中点;图8【模拟试题】(答题时间:40分钟)一、选择题1.已知:PA 、PB 切⊙O 于点A 、B ,连结AB ,若AB =8,弦AB 的弦心距3,则PA =( ) A.20/3 B.25/3 C. 5 D. 82.下列图形一定有内切圆的是( )A.平行四边形B.矩形C.菱形D.梯形 3.已知:如图1直线MN 与⊙O 相切于C ,AB 为直径,∠CAB =40°,则∠MCA 的度数( )图1 A. 50° B. 40° C. 60° D. 55° 4.圆内两弦相交,一弦长8cm 且被交点平分,另一弦被交点分为1:4,则另一弦长为( ) A. 8cm B. 10cm C. 12cm D. 16cm5.在△ABC 中,D 是BC 边上的点,AD=22cm ,BD =3cm ,DC =4cm ,如果E 是AD 的延长线与△ABC 的外接圆的交点,那么DE 长等于( )A. 32cmB. 23cmC. 22cmD.33cm6. PT 切⊙O 于T ,CT 为直径,D 为OC 上一点,直线PD 交⊙O 于B 和A ,B 在线段PD 上,若CD =2,AD =3,BD =4,则PB 等于( )A. 20B. 10C. 5D.二、填空题7. AB 、CD 是⊙O 切线,AB ∥CD ,EF 是⊙O 的切线,它和AB 、CD 分别交于E 、F ,则∠EOF =_____________度。
8.已知:⊙O 和不在⊙O 上的一点P ,过P 的直线交⊙O 于A 、B 两点,若PA·PB =24,OP =5,则⊙O 的半径长为_____________。
9.若PA 为⊙O 的切线,A 为切点,PBC 割线交⊙O 于B 、C ,若BC =20,PA=310,则PC 的长为_____________。
10.正△ABC 内接于⊙O ,M 、N 分别为AB 、AC 中点,延长MN 交⊙O 于点D ,连结BD 交AC 于P ,则PAPC=_____________。
三、解答题11.如图2,△ABC 中,AC =2cm ,周长为8cm ,F 、K 、N 是△ABC 与内切圆的切点,DE 切⊙O 于点M ,且DE ∥AC ,求DE 的长。
图212.如图3,已知P为⊙O的直径AB延长线上一点,PC切⊙O于C,CD⊥AB于D,求证:CB平分∠DCP。
图313.如图4,已知AD为⊙O的直径,AB是⊙O的切线,过B的割线BMN交AD的延长2cm,求⊙O的半径。
线于C,且BM=MN=NC,若AB=2图4。