2015合肥二模理科数学带解析汇报汇报

合集下载

安徽省合肥市2015届高三第二次教学质量检测 数学文

安徽省合肥市2015届高三第二次教学质量检测 数学文

已知 等式组表 数 k 的值为_____
示的平面区域被直线 2x y k
0 平分成面积相等的两部分 则实
·2 ·
述命题正确的是 解答题 16 本小题满分 12 分
已知 I 求 II 若 的值 是第四象限角 求 的值
17 本小题满分 12 分 某快递 司正在统计所有快递员某一天的收件数 有些数据 没有填好 如 表所示
B CБайду номын сангаас的平面 平面 PAD 的交线为直线 l 则
10 A 充分 必要条件 C 充分必要条件 B 必要 充分条件 D 既 充分也 必要条件
第 II 卷
二 填空题
11 函数
的 义域为
12 13
已知椭圆 已知函数 是 是 义在 R
则该椭圆的离心率为 单调递 的奇函数 则满足 等 的实数 t 的取值范围
14
是线段 EF 的
19
本小题满分 13 分
已知数列
20
本小题满分 13 分 如图 焦点为 F 的抛物线 为 两个 同的点 M N 且线段 MN 中点 A 的横坐标
21
本小题满分 13 分 设函数 1 求 2 若 的单调递增区间
·4 ·
·5 ·
·6 ·
·7 ·
·8 ·
·9 ·
{x | −1 < x < 1} {1}
B D
{x | −1 < x < 2}

4
执行右边的程序框图 输出的结果为 A 9 B 8 C 6 D 4 一个正方体挖去一个圆锥得到一个几何体 其正视图 俯视图如图所示 则该几何体的侧 左 视图是
5
已知点 P 在圆
的距离最大值为
6
函数

2015年合肥市第二次教学质量检测数学试题分析

2015年合肥市第二次教学质量检测数学试题分析

2015年合肥市第二次教学质量检测数学试题分析一、命题思路1.命题依据(1)2015年安徽省考试说明、课程标准;(2)近几年年安徽省高考数学试题;(3)近几年课新课标全国高考试题.2.结合我市高三的教学实际(一轮复习刚结束)3.用以检测高三学生一轮复习的效果,诊断评估高三教与学中存有的不足,有针对性的改进高三数学教学,提升复习备考效率。

二、统计图表1. 考点分布试题基本上覆盖了高中数学学科所学知识,主要考查的知识点分布如下表:2.考试数据图表三、总体评析(1)从各分数段统计的人数分布图来看,文科表现偏正态分布(主要原因是文科增加的艺术类考生较多),说明试题非常贴近我市高三数学复习的实际,有较好的检测效度.(2)二模试题力求反映安徽高考试卷特点,重视考查基础知识,这类试题占有较大比例,考查的范围涉及2015年考试说明中要求的各部分内容,知识点的覆盖面大,主干知识重点考查,且有不同的层次要求,体现在试题的基础性和综合性之中。

注重相关知识之间的融合,以知识的重新组合来体现试题的创新,注重在知识网络交汇点命题,注重考查知识的内在联系,以有效地检验学生知识结构有序性和高效性.(3)试题蕴含着对数学思想方法和考生思维素质的考查.能够有效检测考生的创新意识及对中学数学知识中所蕴涵的数学思想和方法的掌握水准,有效考查考生的思维素质.(4)以水平立意是高考命题的基本策略。

二模试题重点考查了学生抽象概括水平、推理论证水平,运算求解水平、空间想象水平、数据处理水平以及综合使用数学知识分析问题和解决问题的水平的基础上,重视考查考生的学习潜能,创新意识和探究精神。

在试题情境和设问上,试题注意选用新素材、新问题,增强设问间纵向联系,如文科第9题、第10题、第14题、第15题、第19题等。

(5)本套数学试题中的绝大部分试题都具有原创性,立足于课本,凸显对数学知识与方法的本质的理解,试题返璞归真,注重通性通法,把知识、水平与素质的要求融为一体,基础知识与水平考查并重,用学生熟悉的、常用的知识与方法为试题的命题素材来编制试题,题目平和清新,易于上手,步步深入,秉承高考试卷“坡度缓,层次多,区分好”的特点,努力使学生考出真实水平,实现对考生的知识、方法、水平的有效检测。

2015市二模理科数学

2015市二模理科数学

理科数学试题(二)参考答案一、选择题(本大题共12小题,每小题5分,共60分.)CBDA A BCBAD CC. 二、填空题:(本大题共4小题,每小题5分,共20分.) 13.23π. 14. 23n n a =. 15.14. 16. 2016 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)11sincos 2222ααα-=,11c o s 22αα-=,所以1sin()62πα-=,又因为α为锐角,所以3πα=. ………………6分(Ⅱ)2()cos 22sin 2sin 2sin 1f x x x x x =+=-++,令sin t x =,则2221(11)y t t t =-++-≤≤,由二次函数的图像知:当12t =时,max 32y =;当1t =-时,min 3y =-, 所以函数()f x 的值域为3[3,]2-. ………………12分18.(本小题满分12分) 解:(Ⅰ)证明:PD ⊥平面ABCD ,BC Ü平面ABCD ,BC PD ∴⊥,又,BC CD CD PD D ⊥=,BC PCD ∴⊥面,又PC PCD 面Ü,∴BC PC ⊥. …………6分(Ⅱ)因为,//BC CD AD BC ⊥,所以AD DC ⊥,以D 为原点建立空间直角坐标系D xyz -,不妨设1AD =,则(1,0,0)A ,(0,0,2)P ,(0,2,0)C ,(2,2,0)B ,设平面PBC 的一个法向量为(,,)m x y z =,又(2,0,0)BC =-,(0,2,2)PC =-,由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩得20220x y z -=⎧⎨-=⎩,不妨取1y =,则(0,1,1)m =,(1,0,2)PA =-,∴PA 与平面PBC 所成角θ的正弦值sin cos ,52PA m PA m PA mθ⋅=<>===⋅. ……………12分19.(本小题满分12分)解:(Ⅰ)由图知,m 名学生中星期日运动时间少于60分钟的频率为:111()30750300020+⨯=,所以1520m ⨯=,所以100m =;设星期日运动时间在[)90,120内的频率为x ,则1111111()3013000750300100200300600x ++++++⨯+=,所以14x =.所以星期日运动时间在[)90,120内的频率为14. ……………6分 (Ⅱ)由图知,第一组有1人、第二组有4人、第七组有10人,第八组有5人,四组共20人,其中星期日运动时间少于60分钟的有5人.所以ξ可能取值为0,1,2,3,且3515320()(0,1,2,3)i i C C P i i C ξ-⋅===.所以ξ的分布列为所以ξ的期望=0+1+2+3==2282282282282284E ξ⨯⨯⨯⨯. …………12分20.(本小题满分12分) 解:(Ⅰ)由c a =,及222a b c =+,设2,,(0)a k c b k k ===>,则由四个顶点构成的四边形面积为4得12242a b ⋅⋅=,即14242k k ⋅⋅=,解得1k =, ∴椭圆22:14x C y +=. ……………5分 (Ⅱ)设直线:l x ty m =+,即0x ty m --=,1m ≥,则由直线l 与圆221x y +=相切得1=,即221t m =-, 由222244()44x y ty m y x ty m⎧+=⇒++=⎨=+⎩,即222(4)240t y tmy m +++-=,易知0∆>恒成立,设1122(,),(,)A x y B x y ,由韦达定理知:12221222444tm y y t m y y t -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,∴由弦长公式得12AB y =-21212)4]y y y y =+-⋅==,∵1m ≥,∴23AB m m ==≤=+,当且仅当3m m =,即m =时等号成立,所以max 2AB =,所以OAB ∆的面积最大值为12112⨯⨯=. ……………12分21.(本小题满分12分) 解:(Ⅰ)由已知得,221ln ln ()=ex xf x x x--'=.由()0f x '>得01x <<;由()0f x '<得1x >.所以函数()y f x =的单调增区间为:(0,1),单调减区间为(1,)+∞.……………5分(Ⅱ)不等式()()f x g x ≥恒成立⇔不等式1+ln 1x kx x ≥+恒成立 ⇔不等式(1)(1+ln )x x k x+≤恒成立,令(1)(1+ln )1()1(1+ln )(1)x x h x x x x x +⎛⎫==+≥ ⎪⎝⎭,则min ()k h x ≤.因为2ln ()x x h x x-'=,令()l n (1)x x xx ϕ=-≥,则()h x '与()x ϕ同号,因为1()0x x x ϕ-'=≥(当且仅当1x =时取等号),所以()x ϕ在[1,)+∞上递增,所以()(1)10x ϕϕ≥=>,所以()0h x '>,所以()h x 在[1,)+∞上递增,所以min ()(1)2h x h ==,所以 2.k ≤ ……………12分22.证明:(Ⅰ)因为A C B D =,所以ABC BCD ∠=∠.又因为EC 与圆相切于点C ,故ACE ABC∠=∠,所以ACE BCD ∠=∠. ………………5分 (Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠,所以BDCECB ∆∆,故B C C DB E B C=.即2BC BE CD =⋅.又82BE ,CD ,==所以=4BC . ………………10分23.解:(Ⅰ)曲线1:2cos C ρθ=化为普通方程为:22(1)1x y -+=;直线2C的参数方程x ty =⎧⎪⎨=⎪⎩ (t 为参数).0y -=.所以曲线1C 是以1C ()1,0为圆心,1r =为半径的圆.所以圆心1C ()1,00y -=的距离为:d ==.所以1AB ==.………………5分 (Ⅱ)由(Ⅰ)知,圆10分 24.解: 1,1()1223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩(Ⅰ)不等式()2f x x >,即112x x ≤⎧⎨->⎩或12232x x x <<⎧⎨->⎩或212x x≥⎧⎨>⎩,解得12x <-,所以不等式()2f x x >的解集为12x x ⎧⎫<-⎨⎬⎩⎭. ……………5分(Ⅱ)存在x R ∈,使得2()1f x t t >-+,即2max ()1f x t t >-+∵max ()1f x =, ∴只要22110(0,1)t t t t t >-+⇔-<⇔∈即(0,1)t ∈ ……………10分。

