问题解决的策略
解决问题的策略

解决问题的策略(1)知识点:1.用倒过来推想的策略解决问题2.用替换的策略解决问题3.用假设的策略解决问题4.用转化的策略解决问题一.用倒过来推想的策略解决问题在解决实际问题的过程中,学会用倒过来推想的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效的解决问题。
2.提高解决特定问题的价值,进一步发展分析,综合和简单推理能力。
例1:40个同学分成了两组做游戏,如果从第一组调4人到第二组,那么两组的人数就相等了。
原来的两组各有多少人?根据题意,解决这个问题的关键有两点:1,是根据给出的条件计算出现在两组各有多少人;二是从现在两组各有的人数,倒过来推算出原来两组各有多少人?【完全解答】40=÷(个)22020+4=24(个)第一组20-4=16(个)第二组答:原来的第一组有24人,第二组有16人。
举一反三:1:小红和小明共有16张邮票,如果小红给小明2张,那么两人的邮票同样多,原来两人各有多少张?2:甲乙丙三堆黄沙共72吨,如果甲堆,乙堆各给6吨给丙堆,三堆就同样重了,原来的甲乙丙各有黄沙多少吨?例2:车上原来有一些乘客,到和平桥站下去了12人,到十字街站又上来了17人,现在车上共有52人,车上原来有多少人?思路:现在车上共有52人--->十字街站没有上来17人—>和平桥站没有下去12人——>原来有多少人?【完全解答】52-17+12=47人。
答:车上原有47人。
举一反三:1.三(7)班图书角有一些书,先被同学们借出了8本,后来又被借出了26本,这时还剩24本,图书角原来多少本书?2.商场有一些电视机,上午售出总数的一半多10台,还剩200台,商场原有电视机多少台?二.用替换的策略解决问题1,学会用替换的策略理解题意,分析数量关系,并能根据问题的特点确定合理的解题步骤。
知识点1:两个量是倍数关系的替换例1:买1张桌子和4把椅子共用去120元,已知一把椅子的价钱是1,求每把桌子和每把椅子各多少元?一张桌子的21,可以把1张桌子的价方法一:根据1把椅子的价钱是一张桌子的2钱替换成2把椅子的价钱,如果120元全部买椅子,可以买(2+4)把椅子,每把椅子的价钱是120÷6=20(元),每张桌子的价钱是20⨯2=40(元)1,可以把4把椅子的钱方法二:根据1把椅子的价钱是1张桌子的2替换成2把桌子的价钱,如果120元全部买桌子,可以买(1+2)把,每张椅子的价钱是120÷3=40(元),每把椅子的价钱是402÷=20(元)思路:根据一把椅子和一把桌子的价钱关系进行替换,两个量是倍数关系的替换,总量没有变。
10种有效应对常见问题的策略

10种有效应对常见问题的策略有效应对常见问题的策略在生活和工作中,我们经常会遇到各种问题和困难。
有些问题可能是常见的,但我们仍然需要找到合适的策略来解决它们。
下面将介绍10种有效应对常见问题的策略,希望对你有所帮助。
1. 态度积极乐观积极乐观的态度是解决问题的第一步。
当面临困难时,保持一颗积极的心态,相信自己能够克服困难,这将帮助你更好地应对问题。
2. 分析问题原因了解问题的原因是解决问题的关键。
当遇到问题时,不要急于采取行动,而是先深入分析问题的根源。
只有找到问题的根本原因,才能制定出更有效的解决方案。
3. 制定明确的目标在解决问题之前,制定明确的目标非常重要。
明确的目标可以帮助你更好地集中注意力和资源,从而更有针对性地解决问题。
4. 寻求帮助和建议当遇到问题时,不要害怕寻求他人的帮助和建议。
身边的朋友、家人或专业人士可能会提供有价值的意见和解决方案。
与他人分享问题,可以获得不同的观点和思路。
