集成电路芯片封装技术

合集下载

集成电路芯片封装技术

集成电路芯片封装技术

集成电路芯片封装技术集成电路芯片封装技术是指将芯片封装在外部封装材料之中,以保护芯片,并为其提供供电和信号传输的功能。

封装技术是集成电路制造中的关键环节,对于集成电路芯片的可靠性、电气性能和尺寸要求都具有重要影响。

下面将介绍几种常见的集成电路芯片封装技术。

第一种是无引脚封装技术。

无引脚封装技术是指将芯片直接封装在基板上,通过使用焊嘴和焊球等来连接芯片和基板。

这种封装技术的特点是结构简单、可靠性高、成本低,适用于较小尺寸的芯片。

但由于需要直接焊接,对于芯片的布线密度有一定要求。

第二种是引脚封装技术。

引脚封装技术是指将芯片焊接在引脚上,然后将引脚与基板连接。

这种封装技术可以适应不同的尺寸和布线密度要求,适用于各种集成电路芯片。

根据引脚的形式,可以分为直插式封装和表面贴装封装。

直插式封装适用于较大尺寸的芯片,而表面贴装封装则适用于较小尺寸的芯片。

第三种是球栅阵列(BGA)封装技术。

BGA封装技术是指将芯片封装在一个带有焊球的基板上,焊球与基板之间通过焊锡球形成连接。

这种封装技术具有高密度、高可靠性和良好的电性能,因此被广泛应用于高性能计算机芯片和移动设备芯片等领域。

第四种是系统级封装技术。

系统级封装技术是指将多个芯片集成在一个封装中,形成一个完整的系统。

这种封装技术可以节省空间、降低能耗,提高芯片的可靠性和性能。

系统级封装技术适用于复杂的系统芯片,如通信芯片、传感器芯片等。

除了以上几种常见的封装技术外,还有一些其他的封装技术,如三维封装技术、系统级封装技术等。

随着技术的不断发展,集成电路芯片封装技术也在不断创新,以适应日益增长的需求。

总的来说,集成电路芯片封装技术的发展对于集成电路产业的发展起着重要的推动作用,这些技术的进步将为我们带来更加高效、可靠和多样化的集成电路产品。

集成电路芯片封装技术培训课程(ppt-35页)全

集成电路芯片封装技术培训课程(ppt-35页)全

微电子技术发展对封装的要求
四、高密度化和高引脚数
高密度和高I/O数造成单边引脚间距缩短、封装难
度加大:焊接时产生短路、引脚稳定性差
解决途径:
采用BGA技术和TCP(载带)技术
成本高、难以进行外观检查等。
微电子技术发展对封装的要求
五、适应恶劣环境
密封材料分解造成IC芯片键合结合处开裂、断路
解决办法:寻找密封替代材料
Ceramic
Ceramic or
Thin Film on Ceramic
Thin Film on PWB
PWB-D
•Integration to
BEOL
•Integration in
Package level
PWB-Microation at
System level
1、电源分配:传递电能-配给合理、减少电压损耗
2、信号分配:减少信号延迟和串扰、缩短传递线路
3、提供散热途径:散热材料与散热方式选择
4、机械支撑:结构保护与支持
5、环境保护:抵抗外界恶劣环境(例:军工产品)
确定封装要求的影响因素
成本
外形与结构
产品可靠性
性能
类比:人体器官的构成与实现
微电子封装技术的技术层次
芯片,但两类芯片的可靠性和成本不同。
封装材料
芯片封装所采用的材料主要包括金属、陶瓷、
高分子聚合物材料等。
问题:如何进行材料选择?
依据材料的电热性质、热-机械可靠性、技术和
工艺成熟度、材料成本和供应等因素。
表1.2-表1.4
封装材料性能参数
介电系数:表征材料绝缘程度的比例常数,相对值,通常介
电系数大于1的材料通常认为是绝缘材料。