2015年安徽省合肥市包河区中考数学二模试卷(解析版)

2015年安徽省合肥市包河区中考数学二模试卷(解析版)

2015年安徽省合肥市包河区中考数学二模试卷一、选择题:每小题4分,共40分.1.(4分)比3大﹣1的数是()A.2B.4C.﹣3D.﹣22.(4分)下列运算正确的是()A.5ab﹣3ab=2B.(﹣a3)2=a6C.a2•a3=a6D.(a﹣b)2=a2﹣b23.(4分)2014年安徽省亿元以上重点项目完成投资9798.2亿元,为年度投资计划的118.6%,有力地推动我省经济的快速发展,数据“9798.2亿”用科学记数法表示为()A.9.7982×103B.9.7982×108C.9.7982×1011D.9.7982×10124.(4分)如图所示的几何体是一个正三棱柱,以下不是其三视图的是()A.B.C.D.5.(4分)如图,a∥b,∠3+∠4=110°,则∠1+∠2的度数为()A.60°B.70°C.90°D.110°6.(4分)今年植树节,学校团委组织60位团员去植树,他们共种了130棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.7.(4分)为丰富学生课外活动,某校积极开展社团活动,学生科根据自己的爱好选择一项,已知该校开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球,李老师对某年级同学选择体育社团的情况进行调查统计,制成了两幅不完整的统计图(如图).则以下结论正确的是()A.选科目E的有10人B.选科目B的扇形圆心角比选科目D的扇形圆心角的度数多14.4°C.选科目A、B的人数占选体育社团人数的一半D.选科目A的占34%8.(4分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为E,连接AD,AB=9,AD =6,则弦CD的长为()A.4B.2C.4D.89.(4分)如图,等边△ABC的边长是4,点P是边AB上任意一点(可与A、B重合),作PD⊥BC于D,作DE⊥AC于E,作EQ⊥AB于Q,设PB的长为x,PQ的长为y,则y 与x的函数关系图象是()A.B.C.D.10.(4分)设函数f(x)=x(x﹣1),以下结论正确的是()A.f(a)+f(﹣a)=0B.若f(a)=a,则a=0C.f(a)f()=1D.f(a)=f(1﹣a)二、填空题:每小题5分,共20分.11.(5分)不等式>x﹣1的解集是.12.(5分)如图,点A(2,2)是反比例函数y=(x>0)的图象上一点,点B是反比例函数y=(x<0)上一点,AB与x轴平行,且△OAB的面积为5,则m+n=.13.(5分)已知,BC是圆O的直径,AB是圆O的弦,过点A的切线交BC延长线于点D,若AB=AD=2,则弧AC的长为.14.(5分)已知,△ABC中,BE⊥AC于G,CD⊥AB于F,BA=BE,CA=CD,以下结论:①∠D=∠E;②DF=GE;③=;④=,其中正确的有(填上你认为所有正确结论的序号).三、每小题8分,共16分.15.(8分)先化简,再求值:﹣,其中a=﹣3.16.(8分)已知x2﹣2x﹣8=0,求4(x﹣1)2﹣2x(x﹣2)+3的值.四、每小题8分,共16分.17.(8分)如图是某种自动卸货时的示意图,AC时水平汽车底盘,OB是液压举升杠杆,货车卸货时车厢AB与底盘AC夹角为30°,举升杠杆OB与底盘AC夹角为75°,已知举升杠杆上顶点B离火车支撑点A的距离为(2+2)米.试求货车卸货时举升杠杆OB 的长.18.(8分)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点的坐标分别为(2,5)、(0,2)、(2,1).(1)画出△ABC关于直线y=x对称的△A′B′C′;(2)画出△ABC关于原点O成中心对称的△A1B1C1,并指出△A′B′C′与△A1B1C1的位置关系.五、每小题10分,共20分.19.(10分)如图,一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,…,称为“三角形数”;把1、4、9、16,25,…称为“正方形数”.同样的,可以把数1,5,12,22,…,等数称为“五边形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:(1)按照规律,表格中a=,b=,c=.(2)观察表中规律,第n个“正方形数”是;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是.20.(10分)如图,在Rt△ABC中,∠ACB=90°,AD=BD,AE∥CD,CE∥AB,BE交CD于O.(1)判断四边形ADCE的形状,并证明.(2)若AC=BC=2,求BO的长.六、本题每小题12分,共24分.21.(12分)某校团委为开展“元旦联欢会”,在全校招募主持人,七、八、九年级分别推荐一男一女两位候选主持人.(1)若各年级任选一人,求所选三位主持人恰好同性别的概率;(2)若九年级的女同学是学校的“金牌主持”,团委只要在其他五人中任选两位同学与之搭档即可,求恰好为“两男一女”的概率.22.(12分)某市出租车通常采用如下运营模式:个体司机向出租车公司租借车辆运营,每天向公司上交一点量的“份子钱”,公司靠收每辆出租车的“份子钱”盈利,据了解,个体司机每运营一小时,平均可得“营业额”50元,但要支付“燃气费”20元,如图是某司机一天运营收益(除去“份子钱”和“燃气费”),y元随运营时间t时变化的函数图象.(1)求a的值及函数解析式;(2)据统计,个体司机的运营收益率达到,其“幸福指数”会达标,那么他需要运营几小时?(收益率=)(3)出租车公司为了改变效益,决定调整“分子钱”,据市场调查可知,出租车数量s(辆)与“分子钱”的增加额b(元)之间的关系为s=﹣b+160.若调整时必须保证个体司机在运营12小时时,收益率不低于,那么增加额b为多少元时,公司效益最高?2015年安徽省合肥市包河区中考数学二模试卷参考答案与试题解析一、选择题:每小题4分,共40分.1.(4分)比3大﹣1的数是()A.2B.4C.﹣3D.﹣2【解答】解:3+(﹣1)=2.故选:A.2.(4分)下列运算正确的是()A.5ab﹣3ab=2B.(﹣a3)2=a6C.a2•a3=a6D.(a﹣b)2=a2﹣b2【解答】解:A.5ab﹣3ab=(5﹣3)ab=2ab,故A错误;B.(﹣a3)2=a6,正确;C.a2•a3=a2+3=a5,故C错误;D.(a﹣b)2=a2﹣2ab+b2,故D错误.故选:B.3.(4分)2014年安徽省亿元以上重点项目完成投资9798.2亿元,为年度投资计划的118.6%,有力地推动我省经济的快速发展,数据“9798.2亿”用科学记数法表示为()A.9.7982×103B.9.7982×108C.9.7982×1011D.9.7982×1012【解答】解:将9798.2亿用科学记数法表示为:9.7982×1011.故选:C.4.(4分)如图所示的几何体是一个正三棱柱,以下不是其三视图的是()A.B.C.D.【解答】解:A、是主视图,故此选项不合题意;B、不是其三视图,故此选项正确;C、是左视图,故此选项不合题意;D、是俯视图,故此选项不合题意;故选:B.5.(4分)如图,a∥b,∠3+∠4=110°,则∠1+∠2的度数为()A.60°B.70°C.90°D.110°【解答】解:∵a∥b,∴∠3=∠5.∵∠3+∠4=110°,∴∠4+∠5=110°,∴∠6=∠4+∠5=110°,∴∠1+∠2=180°﹣110°=70°.故选:B.6.(4分)今年植树节,学校团委组织60位团员去植树,他们共种了130棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.【解答】解:设男生有x人,女生有y人,由题意得,.故选:C.7.(4分)为丰富学生课外活动,某校积极开展社团活动,学生科根据自己的爱好选择一项,已知该校开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球,李老师对某年级同学选择体育社团的情况进行调查统计,制成了两幅不完整的统计图(如图).则以下结论正确的是()A.选科目E的有10人B.选科目B的扇形圆心角比选科目D的扇形圆心角的度数多14.4°C.选科目A、B的人数占选体育社团人数的一半D.选科目A的占34%【解答】解:该班的总人数是:12÷24%=50(人),则选科目E的人数是:50×10%=5(人),故选项A错误;选B科目的扇形的圆心角的度数是:360°×=50.4°,选D科目的扇形的圆心角的度数是:360°×=64.8°,则选科目B的扇形圆心角比选科目D的扇形圆心角的度数少14.4°,故选项B错误;A科目的人数是:50﹣9﹣16﹣11=14(人),则A和B科目的总人数是14+7=21,选科目A、B的人数占选体育社团人数不到一半,故选项C错误;选A科目的所占的百分比是:×100%=34%,故选项D正确.故选:D.8.(4分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为E,连接AD,AB=9,AD =6,则弦CD的长为()A.4B.2C.4D.8【解答】解:连接OD,∵AB=9,∴OD=OA=4.5.