5. 制定详细的解决方案制定详细的解决方案是解决问题的关键步骤。
将问题分解为小的可行步骤,并为每个步骤制定具体的行动计划。
这将帮助你更好地组织和管理解决问题的过程。
6. 接受变化和调整在解决问题的过程中,你可能需要做出一些调整和变化。
接受变化,并灵活地调整你的计划和策略,以适应新的情况。
不要固执地坚持原来的方案,而是根据实际情况做出相应的改变。
7. 学会从失败中学习在解决问题的过程中,可能会遇到失败和挫折。
然而,失败并不意味着你无法解决问题。
相反,将失败视为学习的机会,从中吸取教训,不断改进和完善解决方案。
8. 保持耐心和毅力解决问题可能需要时间和耐心。
不要急于求成,保持耐心和毅力,坚持不懈地努力解决问题。
相信自己的能力和坚持,最终你将找到解决问题的方法。
9. 培养创造力和灵活性创造力和灵活性是解决问题的重要因素。
培养创造力,寻找不同的解决方案和思路。
同时,保持灵活性,适应不同的情况和变化,找到最适合的解决方案。
解决问题的策略六种方法

解决问题的策略六种方法
1.沟通协商:通过双方协商达成一致,共同解决问题。
双方可以利用沟通和协商的方式及时发现问题,在周密的沟通下也可以找出解决方案,从而达到双方满意的解决方案。
2.问题分析:进行初步的问题分析,找出问题的根本原因,对根本原因进行深挖,从而找出解决方案。
3.联络专家:在解决疑难问题时,可以请教专家的建议,专家可以根据公司的特殊情况,及时出现有效的解决方案。
4.联合协作:将双方的解决方案进行整合,把需要解决的问题进行统一,从而达到双方都能满意的解决方案。
5.寻求第三方:在解决问题时,可以请教第三方的专业意见,第三方专业人士可以帮助双方拓展思路,及时找出解决方案。
6.试错法:解决棘手的问题,可以采取多次试错的方法,及时找出有效的解决方案。
解决问题的有效策略总结

解决问题的有效策略总结在生活和工作中,我们时常会面临各种各样的问题。
无论是小到日常琐事还是大到重要决策,解决问题是我们不可避免的任务。
然而,有效解决问题并不仅仅是一个技巧,更是一种思维方式和态度。
以下是我总结的一些解决问题的有效策略。
1. 确定问题的本质在解决问题之前,我们需要先准确地确定问题的本质。
问题往往是表象,而深层的根本问题可能隐藏在其中。
我们应该逐步追溯问题的源头,找出问题的关键原因。
只有明确了问题的本质,才能有针对性地采取策略进行解决。
2. 创造性思维解决问题需要创造性思维,即超越传统方式和固定思维模式,寻求新的解决方案。
我们可以通过思维导图、头脑风暴等方式来激发创造力,尝试从不同的角度和思路来思考问题。
同时,尽量不受限于过去的经验和既定观念,勇于尝试新的方法和理念。
3. 资料收集和分析在解决问题之前,我们需要进行充分的资料收集和分析。
通过查阅书籍、互联网资料、采访专家等途径,收集相关信息。
然后,对这些信息进行系统性和全面性的分析,找出其中的规律和关联。
这样做可以帮助我们更好地理解问题,并为解决问题提供有力的依据。
4. 模拟和试验当我们确定了解决问题的方案后,可以进行模拟和试验。
通过模拟和试验,我们可以验证我们的方案是否可行,并及时发现其中的问题和不足。
在模拟和试验的过程中,我们要保持开放的心态,及时调整和改进方案,提高解决问题的效果。
5. 团队合作有些问题是需要集体智慧和力量来解决的。
在面对困难和复杂问题时,我们应该主动寻求他人的帮助和意见,组建一个高效的团队。
团队成员可以根据各自的专长和经验,提供不同的解决思路和方法。
通过团队合作,我们可以更快速、更全面地解决问题。
6. 目标明确和计划实施在解决问题之前,我们必须明确解决问题的目标,并制定相应的计划。