芯片封装技术

芯片封装技术

芯片封装技术
芯片封装技术是一项科学技术,用于将集成电路连接在一起,以实现整个系统中各部件之间的正确通信。

它可以支持电路元件在成品系统中的互连、与环境之间的界面和故障检测和维护。

芯片封装技术被广泛应用于电子行业,是低成本大规模集成电路制造的基础。

芯片封装技术包括多项技术,主要由封装表面贴装技术、封装热接技术和封装互连技术组成。

封装表面贴装技术指将封装元器件表面连接在一起,它包括直接焊接、铜布网焊接和热接技术等;封装热接技术是将封装元件和PCB进行连接,其主要技术有热封技术和半封装技术;封装互连技术是将封装元件和其他集成电路元件互连,它主要包括DSBGA、PBGA、CSP、FC-BGA等。

芯片封装技术有助于工程师和研究人员更好地设计集成电路,改善准确性、效率和可靠性。

除了上述技术外,芯片封装技术还包括封装结构、有源和无源材料、封装工艺路线、封装设备和测试等技术。

它们能够满足集成电路的多样化需求,为电子产品的开发和制作提供技术支持。

集成电路封装技术

集成电路封装技术

集成电路封装技术一、概述集成电路封装技术是指将芯片封装成实际可用的器件的过程,其重要性不言而喻。

封装技术不仅仅是保护芯片,还可以通过封装形式的不同来满足不同应用领域的需求。

本文将介绍集成电路封装技术的基本概念、发展历程、主要封装类型以及未来发展趋势等内容。

二、发展历程集成电路封装技术随着集成电路行业的发展逐渐成熟。

最早的集成电路封装形式是引脚直插式封装,随着技术的不断进步,出现了芯片级、无尘室级封装技术。

如今,随着3D封装、CSP、SiP等新技术的出现,集成电路封装技术正朝着更加高密度、高性能、多功能的方向发展。

三、主要封装类型1.BGA封装:球栅阵列封装,是一种常见的封装形式,具有焊接可靠性高、散热性好等优点。

2.QFN封装:裸露焊盘封装,具有体积小、重量轻、成本低等优点,适用于尺寸要求严格的应用场合。

3.CSP封装:芯片级封装,在尺寸更小、功耗更低的应用场合有着广泛的应用。

4.3D封装:通过将多个芯片垂直堆叠,实现更高的集成度和性能。

5.SiP封装:系统级封装,将多个不同功能的芯片封装在一起,实现更复杂的功能。

四、未来发展趋势随着物联网、人工智能等领域的兴起,集成电路封装技术也将迎来新的挑战和机遇。

未来,集成电路封装技术将朝着更高密度、更低功耗、更可靠、更环保的方向发展。

同时,新材料、新工艺和新技术的应用将为集成电路封装技术带来更多可能性。

五、结语集成电路封装技术是集成电路产业链中至关重要的一环,其发展水平直接关系到整个集成电路的性能和应用范围。

随着技术的不断进步,集成电路封装技术也在不断演进,为各个领域的技术发展提供了强有力的支撑。

希望本文能够帮助读者更好地了解集成电路封装技术的基本概念和发展趋势,为相关领域的研究和应用提供一定的参考价值。

集成电路封装技术封装工艺流程介绍

集成电路封装技术封装工艺流程介绍

集成电路封装技术封装工艺流程介绍集成电路封装技术是指将芯片封装在塑料或陶瓷封装体内,以保护芯片不受外界环境的影响,并且方便与外部电路连接的一种技术。

封装工艺流程是集成电路封装技术的核心内容之一,其质量和工艺水平直接影响着集成电路产品的性能和可靠性。

下面将对集成电路封装技术封装工艺流程进行介绍。

1. 芯片测试首先,芯片在封装之前需要进行测试,以确保其性能符合要求。

常见的测试包括电性能测试、温度测试、湿度测试等。

只有通过测试的芯片才能进行封装。

2. 芯片准备在封装之前,需要对芯片进行准备工作,包括将芯片固定在封装底座上,并进行金线连接。

金线连接是将芯片的引脚与封装底座上的引脚连接起来,以实现与外部电路的连接。