设OE=x,则AE=4.5﹣x,∵弦CD⊥AB,∴CD=2DE,∠OED=∠AED=90°.∵AD=6,∴AD2﹣AE2=OD2﹣OE2,即62﹣(4.5﹣x)2=4.52﹣x2,解得x=,∴AE=4.5﹣x=4.5﹣=4,∴DE===2,∴CD=2DE=4.故选:A.9.(4分)如图,等边△ABC的边长是4,点P是边AB上任意一点(可与A、B重合),作PD⊥BC于D,作DE⊥AC于E,作EQ⊥AB于Q,设PB的长为x,PQ的长为y,则y 与x的函数关系图象是()A.B.C.D.【解答】解:∵等边△ABC的边长是4,PB的长为x,PD⊥BC于D,DE⊥AC于E,EQ ⊥AB于Q,∴∠PDB=∠DEC=∠EQA=90°,∠PBD=∠CDE=∠AEQ=30°,∴BD=,CD=4﹣,CE=(4﹣)=2﹣,AE=4﹣(2﹣)=2+,AQ=(2+)=1+,∴当P在Q下方时,y=AB﹣PB﹣AQ=4﹣x﹣(1+)=﹣+3,当P在Q上方时,y=AQ﹣AP=(1+)﹣(4﹣x)=x﹣3,当y=0时,x=,当x=0时,y=3,当x=4时,y=,∴y=故选:D.10.(4分)设函数f(x)=x(x﹣1),以下结论正确的是()A.f(a)+f(﹣a)=0B.若f(a)=a,则a=0C.f(a)f()=1D.f(a)=f(1﹣a)【解答】解:f(a)+f(﹣a)=a(a﹣1)﹣a(﹣a﹣1)=2a2,A不正确;f(a)=a,即a(a﹣1)=a,则a=0或2,B不正确;f(a)f()=a(a﹣1)×(﹣1)=2﹣a﹣,C不正确;f(a)=f(1﹣a),D正确,故选:D.二、填空题:每小题5分,共20分.11.(5分)不等式>x﹣1的解集是x<4.【解答】解:去分母得1+2x>3x﹣3,移项得2x﹣3x>﹣3﹣1,合并得﹣x>﹣4,系数化为1得x<4.故答案为x<4.12.(5分)如图,点A(2,2)是反比例函数y=(x>0)的图象上一点,点B是反比例函数y=(x<0)上一点,AB与x轴平行,且△OAB的面积为5,则m+n=﹣2.【解答】解:∵点A(2,2)是反比例函数y=(x>0)的图象上一点,∴m=2×2=4,∵点B是反比例函数y=(x<0)上一点,AB与x轴平行,且△OAB的面积为5,∴|n||m|=5,∴|n|=6,∵n<0,∴n=﹣6,∴m+n=﹣2,故答案为:﹣2.13.(5分)已知,BC是圆O的直径,AB是圆O的弦,过点A的切线交BC延长线于点D,若AB=AD=2,则弧AC的长为.【解答】解:连接OA,∵AD是⊙O的切线,∴∠OAD=90°,∴∠D+∠AOC=90°,∵AB=AD=2,∴∠B=∠D,∵OA=OB,∴∠B=∠OAB,∴∠AOC=2∠B=2∠D,∴∠AOC=60°,∴AO=AD=2,∴弧AC的长==,故答案为:.14.(5分)已知,△ABC中,BE⊥AC于G,CD⊥AB于F,BA=BE,CA=CD,以下结论:①∠D=∠E;②DF=GE;③=;④=,其中正确的有①③④(填上你认为所有正确结论的序号).【解答】解:∵BE⊥AC于G,CD⊥AB于F,∴∠AFC=∠AGB=90°,∴∠ABG+∠F AG=∠ACD+∠F AG=90°,∴∠ABG=∠ACD,∵BA=BE,CA=CD,∴∠D=∠DAC=,∠E=∠BAE=,∴∠D=∠E,故①正确;∵∠AFD=∠AGE=90°,∠D=∠E,∴△ADF∽△AEG,∴DF与GE不一定相等,故②错误;∵∠AFC=∠AGB,∠F AG=∠F AG,∴△AFC∽△ABG,∴=,故③正确;∵△ADF∽△AEG,∴,∴=,故④正确.故答案为:①③④.三、每小题8分,共16分.15.(8分)先化简,再求值:﹣,其中a=﹣3.【解答】解:原式=﹣==,当a=﹣3时,原式=﹣1.16.(8分)已知x2﹣2x﹣8=0,求4(x﹣1)2﹣2x(x﹣2)+3的值.【解答】解:原式=4x2﹣8x+4﹣2x2+4x+3=2x2﹣4x+7=2(x2﹣2x)+7,当x2﹣2x﹣8=0,即x2﹣2x=8时,原式=16+7=23.四、每小题8分,共16分.17.(8分)如图是某种自动卸货时的示意图,AC时水平汽车底盘,OB是液压举升杠杆,货车卸货时车厢AB与底盘AC夹角为30°,举升杠杆OB与底盘AC夹角为75°,已知举升杠杆上顶点B离火车支撑点A的距离为(2+2)米.试求货车卸货时举升杠杆OB的长.【解答】解:作OD⊥AB于D,设BD=x,∵∠BOC=75°,∠A=30°,∴∠ABO=45°,∴OD=BD=x,tan A=,∴AD==x,则x+x=2+2,解得x=2,∴OD=BD=2,由勾股定理,OB=2.18.(8分)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点的坐标分别为(2,5)、(0,2)、(2,1).(1)画出△ABC关于直线y=x对称的△A′B′C′;(2)画出△ABC关于原点O成中心对称的△A1B1C1,并指出△A′B′C′与△A1B1C1的位置关系.【解答】解:(1)如图所示,△A′B′C′即为所作;(2)如图所示,△A1B1C1即为所作,△A′B′C′与△A1B1C1关于直线y=﹣x成轴对称.五、每小题10分,共20分.19.(10分)如图,一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,…,称为“三角形数”;把1、4、9、16,25,…称为“正方形数”.同样的,可以把数1,5,12,22,…,等数称为“五边形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:(1)按照规律,表格中a=28,b=36,c=35.(2)观察表中规律,第n个“正方形数”是n2;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是n2+x﹣n.【解答】解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,∴第n个“三角形数”是,∴a=.∵前5个“正方形数”分别是:1=12,4=22,9=32,16=42,25=52,∴第n个“正方形数”是n2,∴b=62=36.∵前4个“正方形数”分别是:1=,5=,12=,22=,∴第n个“五边形数”是,∴c==35.(2)第n个“正方形数”是n2;1+1﹣1=1,3+4﹣5=2,6+9﹣12=3,10+16﹣22=4,…,∴第n个“五边形数”是n2+x﹣n.故答案为:28、36、35;n2、n2+x﹣n.20.(10分)如图,在Rt△ABC中,∠ACB=90°,AD=BD,AE∥CD,CE∥AB,BE交CD于O.(1)判断四边形ADCE的形状,并证明.(2)若AC=BC=2,求BO的长.【解答】解:(1)菱形.证明如下:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵∠ACB=90°,AD=BD,∴CD=AD,∴四边形ADCE是菱形.(2)∵AC=BC=2,∴CD⊥AB,AB=2,∴EA⊥AB,AD=,∴AE=,在Rt△BAE中,BE==,∵AD=BD,AE∥DO,∴BO=BE=.六、本题每小题12分,共24分.21.(12分)某校团委为开展“元旦联欢会”,在全校招募主持人,七、八、九年级分别推荐一男一女两位候选主持人.(1)若各年级任选一人,求所选三位主持人恰好同性别的概率;(2)若九年级的女同学是学校的“金牌主持”,团委只要在其他五人中任选两位同学与之搭档即可,求恰好为“两男一女”的概率.【解答】解:(1)画树状图为:共有8种等可能的结果数,其中三位主持人恰好同性别的结果数为2,所以所选三位主持人恰好同性别的概率==;(2)画树状图为:共有20种等可能的结果数,其中两男的结果数为6,所以恰好为“两男一女”的概率==.22.(12分)某市出租车通常采用如下运营模式:个体司机向出租车公司租借车辆运营,每天向公司上交一点量的“份子钱”,公司靠收每辆出租车的“份子钱”盈利,据了解,个体司机每运营一小时,平均可得“营业额”50元,但要支付“燃气费”20元,如图是某司机一天运营收益(除去“份子钱”和“燃气费”),y元随运营时间t时变化的函数图象.(1)求a的值及函数解析式;(2)据统计,个体司机的运营收益率达到,其“幸福指数”会达标,那么他需要运营几小时?(收益率=)(3)出租车公司为了改变效益,决定调整“分子钱”,据市场调查可知,出租车数量s(辆)与“分子钱”的增加额b(元)之间的关系为s=﹣b+160.若调整时必须保证个体司机在运营12小时时,收益率不低于,那么增加额b为多少元时,公司效益最高?【解答】解:(1)由图象可得,t=时,y=0,设份子钱为m元,∴解得:m=200,∴a=﹣200,设函数解析式为:y=kt+b,把(0,﹣200),(,0)代入得:,解得:,∴y=30t﹣200.(2)设他需要运营x小时,根据题意可得:,解得:x=15,经检验,x=15是原方程的解,∴他需要运营15小时.(3)∵调整时必须保证个体司机在运营12小时时,收益率不低于,∴解得:b≤40,∴0≤b≤40,设公司效益为W元,则W==,∵0≤b≤40,∴当b=40时,W有最大值,最大为==33600,∴增加额b为40元时,公司效益最高.。