明确目标可以帮助我们更加有针对性地采取行动,而计划则提供了清晰的步骤和时间安排。
在执行计划的过程中,我们要时刻关注目标的实现情况,并及时调整计划,确保问题得到及时、有效的解决。
常用的解决问题的策略有哪些

常用的解决问题的策略有哪些一、画图的策略。
由于小学生认知水平的限制,他们对符号的性质和运算的推理可能会有困难。
解题时,引导他们在纸上画画,画一幅画,可以拓展解题思路,找到解题的关键,了解解题的方法。
所以,画图应该是学生应该掌握的一个基本解题策略,尤其是对于用算术解题的小学生。
为什么画画的策略很重要?主要是因为这种方法直观、形象,可以帮助学生把抽象的数学问题具体化,把复杂的问题简单化。
可以弥补小学生思维能力的不足,逐步提高思维水平。
常见的绘制方法有:直观、线段、示意图、思维导图、集合图等。
二、推理的策略。
数学教学的价值追求是学生思维的发展,数学教育的最高境界是培养人的思维方式。
推理是数学中的基本思维方式,也是学生在数学学习中经常使用的思维方式。
推理包括合理推理和演绎推理。
合理的推理是根据已有的事实,依靠经验和直觉,通过归纳和类比得出一些结果。
演绎推理基于定义、公式、规则等。
,来证明和计算。
在小学数学问题解决的过程中,更多采用合情推理。
比如常用的假设法、设数法等。
以往数学教学中常说的“分析法”与“综合法”,都是简单的推理。
三、尝试调整的策略。
尝试的策略简单来说就是当你不知道从哪里开始的时候,你可以先猜一猜。
如果猜测的结果合理但不符合要求,那就把结果放到问题中去考虑,进一步调整,找到答案。
小学数学学习中常用的表格法、枚举法、筛选法,其实都是尝试调整的策略。
比如我们在解决鸡兔同笼的问题时,用鸡兔的数量来计算对应的腿数,就是这个策略。
四、模拟操作的策略。
模拟操作是通过探索性的动手操作活动,模拟问题情境来解决问题的策略。
通过这种策略的训练,可以培养学生的创造性思维。
例如,在解决火车过桥问题时,让学生用铅笔盒当桥,用自己的笔当火车,自己模拟火车过桥。
通过对类似问题的模拟,直观地展示了这种不清晰的数量关系,这种问题很容易理解和解决。
当然,解决问题的策略有很多,而在解决一个问题的时候,往往是各种策略的综合运用。
我们在解决问题时,要注意渗透解决问题的策略,进而逐步提高学生解决问题的能力。
解决问题的策略(从问题想起)课件

反馈意见
向上级领导反馈工作建议和改进意见,促进工作 改进。
与相关利益方沟通
1 2
了解需求
了解相关利益方的需求和期望,确保解决方案满 足其要求。
建立关系
与相关利益方建立良好的合作关系,促进沟通和 合作。
3
协调利益
在解决方案中协调各方利益,寻求共同点,达成 共识。
。
时间周期
评估解决方案的执行时间是否 符合预期,是否能够在规定时
间内完成。
风险控制
评估解决方案可能带来的风险 和不确定性,是否有有效的风
险控制措施。
进行效果评估
实施过程监控
对解决方案的实施过程进行监控, 确保按照预定的计划和步骤进行。
效果跟踪
对解决方案的效果进行跟踪和评 估,了解解决方案的实际效果和
监控实施过程
定期检查进度
在实施过程中,定期检查 进度,了解实施情况,确 保按计划进行。
及时解决问题
在实施过程中遇到问题时, 及时分析原因,采取有效 措施解决问题,确保实施 过程顺利进行。
调整实施计划
根据实际情况,对实施计 划进行必要的调整,以适 应变化的需求和情况。
调整方案和计划
反馈调整
根据监控实施过程的结果和反馈, 对解决方案和实施计划进行必要 的调整,以提高实施效果。
影响。
反馈调整
根据效果评估结果,对解决方案 进行必要的调整和优化,以提高
效果。
总结经验和教训
成功经验
01