3. 封装材料准备封装材料通常为塑料或陶瓷,其选择取决于芯片的性能要求和封装的环境条件。

在封装之前,需要将封装材料进行预处理,以确保其表面光滑、清洁,并且具有良好的粘附性。

4. 封装封装是整个封装工艺流程的核心环节。

在封装过程中,首先将芯片放置在封装底座上,然后将封装材料覆盖在芯片上,并通过加热和压力的方式将封装材料与封装底座紧密结合。

在封装过程中,需要控制封装温度、压力和时间,以确保封装材料与芯片、封装底座之间的结合质量。

5. 封装测试封装完成后,需要对封装产品进行测试,以确保其性能和可靠性符合要求。

常见的封装测试包括外观检查、尺寸测量、焊接质量检查、封装材料密封性测试等。

6. 封装成品通过封装测试合格的产品即为封装成品,可以进行包装、贴标签、入库等后续工作。

封装成品可以直接用于电子产品的生产和应用。

总的来说,集成电路封装技术封装工艺流程是一个复杂的过程,需要精密的设备和严格的工艺控制。

只有通过合理的工艺流程和严格的质量控制,才能生产出性能优良、可靠性高的集成电路产品。

随着科技的不断进步,集成电路封装技术也在不断创新和发展,以满足不断变化的市场需求。

相信随着技术的不断进步,集成电路封装技术将会迎来更加美好的发展前景。

集成电路芯片封装的概念

集成电路芯片封装的概念

集成电路芯片封装的概念集成电路芯片封装的概念1. 引言集成电路芯片封装是现代电子技术中非常重要的一环。

它是将微小的芯片封装在保护性外壳中,以便保护芯片免受损坏,并提供电气连接和散热功能。

本文将深入探讨集成电路芯片封装的概念,从封装形式、封装材料、封装技术以及封装的发展趋势等多个方面展开,帮助读者更全面、深刻地了解这一关键电子技术。

2. 集成电路芯片封装的形式集成电路芯片封装有多种形式,每种形式都有不同的特点和适用范围。

常见的封装形式包括:2.1 芯片级封装(Chip-scale Package,CSP):CSP封装将芯片直接封装在微小的外壳中,尺寸比传统封装更小。

它适用于高密度集成电路和轻薄移动设备等应用。

2.2 简单封装(Dual in-line Package,DIP):DIP封装是最早的一种封装形式。

芯片被封装在具有导脚的塑料外壳中,易于插拔和焊接。

但该封装形式占用空间较大,适用于较低密度的应用。

2.3 小型封装(Small Outline Package,SOP):SOP封装是一种相对较小的封装形式,兼具DIP封装的插拔性和CSP封装的高密度特点。

2.4 超薄封装(Thin Small Outline Package,TSOP):TSOP封装比SOP封装更薄,适用于具有高密度布局的应用。

2.5 高温封装(High-Temperature Package,HTP):HTP封装在高温环境下依然能够保持电性能,适用于高温工作环境中的电子设备。

3. 集成电路芯片封装的材料3.1 塑料封装材料塑料封装材料是集成电路芯片封装中最常见的材料之一。

它具有廉价、轻便、隔热、防潮的特点,适用于大规模生产。

常见的塑料封装材料有聚酰亚胺(Polyimides)、环氧树脂(Epoxy Resin)等。

3.2 陶瓷封装材料陶瓷封装材料的热导率较高,能够较好地散热,适用于高性能和高功率的集成电路芯片。

常见的陶瓷封装材料有氧化铝(Alumina)和氮化铝(Aluminium Nitrite)等。

集成电路三大核心工艺技术

集成电路三大核心工艺技术

集成电路三大核心工艺技术集成电路(Integrated Circuit,IC)是将电子元器件(如晶体三极管、二极管等)及其元器件间电路线路集成在一片半导体晶圆上的电子器件。