2015年安徽省高三第二次高考模拟考试数学(理)试题及答案

2015年安徽省高三第二次高考模拟考试数学(理)试题及答案

文档保护密码按住Crtl单击此处查看2015安徽省高三第二次高考模拟考试数学(理科)参考答案(1)C 解析:z 3=(12-32i)3=(12-32i)2(12-32i)=(-12-32i)(12-32i)=-1.(2)B 解析:x 2>|x |+2⇔(|x |-2)(|x |+1)>0⇔|x |>2⇒|x |>1,故选B .(3)B 解析:由已知得双曲线的顶点为)0,1(±,渐近线方程为∴=+±,02y x 距离.55252==d(4)B 解析:A =12,n =2;A =-2,n =3;A =92,n =4;A =289,输出结果为4.(5)C 解析:直线l 的直角坐标方程为x -2y +a =0,d =|2cos θ-23sin θ+a |5=|4cos(θ+60°)+a |5,当a >0时,最大值为|4+a |5=25,a =6,当a <0时,最大值为|-4+a |5=25,a =-6,故选C .(6)A 解析:a =log 510=1+log 52<2,b =log 36=1+log 32<2,c =2ln3>2,∴a <b <c . (7)C 解析:|x -1|+|x -2|<3的解集为x ∈(0,3),使y =log 2(x -x 2)有意义的x ∈(0,1),其概率为13.(8)A 解析:如图,直线y =x +1与圆(x -4)2+y 2=13交于点(1,2),(2,3),而y =ax +2过点(0,2),与点(2,3)连线的斜率为12,故a ∈(0,12).(9)D 解析:其中可能共色的区域有AC 、AD 、AE 、AF 、BE 、BF 、CD 、CF 、DF 共9种,故共有涂色方法9A 55=1080种.(10)D 解析:由已知得 →OB =n2 →OA +m1 →OC ,显然m >0,n >0,n2+m1=1,∴n +2m =(n+2m)(n 2+m 1)=2+2+m n +n m 4≥4+2nmm n 4⨯=8,当且仅当n =2m 时取等号.又4m 2+n 2≥12(2m +n )2=32,当且仅当n =2m 取等号,故选D .(11)332π 解析:由已知得球的半径∴=+=,2)3(12r 球的体积.3322343ππ=⋅=V (12)12 解析:b 5+b 8=C 38(-b )3+1=-6,整理得b 3=18,b =12.(13)43-解析:f ′(x )=ωA cos(ωx +φ),由图知2(2π3-π6)=2πω,ω=2,ωA=1,A =12,f ′(x )=cos(2x +φ),2×π6+φ=0,φ=-π3,f (x )=12sin(2x -π3),f (π)=12sin(2π-π3).43-= (14)20+ 解析:由三视图知几何体是边长为2的正方体挖去一个三棱柱,如图所示,所以表面积为225120⨯⨯+=+(15)①②⑤ 解析:对于①,∵a 1=1,3、27、9是其中的三项,∴d >0且为整数,∴d =1或d =2,故①正确;对于②,当a 1=27,d =-1时,可满足条件,故②正确;对于③,∵9-3=(t 1-t 2)d ,t 1-t 2=6d ,∴d 是6的因子,同理可知d 是18与24的因子,∴d 是6的因子,而6的因子有±1、±2、±3、±6共8个,故③不正确;对于④,由③知对于d =±2、±6,27与36相差不是2、6的倍数,故④不正确;对于⑤,当a 1=1,d =2时,a n =2n -1,S n =n 2,S 2n =4n 2=4S n ,故⑤正确.(16)解析:(Ⅰ)由已知得4sin 2C cos 2C -10sin 2C cos C -6sin 2C =0,∴2cos 2C -5cos C -3=0,cos C =-12或cos C =3(舍),∴C =32π.(6分)(Ⅱ)由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-ab ,49=64-ab ,ab =15, ∴△ABC 的面积S △ABC =12ab sin C =1534.(12分)(17)解析:(Ⅰ)连接AC 交DF 于H ,连接EH . 由△AFH ∽△CDH 得AH HC =AF CD =12,由已知PE =13PC 得PE EC =12,∴EH ∥P A ,∵P A ⊥底面ABCD ,∴EH ⊥底面ABCD .∵EH ⊂平面DEF ,∴平面DEF ⊥平面ABCD .(6分)(Ⅱ)建立如图所示的空间坐标系,设AB =2, →PE =λ →PC (0<λ<1),E (x ,y ,z ), 则B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,4), 由 →PE=λ →PC 得(x ,y ,z -4)=λ(2,2,-4),E (2λ,2λ,4-4λ). 设平面ADE 的法向量为m =(a ,b ,c ),则⎩⎨⎧ →AD·m =0 →AE ·m =0,令c =-λ,则m =(2-2λ,0,-λ).设平面ABE 的法向量为n =(a 1,b 1,c 1),则⎪⎩⎪⎨⎧=⋅=⋅0,令c 1=-λ,∴n =(0,2-2λ,-λ),∴|cos<m ,n >|=m ·n |m |·|n |=λ2(2-2λ)2+λ2=12,解得λ=23. ∴当PE =23PC 时,二面角B -AE -D 为120°.(12分)(18)解析:(Ⅰ)入口1、2、3堵车的概率分别是P 1=25、P 2=35、P 3=12.∴恰有两个路口发生堵车的概率P =25×35×(1-12)+25×(1-35)×12+(1-25)×35×12=1950.(5分)(Ⅱ)X =1,2,3.P (X =1)=35+25×12=45,P (X =2)=25×12(25+35×23)=425,P (X =3)=25×12×35×13=125. 其分布列为EX =1×45+2×425+3×125=3125.(12分)(19)解析:(Ⅰ)将A 点代入圆C 中得1+(3-m )2=5,解得m =1或m =5(舍).(2分) F 1(0,-c )(c >0),设PF 1:y -4=k (x -4),5=|3-4k |1+k 2,解得k =2或k =211,所以4+c 4=2或4+c 4=211,解得c =4或c =-3611(舍).F 1(0,-4),F 2(0,4),则2a =|AF 1|+|AF 2|=62,a =32,b =2, ∴椭圆E 的方程为:y 218+x 22=1.(6分)(Ⅱ)设Q (x ,y ), →AP=(3,1), →AQ =(x -1,y -3), →AP· →AQ =3(x -1)+y -3=3x +y -6, 令t =3x +y ,代入椭圆y 2+9x 2=18中得18x 2-6tx +t 2-18=0,△=36t 2-72(t 2-18)=-36t 2+72×18≥0,-6≤t ≤6,-12≤t -6≤0,则 →AP · →AQ ∈[-12,0].(13分) (20)解析:(Ⅰ)a =2,f ′(x )=(x +6)(x +1)(x +2)2,当x >-1时,f ′(x )>0;当-2<x <-1时,f ′(x )<0,故f (x )的增区间为(-1,+∞),减区间为(-2,-1),在x =-1处取得极小值f (-1)=1.(6分)(Ⅱ)由(Ⅰ)知当a =2时,f (x )≥f (-1)=1,∴x 2x +2+3ln(x +2)≥1.∵a ≤2,∴0<x +a ≤x +2,x 2x +a ≥x 2x +2.∴f (x )=x 2x +a +3ln(x +2)≥x 2x +2+3ln(x +2)≥1,令g (x )=2-x -e -x,g ′(x )=-1+e -x=1-e xex ,显然当x >0时,g ′(x )<0;当x <0时,g ′(x )>0. 故g (x )在x =0处取得最大值g (0)=1,g (x )≤1, ∴f (x )≥2-x -e -x.(13分)(21)解析:(Ⅰ)a 1=1,a 2=4,a 3=9,猜想a n =n 2. 下面用数学归纳法证明: ①当n =1时,显然成立.②假设当n =k 时,猜想成立,即a k =k 2,则当n =k +1时,6S k +1=(a k +1+k +1)(2k +3),6S k +6a k+1=(2k +3)a k +1+(k +1)(2k +3),(k 2+k )(2k +1)+6a k +1=(2k +3)a k +1+(k +1)(2k +3),解得a k +1=(k +1)2,故当n =k +1时,猜想成立.由①②知猜想正确,a n =n 2.(7分) (Ⅱ)b n =n 2·2n ,T n =12·21+22·22+32·23+…+n 2·2n , 2T n =12·22+22·23+32·24+…+n 2·2n +1,两式相减得-T n =1·21+3·22+5·23+…+(2n -1)·2n -n 2·2n +1.设M =1·21+3·22+5·23+…+(2n -1)·2n , 2M =1·22+3·23+5·24+…+(2n -1)·2n +1,-M =2+2(22+23+…+2n )-(2n -1)·2n +1=2+2×4(1-2n -1)1-2-(2n -1)·2n +1,M =(2n -3)·2n+1+6,-T n =(2n -3)·2n +1+6-n 2·2n +1,T n =(n 2-2n +3)·2n +1-6.(13分)。

【VIP专享】安徽省合肥市2015年高三第二次教学质量检测数学(理)试题 (含解析)

【VIP专享】安徽省合肥市2015年高三第二次教学质量检测数学(理)试题 (含解析)
解析:直线 l1 : ax y 1 0 与直线 l2 : 4x (a 3) y 5 a 0 平行,则 a 1 1 4 a3 5a 解得 a 1,∴是充要条件,选 C
6.等差数列{an} 的前 n 项和为 Sn ,若 6a3 2a4 3a2 5 ,则 S7 ( )A.来自8 B.21 C.14 D.7
2
1
解析:由三视图可知,该几何体是底面为 圆的柱体
4
S表
2
22 4
(
4) 3
5
12 ,选
C
5.“ a 1”是“直线 l1 : ax y 1 0 与直线 l2 : 4x (a 3) y 5 a 0 平行”的( )
A.充分且不必要条件 B.必要且不充分条件 C.充要条件 D.既不充分也不必要条件
解析: z 3 4i (3 4i)(1 2i) 5 10i 1 2i
1 2i (1 2i)(1 2i)
∴共轭复数 z 1 2i ,选 A
2.若集合 M
{x |
1 x
1},则 CR M

A. {x | x 1} B. {x | 0 x 1} C. {x | 0 x 1} D. {x | x 1}
解析: 1 1 x 0 或 x 1 x
∴ CR M {x | 0 x 1} ,选 C
3.双曲线 x2 2 y 2 1的离心率是( )
3
A. B.
2
2
6
C. 3 D. 3
解析:由双曲线方程知 a 1,b 2 c 6
∴e c
a2
6
,选 B
2
5

4.某空间几何体的三视图如图所示(其中俯视图中的弧线为四分之一圆),则该几何体的表 面积为( )