总结解决方案实施过程中的成功经验,分析其原因和可复制性。
失败教训
02
分析解决方案实施过程中的失败教训,找出问题所在和改进方
向。
问题解决中几种常用的策略

问题解决中几种常用的策略1、画图策略画图解题策略是指:我们在解题过程中,运用画图的方式,画出与题意相关的图形或图案,借以帮助我们观察、推理、思考,是解决数学问题的一种手段。
解题时,根据题的内容画图,把题的条件、问题在图上标明,这样有助于我们正确审题,理解题意,从而正确解题,提高我们分析和解决问题的能力。
画图策略主要应用于分析问题和解决问题中。
在分析问题中,画图策略主要是指用图把问题进行表征,从而把抽象的数量关系直观化。
在解决问题中,画图策略主要是指利用图形直观,从而搜寻到解决问题的思路和方法。
画图策略中的图,除了大家熟悉的线段图,还包括学生运用自己的方式给出的图形表征,如实物图、示意图、统计图等。
结合不同的内容画不同的图,常用的图有:平面图、立体图、分析图、线段图、表格图和思路图等。
例题:求是一块长方形纸板长10厘米,宽4厘米,请你能剪下一块最大的半圆后剩下纸板料的面积.分析(1)根据长方形内最大的半圆的半径特点可知:这个半圆的半径是4厘米,由此即可在图中画出这个半圆,(2)剩下的纸板料的面积就等于长方形的面积减去半圆的面积,由此利用长方形和圆的面积公式即可解答.解:(1)观察图形可知,半圆的半径是4厘米,由此以长方形的一条长的中点为圆心,以4厘米为半径,在这个长方形纸板上画出这个半圆如图所示:;(2)10×4-3.14×42÷2,=40-25.12,=14.88(平方厘米),答:剩下的纸板的面积是14.88平方厘米.点评:此题考查了长方形内最大的半圆的画法以及长方形与圆的面积公式的灵活应用2.列表尝试策略列表的策略,有时候我们也叫列举信息的策略。
在解决问题的过程当中,我们将问题的条件信息用表格的形式把它列举出来,往往能对表征问题和寻求问题解决的方法,起到事半功倍的效果。
例如仓库里有如下几种规格的长方形、正方形铁皮:(1)长0.6米,宽0.3米;(2)长0.6 米,宽0.5米;(3)长0.5米,宽0.3米;(4)边长0.3米。
问题解决的阶段、策略以及影响因素——学习材料

一、问题解决的阶段问题解决主要有四个阶段:1.提出问题问题就是矛盾,提出问题的过程也就是发现矛盾的过程。
在日常生活工作中,处处有矛盾,不断地解决这些矛盾,是人类社会生活发展的需要。
将这些社会需要转化为个人思维任务,就是问题的提出。
2.明确问题明确问题就是分析问题,暴露矛盾,找出主要矛盾的过程。
具体而言就是知道有问题,知道哪里有问题,有什么问题等等。
3.提出假设提出假设就是从当前问题的分析出发,首先假设解决问题的原则、途径和方法,在对之进行分析论证之后,再进行实施的过程。
4.检验假设这是解决问题的最后一步。
检验假设有两种方法:一是实际行动,即按照假设去一步步解决问题。
二是进行推论,即用思维活动来检验假设。
二、问题解决的策略问题解决的策略主要是指问题解决的一般途径与方法。
人们解决问题一般有两种策略:算法式策略和启发式策略。
1.算法式策略算法式策略是指按照解决问题的各种可能性逐个去尝试,最终找到答案的方式。
例如,一个保险箱上有4个转钮,每个转钮有0~9十个数字。
要找到密码,就要逐个尝试4个数字的随机组合,这需要相当长的时间。
2.启发式策略启发式策略是指人们根据规律或已有的知识、经验和窍门解决问题的方式。
启发式策略常用的具体策略如下:(1)搜索策略搜索策略的特点是,问题解决者在到达目标状态的进程中要通过许多决策点。
下棋就是一个例子,每走一步都要作出决策,沿着正确的途径连续成功地作出正确的决策,最后,才能成功解决问题。