它的核心工艺技术主要包括晶圆加工工艺、印刷工艺以及封装工艺。

晶圆加工工艺是指对半导体晶圆进行切割、清洗、抛光等处理,形成器件所需要的晶圆片。

其中,切割工艺是将晶体生长过程中形成的硅棒切割成特定的薄片晶圆,通常采用钻石刀进行切割。

清洗工艺则是将晶圆片进行化学清洗,以去除表面的污染物和杂质。

抛光工艺是对晶圆片进行抛光处理,以平整晶圆表面。

印刷工艺是将电子元器件的电路线路印刷在晶圆上,形成集成电路的功能电路。

其中,最常用的是光刻工艺。

光刻工艺是将光刻胶涂在晶圆上,然后通过光刻机将设计好的电路图案投射在光刻胶上,形成光刻胶图案。

然后,用化学溶液浸泡晶圆,使得光刻胶图案中的未暴露部分被溶解掉,形成电路图案。

此外,还有电子束曝光和X射线曝光等印刷工艺。

封装工艺是将半导体芯片密封在封装盒中,以保护芯片,并方便与外部连接。

常用的封装工艺有直插封装、贴片封装和球栅阵列封装(BGA)等。

其中,直插封装是通过铅脚将芯片插入插座中,然后通过焊接来固定芯片。

贴片封装是将芯片贴在封装基片上,然后通过焊接或导电胶来连接芯片和基片。

球栅阵列封装是将芯片翻转面朝下,焊接在基片上,并通过小球连接芯片和基片。

总结来说,集成电路的核心工艺技术主要包括晶圆加工工艺、印刷工艺以及封装工艺。

通过这些工艺,我们能够制造出高度集成、小型化的集成电路,为电子产品的发展提供了强大的支持。

随着科技的不断进步,集成电路的工艺技术也在不断发展,为我们的生活带来越来越多的便利和创新。

集成电路中的封装技术研究

集成电路中的封装技术研究

集成电路中的封装技术研究随着电子技术的不断发展,集成电路已经成为了今天信息化的基础。

集成电路中的封装技术在这一领域中发挥着至关重要的作用,不仅能够对芯片进行保护,同时也能够提高芯片的稳定性和可靠性。

本文将对集成电路中的封装技术进行深入研究,探究其原理、应用及未来发展趋势。

一、封装技术的原理集成电路封装技术是将一个或多个芯片、器件和元件等有机地结合成一个整体,以便于用于电子系统中,同时也能够对芯片进行保护。

封装技术可以分为塑封、金属封装、无铅封装、骨架式封装等,主要根据芯片大小、功耗、工艺和成本等因素来选用。

塑封是目前最常使用的集成电路组装和封装技术。

其原理是在硅芯片表面粘合一张具有安装封装引脚或焊脚的导体层,然后把芯片放入带针的封装口中,在打压、封装成型、回焊等工艺制程中,将导体层和芯片连接,封装成形。

这种技术成本低廉,生产效率高,成品稳定性也较为可靠。

二、封装技术的应用集成电路封装技术在电子产品制造中有着广泛的应用。

例如,智能手机、平板电脑、摄像头、芯片等优质电子器件中都使用了高性能的集成电路封装技术,使得在体积和性能方面都有了较大的提升。

在电子产品制造中,集成电路封装技术的应用还具有较强的实际意义。

当今社会信息化程度不断提高,它的应用范畴已经扩展到通讯、自动控制、图像处理、卫星遥感等行业。

在其中,封装技术的要求越来越高,例如,要求设备具有更高的速度、更小的尺寸和更低的功耗等。

无疑,集成电路封装技术在提高工效、降低成本、提高产品质量等方面发挥着巨大的作用。

三、封装技术发展趋势封装技术的未来发展也是值得关注的。

在未来的发展趋势中,封装技术具有更高的集成度、更高的可靠性和更低的功耗等优势。

例如,目前智能手机和平板电脑的芯片在进行封装时,采用了三维集成技术和超薄环形封装技术,减小了尺寸,重量和电气连接间的噪音,同时加强了信号的稳定性和可靠性。

另外,随着3C市场迅速发展,集成电路封装市场也在不断扩大,其中3D芯片封装市场的势头愈发强劲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型填空20题40分简答7题35分论述2题25分第一章集成电路芯片封装技术1.集成电路的工艺流程:设计-单晶材料-芯片制造-封装-检测2..集成电路芯片狭义封装是指利用(膜技术)及(微细加工技术),将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构成整体结构的工艺。