安徽省合肥市庐阳区2015届中考二模考试数学试题及答案

安徽省合肥市庐阳区2015届中考二模考试数学试题及答案

2015年中考模拟试题数学试卷温馨提示:1.数学试卷8页,八大题,共23小题,满分150分,考试时间120分钟.2.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.考试时间共120分钟,请合理分配时间.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的答题框内. 每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在答题框内)一律得0分. 1.下列四个实数中,最小的数是: A.21B.0C.-2D.22.下列分别是有关水、电、交通、食品的安全标志,其中是轴对称图形的是:第6题图第7题图3.在刚刚过去的2014年,中央财政下达农村义务教育经费保障机制资金共878.97亿元,在学生人数减少的情况下,仍比2013年增长6.1%.数据“878.97亿元”用科学记数法可表示为: A.81097.878⨯元B.91097.878⨯元C.10107897.8⨯元D.11107897.8⨯元4.学校体育运动会的颁奖台放置于校体育馆内,其主视图如图所示,则其左视图是:5.下列计算正确的是:A.326x x x =÷B.22313m m =-C.()2623b a ba = D.(a 6.关于x 的不等式233ax x +>-的解集在数轴上表示如图所示,则a 的值是: A.-6B.-12C.6D.12第9题图7.如图,平面直角坐标系中,点A 是x 轴负半轴上一个定点,点P 是函数xy 4-=(x <0)上一个动点,PB ⊥y 轴于点B ,当点P 的横坐标逐渐增大时,四边形OAPB 的面积将会: A.逐渐增大B.先减后增C.逐渐减小D.先增后减8.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:则该校排球队21名同学身高的众数和中位数分别是(单位:cm ): A.185,178 B.178,175 C.175,178D.175,1759.如图的实线部分是由Rt △ABC 经过两次折叠得到的,首先将Rt △ABC 沿BD 折叠, 使点C 落在斜边上的点C ′处,再沿DE 折叠,使点A 落在DC ′的延长线上的 点A ′处,若图中∠C=90°,∠A=30°,BC=5cm ,则折痕DE 的长为: A. 3cmB.32cmC.52cmD.310cm10.如图,四边形ABCD 是矩形,AB=8,BC=4,动点P 以每秒2个单位的速度从点A 沿线段AB 向B 点运动,同时动点Q 以每秒3个单位的速度从点B 出发沿B-C-D 的方向运动,当点Q 到达点D 时P 、Q 同时停止运动,若记△PQA 的面积为y ,运动时间为x ,则下列图象中能大致表示y 与x 之间函数关系图象的是:Q第13题图答题框11.若使式子xx21-有意义,则x 的取值范围是 . 12.因式分解:22363y xy x +-=____________.13.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠BAC=60°,弦AD 平分∠BAC , 若AD=6,那么AC= .14.如图,等边三角形ABC 的边长为6,点E 、点F 分别是AC 、BC 边上的点, 连接AF ,BE 交于点P.给出以下判断: ①当AE=CF 时,∠EPF=120°; ②当AE=BF 时,AF=BE ;③若BF:CF=2:1且BE=AF 时,则CE:AE=2:1 ; ④当AE=CF=2时,AP •AF=12.第14题图其中一定正确的是__________(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:︒--+-+60sin 2)20151(3112210.16.解方程:11)2)(1(3-=++-x xx x .••••••••••••第五行第四行第三行第二行第一行151713121110987654321四、(本大题共2小题,每小题8分,满分16分)17.将正整数按如图所示的规律排列下去.若用有序实数对(m ,n )表示第m 排、从左到右第n 个数,如(3,2)表示实数5.(1)图中(7,3)位置上的数 ;数据45对应的有序实数对是 . (2)第2n 行的最后一个数为 ,并简要说明理由.数学试卷 第3页(共8页)数学试卷 第18.如图在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 、直线l 和格点O. (1)画出△ABC 关于直线l 成轴对称的000A B C ∆; (2)画出将000A B C ∆向上平移1个单位得到的111A B C ∆;(3)以格点O 为位似中心,将111A B C ∆作位似变换,将其放大到原来的两倍,得到222A B C ∆.五、(本大题共2小题,每小题10分,共20分)19.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如表所示:(1)若该小组在甲、乙两家印刷社共印制400用去65元,问甲、乙两家印刷社各印多少张?(2)若印刷费用为y元,请直接写出甲、乙印刷社费用与宣传单张数x之间的函数关系式,并说明选择哪家印刷社比较划算.20.北京时间2015年04月25日14时11分,尼泊尔发生强烈地震,震级8.1级左右。

2015年全国普通高考理科数学(安徽卷)精编解析word版

2015年全国普通高考理科数学(安徽卷)精编解析word版

2015年普通高等学校招生全国统一考试安徽理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷、草稿纸上答题无效.............。