解下边的算式任务要求:1.把字母换成数字2.字母换成数字后,下面一行数字答案必须等于第一行和第二行之和。
答案:T=0 E=9 A=4 R=7 L=8 G=1 N=6 B=3 O=2案例展示对这一问题的解答就需要根据要求一步一步地搜索出每个字母代表的数字,然后做出正确的决策,从而解出问题。
(2)目的——手段分析目的——手段分析是指人们认识到当前问题与所要达到的目标存在着差异,把要解决的问题划分为一系列子目标,通过逐个解决子目标而缩小问题空间,减小差异,从而最终解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题解决的策略
问题解决的策略包括算法式和启发式策略两类。
这个知识点教师招聘考试中主要是以客观题的形式来考,主要考查启发式策略下的几个策略的理解以及学生对于问题解决的策略中启发式策略例子性选择题的把握。
首先来看一下概念:
(一)算法式策略
算法式策略是把所有能够解决问题的方法都一一尝试,最终找到解决问题答案的策略。
(二)启发式策略
启发式策略是运用已有的知识经验,在问题空间内只做少量的搜索就能解决问题的策略。
它又包括:
1.手段-目的分析
把需要达到的问题目标状态分成若干子目标,通过实现一系列的子目标最终达到总目标的策略。
例如:河内塔问题、问题行为图。
2.逆向搜索
从问题的目标状态开始搜索,直到找到通往初始状态的通路或方法。
例如:几何问题的反证法。
3.爬山法
采用一定的方法逐步降低初始状态和目标状态的距离,以达到解决问题的一种方法。
该方法的缺点是容易较佳的方案当成最优的方案。
例如:确定新药的药剂量问题。
4.选择性搜索
选择性搜索就是在解决问题时,根据已知的信息和某些有关规则,选择问题解决的突破口,从突破口中获取更多的信息,以便进一步搜索,直到问题解决。
选择性搜索在解决问题时是一种很有效的策略,因为这种方法是从已知条件中搜索出更能接近问题解决答案的方法,从而消除了大量的盲目尝试。
例如:根据所给条件解决问题。
5.类比-迁移策略
类比迁移策略是指把个体先前解决问题的经验应用到解决新问题的策略。
这是解决不熟悉问题的一种策略。
类比迁移策略中有两类事务有助于问题解决:基础相似物和目标相似物,该方法的缺点是可能受定势的影响,导致多次尝试也无法解决问题。
例如:把解决“将军问题”的方法用到解决“肿瘤问题上”。
注意:同学们应该注意区分爬山法和手段—目的分析,后者可以暂时远离、扩大目标与初始状态之间的差异,而爬山法则不行。
关于启发式记忆口诀:“守墓逆向爬山选搜雷倩”。
练习题:
(一)单选题
1.以下能够保证问题解决的策略是( )。
A.算法式策略
B.启发式策略
C.爬山发
D.选择性搜索
1.【答案】A。
解析:算法式策略是把所有问题解决的策略一一进行尝试直到问题解决,因此算法式能够保证问题的解决;而启发式策略是在已有知识经验的基础上进行的,如果头脑中没有相关经验,就不能解决问题;爬山法和选择性搜索是启发式策略的一种。
故选A。
2.学生在解决几何问题时往往采用反证法,请问学生采用的解决问题的策略是( )。
A.手段—目的分析法
B.逆向搜索
C.选择性搜索
D.类比—迁移策略
2.【答案】B。
解析:逆向搜索是从问题的目标状态开始搜索,直到找到通往初始状态的通路或方法,几何问题反证法就是把要证明的结果当做已知条件进行反推的方法。
故选B。
(二)多选题
以下属于启发式策略方法的是( )。
A.算法式
B.手段—目的分析
C.爬山法
D.逆向搜索
【答案】BCD。
解析:启发式策略包括:手段—目的分析、逆向搜索、爬山法、选择性搜索和类比—迁移策略。
故选BCD。