3.芯片封装所实现的功能:①传递电能,②传递电路信号,③提供散热途径,④结构保护与支持。

4.在选择具体的封装形式时主要考虑四种主要设计参数:性能,尺寸,重量,可靠性和成本目标。

5.集成电路封装的层次分为四级分别为模块元件(Module)、电路卡工艺(Card)、主电路板(Board)、完整电子产品。

封装工程的技术的技术层次?第一层次,又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定、电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层次的组装进行连接的模块元件。

第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。

第三层次,将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部件或子系统的工艺。

第四层次,将数个子系统组装成为一个完整电子产品的工艺过程。

6.封装的分类,按照封装中组合集成电路芯片的数目,芯片封装可分为:单芯片封装与多芯片封装两大类,按照密封的材料区分,可分为高分子材料和陶瓷为主的种类,按照器件与电路板互连方式,封装可区分为引脚插入型和表面贴装型两大类。

依据引脚分布形态区分,封装元器件有单边引脚,双边引脚,四边引脚,底部引脚四种。

7.芯片封装所使用的材料有金属陶瓷玻璃高分子材料8.集成电路的发展方向主要表现在以下几个方面?1芯片尺寸变得越来越大2工作频率越来越高3发热量日趋增大4引脚越来越多对封装的要求,1小型化2适应高发热3集成度提高,同时适应大芯片要求4高密度化5适应多引脚6适应高温环境7适应高可靠性(在书12-13页,论述题要适当扩充)第二章封装工艺流程1.封装工艺流程一般可以分为两个部分,成型技术之前的工艺步骤称为前段操作,在成型之后的工艺步骤称为后段操作,前后段操作的区分标准在于对环境洁净度的要求不同2.芯片封装技术的基本工艺流程硅片减薄硅片切割芯片贴装,芯片互联成型技术去飞边毛刺切筋成型上焊锡打码等工序3.先划片后减薄:在背面磨削之前将硅片正面切割出一定深度的切口,然后再进行背面磨削。

4.减薄划片:在减薄之前,先用机械或化学的方式切割处切口,然后用磨削方法减薄到一定厚度之后采用ADPE腐蚀技术去除掉剩余加工量实现裸芯片的自动分离。

5.芯片贴装的方式四种:共晶粘贴法,焊接粘贴法,导电胶粘贴法,和玻璃胶粘贴法。

6. 芯片互连:将芯片焊区与电子封装外壳的I/O或基板上的金属布线焊区相连接,只有实现芯片与封装结构的电路连接才能发挥已有的功能。

7.芯片互连常见的方法有,打线键合,载带自动键合(TAB)和倒装芯片键合。

8. 打线键合(WB):将细金属线或金属带按顺序打在芯片与引脚架或封装基板的焊垫上形成电路互连。

打线键合技术有超声波键合、热压键合、热超声波键合。

载带自动键合(TAB):将芯片焊区与电子封装外壳的I/O或基板上的金属布线焊区用具有引线图形金属箔丝连接的技术工艺。

倒装芯片键合(FCB):芯片面朝下,芯片焊区与基板焊区直接互连的一种方法。

9.打线键合技术有,超声波键合,热压键合,热超声波键合。

10打线键合的材料主要是Al和Au。

11.TAB的关键技术:1芯片凸点制作技术2 TAB载带制作技术3载带引线与芯片凸点的内引线焊接和载带外引线焊接技术。

12. 芯片上的凸点,实际上包括凸点及处在凸点和铝电极之间的多层金属膜(Under Bump Metallurgy),一般称为凸点下金属层,主要起到粘附和扩散阻挡的作用13.凸点芯片的制作工艺主要有蒸发溅射法、电镀法、置球与模板印刷法。