4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A 与B 互斥,那么P (A+B )=P (A )+P (B ).标准差s=√1n[(x 1−x)2+(x 2−x)2+⋯+(x n −x)2],其中x =1n(x 1+x 2+…+x n ).第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2015安徽,理1)设i 是虚数单位,则复数2i1−i在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:B解析:由复数除法的运算法则可得,2i 1−i=2i(1+i)(1−i)(1+i)=2i−22=-1+i,对应点为(-1,1)在第二象限.故选B .2.(2015安徽,理2)下列函数中,既是偶函数又存在零点的是 ( )A .y=cos xB .y=sin xC .y=ln xD .y=x 2+1 答案:A解析:y=cos x 是偶函数,其图象与x 轴有无数个交点,因此选项A 满足要求;y=sin x 为奇函数;y=ln x 既不是奇函数也不是偶函数;y=x 2+1无零点,均不满足要求.故选A . 3.(2015安徽,理3)设p :1<x<2,q :2x >1,则p 是q 成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案:A解析:由2x >1,得x>0,所以由p :1<x<2可以得到q :x>0成立,而由q :x>0不能得到p :1<x<2成立,因此p 是q 成立的充分不必要条件.故选A .4.(2015安徽,理4)下列双曲线中,焦点在y 轴上且渐近线方程为y=±2x 的是( ) A .x 2-y 24=1 B .x 24-y 2=1 C .y 24-x 2=1 D .y 2-x 24=1答案:C解析:A,B 选项中双曲线的焦点在x 轴上,不符合要求.C,D 选项中双曲线的焦点在y 轴上,且双曲线y 24-x 2=1的渐近线方程为y=±2x ;双曲线y 2-x 24=1的渐近线方程为y=±12x ,故选C .5.(2015安徽,理5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行 C .若α,β不平行...,则在α内不存在...与β平行的直线 D .若m ,n 不平行...,则m 与n 不可能...垂直于同一平面 答案:D解析:A 选项α,β可能相交;B 选项m ,n 可能相交,也可能异面;C 选项若α与β相交,则在α内平行于它们交线的直线一定平行于β;由垂直于同一个平面的两条直线一定平行,可知D 选项正确.6.(2015安徽,理6)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32 答案:C解析:设数据x 1,x 2,…,x 10的平均数为x ,标准差为s ,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1−1)−(2x−1)]2+[(2x 2−1)−(2x−1)]2+⋯+[(2x 10−1)−(2x−1)]210=4(x 1−x)2+4(x 2−x)2+⋯+4(x 10−x)210=4s 2,因此标准差为2s=2×8=16.故选C .7.(2015安徽,理7)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+√3B .2+√3C .1+2√2D .2√2答案:B 解析:该四面体的直观图如图所示,平面ABD ⊥平面BCD ,△ABD 与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=√2.取BD 的中点O ,连接AO ,CO ,则AO ⊥CO ,AO=CO=1,由勾股定理得AC=√2,因此△ABC 与△ACD 为全等的正三角形,由三角形面积公式得,S △ABC =S △ACD =√32,S △ABD =S △BCD =1,所以四面体的表面积为2+√3.8.(2015安徽,理8)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB⃗⃗⃗⃗⃗ =2a ,AC ⃗⃗⃗⃗⃗ =2a +b ,则下列结论正确的是 ( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC⃗⃗⃗⃗⃗ 答案:D解析:在△ABC 中,BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(2a +b )-2a =b ,所以|b |=2,故A 不正确;因为AB ⃗⃗⃗⃗⃗ =2a ,所以a =12AB ⃗⃗⃗⃗⃗ ,而AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为120°,从而a ·b =12AB⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =12×2×2×cos 120°=-1,因此B,C 不正确;因为(4a +b )·BC ⃗⃗⃗⃗⃗ =(4a +b )·b =4a ·b +b 2=-4+4=0,所以(4a +b )⊥BC ⃗⃗⃗⃗⃗ ,故选D . 9.(2015安徽,理9)函数f (x )=ax+b (x+c)2的图象如图所示,则下列结论成立的是()A .a>0,b>0,c<0B .a<0,b>0,c>0C .a<0,b>0,c<0D .a<0,b<0,c<0答案:C 解析:由图象知f (0)=b c2>0,因此b>0.函数f (x )的定义域为(-∞,-c )∪(-c ,+∞),因此-c>0,c<0.而当x →+∞时,f (x )<0,可得a<0,故选C .10.(2015安徽,理10)已知函数f (x )=A sin(ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=2π3时,函数f (x )取得最小值,则下列结论正确的是( ) A .f (2)<f (-2)<f (0) B .f (0)<f (2)<f (-2) C .f (-2)<f (0)<f (2) D .f (2)<f (0)<f (-2) 答案:A 解析:由周期T=2πω=π,得ω=2.当x=2π3时,f (x )取得最小值,所以4π3+φ=3π2+2k π,k ∈Z ,即φ=π6+2k π,k ∈Z ,所以f (x )=A sin (2x +π6).所以f (0)=A sin π6=A 2>0,f (2)=A sin (4+π6)=√32A sin 4+A 2cos 4<0,f (-2)=A sin (−4+π6)=-√32A sin 4+A 2cos 4.因为f (2)-f (-2)=√3A sin 4<0, 所以f (2)<f (-2).又f (-2)-f (0)=-A sin (4−π6)−A 2=-A [sin (4−π6)+12], 因为π<4-π6<π+π6<32π, 所以sin (4−π6)>sin (π+π6)=-12, 即sin (4−π6)+12>0, 所以f (-2)<f (0).综上,f (2)<f (-2)<f (0),故选A .第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.(2015安徽,理11)(x 3+1x)7的展开式中x 5的系数是 .(用数字填写答案)答案:35解析:通项公式T r+1=C 7r x 3(7-r )x -r =C 7r x 21-4r ,由21-4r=5,得r=4,所以x 5的系数为C 74=35.12.(2015安徽,理12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是 . 答案:6解析:圆ρ=8sin θ化为直角坐标方程为x 2+y 2=8y ,即x 2+(y-4)2=16.故其圆心为(0,4),半径r=4.直线θ=π3(ρ∈R )化为直角坐标方程为y=x tan π3=√3x.故圆心到直线y=√3x 的距离d=|√3×0−4|2=2.所以圆上的点到直线y=√3x 距离的最大值为d+r=6.13.(2015安徽,理13)执行如图所示的程序框图(算法流程图),输出的n 为 .答案:4解析:当a=1,n=1时,进入循环,a=1+11+1=32,n=2;此时|a-1.414|>0.005,继续循环,a=1+11+32=1+25=75,n=3;此时|a-1.414|>0.005,继续循环,a=1+11+75=1+512=1712,n=4;此时|a-1.414|≈0.003<0.005,退出循环,因此n 的值为4.14.(2015安徽,理14)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于 . 答案:2n -1解析:设数列{a n }的公比为q ,由已知条件可得{a 1+a 1q 3=9,a 12q 3=8,解得{a 1=8,q =12或{a 1=1,q =2, 因为{a n }是递增的等比数列,所以{a 1=1,q =2.所以{a n }是以1为首项,2为公比的等比数列,故S n =2n -1.15.(2015安徽,理15)设x 3+ax+b=0,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是 .(写出所有正确条件的编号)①a=-3,b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2;⑤a=1,b=2. 答案:①③④⑤解析:方程仅有一个实根,则函数f (x )=x 3+ax+b 的图象与x 轴只有一个公共点.当a=-3时,f (x )=x 3-3x+b ,f'(x )=3x 2-3,由f'(x )=0,得x=±1,易知f (x )在x=-1处取极大值,在x=1处取极小值.当b=-3时,f (-1)=-1<0,f (1)=-5<0,满足题意,故①正确;当b=2时,f (-1)=4>0,f (1)=0,图象与x 轴有2个公共点,不满足题意,故②不正确;当b>2时,f (-1)=2+b>4,f (1)=-2+b>0,满足题意,故③正确;当a=0和a=1时,f'(x )=3x 2+a ≥0,f (x )在R 上为增函数,所以函数f (x )=x 3+ax+b 的图象与x 轴只有一个交点,故④⑤也满足题意.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)(2015安徽,理16)在△ABC 中,∠A=3π4,AB=6,AC=3√2,点D 在BC 边上,AD=BD ,求AD 的长. 解:设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c.由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC=(3√2)2+62-2×3√2×6×cos 3π4=18+36-(-36)=90,所以a=3√10. 又由正弦定理得sin B=bsin∠BACa=3√10=√1010,由题设知0<B<π4,所以cos B=√1−sin 2B =√1−110=3√1010. 在△ABD 中,由正弦定理得AD=AB·sinB sin(π−2B)=6sinB 2sinBcosB=3cosB=√10.17.(本小题满分12分)(2015安徽,理17)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,P (A )=A 21A 31A 52=310. (2)X 的可能取值为200,300,400. P (X=200)=A 22A 52=110, P (X=300)=A 33+C 21C 31A 22A 53=310, P (X=400)=1-P (X=200)-P (X=300)=1-110−310=610. 故X 的分布列为EX=200×110+300×310+400×610=350.18.(本小题满分12分)(2015安徽,理18)设n ∈N *,x n 是曲线y=x 2n+2+1在点(1,2)处的切线与x 轴交点的横坐标.(1)求数列{x n }的通项公式;(2)记T n =x 12x 32…x 2n−12,证明:T n ≥14n.(1)解:y'=(x 2n+2+1)'=(2n+2)x 2n+1,曲线y=x 2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x 轴交点的横坐标x n =1-1n+1=n n+1. (2)证明:由题设和(1)中的计算结果知T n =x 12x 32…x 2n−12=(12)2(34)2…(2n−12n)2. 当n=1时,T 1=14.当n ≥2时,因为x 2n−12=(2n−12n )2=(2n−1)2(2n)2>(2n−1)2−1(2n)2=2n−22n=n−1n, 所以T n >(12)2×12×23×…×n−1n =14n.综上可得对任意的n ∈N *,均有T n ≥14n.19.(本小题满分13分)(2015安徽,理19)如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F. (1)证明:EF ∥B 1C ;(2)求二面角E-A 1D-B 1的余弦值.(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB=DC ,所以四边形A 1B 1CD 为平行四边形.从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C. (2)解:因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB=AD ,以A 为原点,分别以AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗ 为x 轴、y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E ⃗⃗⃗⃗⃗⃗⃗ =(0.5,0.5,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),由n 1⊥A 1E ⃗⃗⃗⃗⃗⃗⃗ ,n 1⊥A 1D⃗⃗⃗⃗⃗⃗⃗⃗ 得r 1,s 1,t 1应满足的方程组{0.5r 1+0.5s 1=0,s 1−t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,0),A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E-A 1D-B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=√63. 20.(本小题满分13分)(2015安徽,理20)设椭圆E 的方程为x 2a 2+y 2b2=1(a>b>0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM|=2|MA|,直线OM 的斜率为√510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解:(1)由题设条件知,点M 的坐标为(23a,13b),又k OM =√510,从而b 2a=√510,进而得a=√5b ,c=√a 2−b 2=2b ,故e=c a=2√55. (2)由题设条件和(1)的计算结果可得,直线AB 的方程为x √5b yb=1,点N 的坐标为(√52b,−12b).设点N 关于直线AB 的对称点S 的坐标为(x 1,72),则线段NS 的中点T 的坐标为(√54b +x 12,−14b +74).又点T 在直线AB 上,且k NS ·k AB =-1,从而有 √54b+x 12√5b +−14b+74b=1,72+12b1−52b=√5,解得b=3.所以a=3√5,故椭圆E 的方程为x 245+y 29=1. 21.(本小题满分13分)(2015安徽,理21)设函数f (x )=x 2-ax+b.(1)讨论函数f (sin x )在(−π2,π2)内的单调性并判断有无极值,有极值时求出极值; (2)记f 0(x )=x 2-a 0x+b 0,求函数|f (sin x )-f 0(sin x )|在[−π2,π2]上的最大值D ; (3)在(2)中,取a 0=b 0=0,求z=b-a 24满足条件D ≤1时的最大值. 解:(1)f (sin x )=sin 2x-a sin x+b=sin x (sin x-a )+b ,-π2<x<π2.[f (sin x )]'=(2sin x-a )cos x ,-π2<x<π2. 因为-π2<x<π2,所以cos x>0,-2<2sin x<2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值.②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a<2,在(−π2,π2)内存在唯一的x 0,使得2sin x 0=a. -π2<x ≤x 0时,函数f (sin x )单调递减;x 0≤x<π2时,函数f (sin x )单调递增.因此,-2<a<2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f (a 2)=b-a 24. (2)-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x+b-b 0|≤|a-a 0|+|b-b 0|,当(a 0-a )(b-b 0)≥0时,取x=π2,等号成立.当(a 0-a )(b-b 0)<0时,取x=-π2,等号成立.由此可知,|f (sin x )-f 0(sin x )|在[−π2,π2]上的最大值为D=|a-a 0|+|b-b 0|.(3)D ≤1,即为|a|+|b|≤1,此时0≤a 2≤1,-1≤b ≤1,从而z=b-a 24≤1. 取a=0,b=1,则|a|+|b|≤1,并且z=b-a 24=1. 由此可知,z=b-a 24满足条件D ≤1的最大值为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
解析: ,∴
由题意, 为最小值, 为最大值
则 ,解得
当 时, ,选B
8.如图所示,程序框图的输出结果是()
A.7 B.8 C.9 D.10
解析:
∴当 时, ,此时 ,选D
9.某校开设5门不同的数学选修课,每位同学可以从中任选1门或2门课学习,甲、乙、丙三位同学选择的课没有一门是相同的,则不同的选法共有()
13.已知点 是 一点,且 。若 与 的面积之比为3:1,则
解析:如图所示,因为 与 的面积之比为3:1,则