第三章厚/薄膜技术1.厚薄膜技术的异同:两者主要的区别包括:1.原材料不同:厚膜工艺需要制作有效物质的浆料,需要掺杂其他物质以保持浆料良好的流动性与粘附性。

而薄膜工艺用的是纯净的有效物质。

2.镀膜工艺不同:厚膜工艺主要用涂布的方法在基底上成膜,工艺简单,但是需要后续的干燥与烧结处理,薄膜工艺主要利用的是蒸发溅射以及电镀等方法成膜,工艺复杂,但是膜一次性成型,无需后续处理。

3.形成图形的方法不同:厚膜技术主要利用的是丝网印刷法来形成图形,薄膜技术主要利用的是光刻技术来形成图形,一个完整的光刻流程包括涂胶-曝光-显影-刻蚀-去胶。

2.厚膜浆料通常由两种不同的组分相组成,一个是功能相,提供最终膜的电学和力学特性,另一个是载体相,提供合适的流变能力。

3.传统的金属陶瓷厚膜浆料具有四种主要成分,1有效物质,确立膜的功能,2粘贴成分,提供与基板的粘贴以及使效物质颗粒保持悬浮状态的基体3有机粘贴剂,提供丝网印制的合适流动性能。

4溶剂或稀释剂,他决定有机粘贴剂的粘度。

4.浆料中的有效物质决定了烧结膜的电性能,如果有效物质是一种金属,则烧结膜是一种导体,如果有效物质是一种绝缘材料,则烧结膜是一种介电体。

5.厚膜导体材料有三种基本类型:可空气烧结的导体、可氮气烧结的导体和须还原气氛烧结的导体6.厚膜电阻主要是把导体颗粒(主要是金属氧化物RuO2)和绝缘体(主要是玻璃)颗粒混合,在足够的温度和时间条件下进行烧结,促使玻璃熔化将氧化物颗粒烧结在一起并嵌入在玻璃基体中。

金属氧化物与玻璃之比越高,烧成的膜电阻率越低。

7.绝缘体主要包括高介电常数与低介电常数两大类,前者主要用于大电容器,后者用来做表面钝化、多层布线绝缘层以及低容量电容器。

8.溅射法的实现原理:利用被电场加速的高能粒子轰击靶材,撞击出具有足够动能的靶材粒子,使其运动到达基板并黏附其上。

高能粒子主要用的是Ar粒子,关键是使Ar气形成良好的等离子体状态,靶材放置在阴极位置。

第四章焊接材料2..焊料按照熔点分为两类:硬质焊料,熔点高于450度,硬质焊料的突出特点是热膨胀系数低;低于450度,软质焊料。

3.最常用的焊料是铅锡合金,而铅锡组分不同,焊料特性不同,而共晶组分下的铅锡合金熔点最低。

4.锡焊是通过“润湿”、“扩散”、“冶金结合”三个过程来完成的。

熔化了的焊料借助毛细管力沿着母材金属表面细微的凹凸及结晶的间隙向四周漫流,从而在被焊母材表面形成一个附着层,使焊料与母材金属的原子相互接近,达到原子引力起作用的距离,我们称这个过程为熔融焊料对母材表面的润湿。

如何判别润湿? 一般是用附着在母材表面的焊料与母材的接触角θ来判别,扩散是指熔化的焊料与母材中的原子互相越过接触界面进入对方的晶格点阵。

由于焊料与母材互相扩散,在两种金属之间形成一个中间层---金属间化合物,从而使母材与焊料之间达到牢固的冶金结合状态焊接的过程是:焊料先对金属表面产生润湿,伴随着润湿现象发生,焊料逐渐向铜金属扩散,在焊料与铜金属的接触界面上生成合金层,使两者牢固结合起来。