,


14.已知 为钝角,若 ,则 的最小值是
解析: ,展开得


∵ 为钝角,则 ,∴
∴ ,即最小值为
15.定义: ,当 且 时, 。对于函数 定义域的 ,若存在正整数 是使得 成立的最小正整数,则称 是点 的最小正周期, 称为 的 周期点。已知定义在 上的函数 的图象如图,对于函数 ,下列说确的是(写出所有正确命题的编号)。
故 ,这与 矛盾。
当 时,直线 ,
由 ,得 ,∴
∴ ,同理
由直线 与 轴垂直,则

∵ ,∴ ,即
21.(本小题满分13分)
记曲线 图像上任一点处的切线与两坐标轴围成的三角形面积为 。
(Ⅰ)求数列 的通项公式;
(Ⅱ)若数列 的前 项和为 ,
求证: (其中 且 )。
解析:(Ⅰ) ,设切点 ,
∴切线方程为:
解析: , ; ,
∴成绩较为稳定的那位同学为乙,其方差为2
12.以平面直角坐标系的原点为极点, 轴非负半轴为极轴,建立极坐标系,两种坐标系取相同的长度单位。曲线 的参数方程为 ( 为参数),曲线 的极坐标方程为
,若 与 有两个不同的交点,则实数 的取值围是
解析:曲线 为 ;曲线 为 ,
与 有两个不同的交点,则
17.(本小题满分12分)
某商场为回馈大客户,开展摸球中奖活动,规则如下:从一个装有质地和大小完全相同的4个白球和1个红球的摸奖箱中随机摸出一球,若摸出红球,则摸球结束;若摸出白球(不放回),则向摸奖箱中放入一个红球后继续进行下一轮摸球,直到摸到红球结束。若大客户在第 轮( )摸到红球,则可获得 的奖金(单位:元)。
A.330种B.420种C.510种D.600种
解析:分三类:①甲、乙、丙三人每人都只选1门,有 种;
②三人中一人选2门,另两人选1门,有 种;
③三人中一人选1门,另两人选2门,有 种。
∴不同的选法共有330种,选A
10.已知 的三边长分别为 ,且满足 ,则 的则
令 ,得 ,令 ,得 ,
∴ ,即
(Ⅱ)证明:(1)先证





(2)再证
因为 ,由 ,得到
∵ ,且
∴ ,

由(1)证明可知 ,
∴当 且 时,
综合(1)(2)得,当 且 时,

A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件
解析:直线 与直线 平行,则
解得 ,∴是充要条件,选C
6.等差数列 的前 项和为 ,若 ,则 ()
A.28 B.21 C.14 D.7
解析:
∴ ,∴ ,选D
7.已知函数 ,若果存在实数 ,使得对任意的实数 ,都有 成立,则 的最小正值为()

则 ,得
∴ 在 上为增函数,在 上为减函数,

20.(本小题满分13分)
椭圆 的焦距为 ,且经过点
(Ⅰ)求椭圆 的方程;
(Ⅱ)经过点 分别作斜率为 、 的两条直线,两直线分别交椭圆 交于 、 两点,当直线 与 轴垂直是,求 的值。
解析:(Ⅰ)
(Ⅱ)由题意知,当 时, 点的纵坐标为0,直线 与 轴垂直,则 点的纵坐标为0
①0是 的一个 周期点;
②3是点 的最小正周期;
③对于任意正整数 ,都有 ;
④若 是 的一个 周期点,则 ;
⑤若 是 的 周期点,则 一定是 的 周期点。
解析:根据函数图象可得
∴ ,①错误; ,②正确;由函数解析式,显然③正确;由 ,当 时,即 ,解得 ,④错误;当 时, 或 ,解得 或 ,∴ ,⑤正确。
市2015年高三第二次教学质量检测
数学试题(理)
第Ⅰ卷(满分50分)
一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.复数 (其中 是虚数单位),则复数 的共轭复数 ()
A. B. C. D.
解析:
∴共轭复数 ,选A
2.若集合 ,则 ()
A. B. C. D.
(Ⅱ)平面 与底面 所成的锐二面角的大小为 ,当 时,求 的取值围。
解析:(Ⅰ)在长方体 中, ⊥平面

又∵ 为线段 的中点,由已知易得 ∽
∴ ,∴ ,
故 ,且 ,∴ ⊥平面
又 平面 ,∴平面 ⊥平面
(Ⅱ)以 为坐标原点,建立空间直角坐标系,设
则 、 、
∴ 、
设平面 的法向量为
则 ,∴ ,不妨令
∴ ,又底面 的法向量为
∴ ,两式相加得,
∴ 的取值围为 ,选B
第Ⅱ卷(满分100分)
二、填空题(本大题共5小题,每小题5分,共25分。把答案填在答题卡的相应位置)
11.甲、乙两位同学5次考试的数学成绩(单位:分),统计结果如下:
学生
第一次
第二次
第三次
第四次
第五次

77
81
83
80
79

89
90
92
91
88
则成绩较为稳定的那位同学成绩的方差为
(Ⅰ)求某位大客户在一次摸球中奖活动中至少获得2500元奖金的概率;
(Ⅱ)设随机变量 为某位大客户所能获得的奖金,求随机变量 的分布列与期望。
解析:(Ⅰ)
(Ⅱ)
∴随机变量 的分布列为
10000
5000
2500
1250
625
所以期望
18.(本小题满分12分)
长方体 中, , , 为 中点。
(Ⅰ)求证:平面 ⊥平面 ;
解析: 或
∴ ,选C
3.双曲线 的离心率是()
A. B. C. D.
解析:由双曲线方程知
∴ ,选B
4.某空间几何体的三视图如图所示(其中俯视图中的弧线为四分之一圆),则该几何体的表面积为()
A. B. C. D.
解析:由三视图可知,该几何体是底面为 圆的柱体
,选C
5.“ ”是“直线 与直线 平行”的()

又 ,∴ ,∴
∴ ,∴
19.(本小题满分13分)
已知函数 (其中 )。
(Ⅰ)若函数 在 上单调递减,数 的取值围;
(Ⅱ)设函数 的最大值为 ,当 时,求 的最大值。
解析:(Ⅰ)由
得 ,又 ,故 ,
当 时, 在 上为增函数,在 上为减函数,
∴ ,即 ,∴
当 时,不合题意
故 的取值围为
(Ⅱ)由(Ⅰ)得,当 时
∴说确的是②③⑤。
三、解答题(本大题共6个小题,共75分。解答应写出文字说明、证明过程和演算步骤)
16.(本小题满分12分)
锐角 中,角 的对边分别为 。已知 是 和 的等差中项。
(Ⅰ)求角 的大小;
(Ⅱ)若 , ,求 的取值围。
解析:(Ⅰ)由题意知:
∴ ,

∴ ,即
又 ,∴
(Ⅱ)
∵ ,∴
∴ ,即 的取值围是
相关文档
最新文档