5.助焊剂的成分:活化剂、载剂、溶剂与其他特殊功能的添加物。

活化剂为具有腐蚀性的化学物质。

第五章印制电路板1.印制电路版的制作主要包括三个部分:绝缘介质层、导电互联层以及通孔制作。

2.Cu为印制电路板最常见的导体材料。

绝缘体材料包括高分子树脂与玻璃纤维强化材料。

3.目前电子产品装配行业中最主要的电路板有硬式印制电路板、软式印制电路板、金属夹层板、射出成型板等。

4.多层PCB基板为了避免多层布线的层间干扰,特别是高频下的层间干扰,两层间的走线应互相垂直,此外,电源层应布置在内层,这样防止外界对电源的扰动,也避免了电源线走线过长而干扰信号的传输。

第五章元器件与电路板的接合1.引脚与电路板的接合可分为引脚插入式接合和表面贴装技术接合2.在插装装配中,元器件引脚与电路板上的导孔结合常见的方式有弹簧固定和针脚的焊接。

3. 波峰焊:波峰焊的工艺流程包括上助焊剂、预热以及将PCB板在一个焊料波峰上通过,依靠表面张力和毛细管现象的共同作用将焊剂带到PCB板和元器件引脚上,形成焊接点。

波峰焊是将熔融的液态焊料,借助于泵的作用,在焊料槽液面形成特定形状的焊料波,装了元器件的PCB置于传送链上,经某一特定的角度以及一定的进入深度穿过焊料波峰而实现焊点的焊接过程。

再流焊:是通过预先在PCB焊接部位施放适量和适当形式的焊料,然后贴放表面组装元器件,然后通过重新熔化预先分配到印制板焊盘上的焊膏,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的一种成组或逐点焊接工艺。

4.波焊最常见的缺陷是漏焊和架桥短路第八章陶瓷封装1.氧化铝为陶瓷封装最常用的材料,其他重要的陶瓷封装材料:氮化铝、氧化铍、碳化硅、玻璃与玻璃陶瓷、蓝宝石2.纯氧化铝热膨胀系数与导体材料的热膨胀系数差异性大,此外纯氧化铝的烧结温度高达1900度,所以需要在氧化铝中添加玻璃粉末,目的包括:⑴调整纯氧化铝的热膨胀系数、介电系数等特性⑵降低烧结温度。

第九章塑料封装1.塑料材料通常分为热固性聚合物和热塑性聚合物两种。

热固性和热塑性聚合物的区别?热塑性聚合物:在受热时发生软化或熔化,可塑制成一定的形状,冷却后又变硬。

在受热到一定程度又重新软化,冷却后又变硬,这种过程能够反复进行多次。

热固性聚合物:热固性塑料第一次加热时可以软化流动,加热到一定温度,固化而变硬,这种变化是不可逆的此后,再次加热时,已不能再变软流动了。

塑料封装是最常用的封装方法。

2.塑料封装可利用转移铸膜、轴向喷洒涂胶与反应射出型等方法制成,其中转移铸膜是最常见的塑料封装密封工艺。

3.塑料封装优点:低成本、薄型化、工艺简单、适合自动化生产、应用范围极广缺点:散热性、耐热性、密封性不好、可靠性不高第九章气密性封装1.塑料封装是非气密性封装,金属与陶瓷封装为气密性封装。

2.在外来环境的侵害中,水汽是引起IC芯片损坏的最主要因素。

第十一章封装可靠性工程1.芯片完成封装后要进行检测,一般情况下要进行质量和可靠性两方面的检测。

2.封装可靠性工程主要是通过人为模拟高热、高水蒸气和高压环境来加速可靠性测试。

第十三章先进封装技术BGA,球栅阵列,是在基板下面按阵列方式引出球形引脚WLP,晶圆级封装,先对整个晶圆进行封装,然后再划片,主要用到引脚再分布技术。

三维封装,是多芯片封装的一种,此前的多芯片封装芯片在二维平面上排列,三维封装芯片在三维立体空间内排列,关键技术是芯片减薄、TSV硅通孔制作以及通孔填充导电材料。

相关文档
最新文档