5第五章 一元线性回归的假设检验
【计量经济学】第五章精选题与答案解析

第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。
2.产生异方差的经济背景是什么?检验异方差的方法思路是什么?3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。
4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。
三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+=e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。
研究的目的是确定国防支出对经济中其他支出的影响。
(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。
(4)变换后的回归方程是否一定要通过原点?为什么? (5)能否将两个回归方程中的R ²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’ Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。
第五章线性回归模型的假设与检验

⎟⎟⎠⎞
于是
βˆ1 = ( X1′X1)−1 X1′y1 , βˆ2 = ( X 2′ X 2 )−1 X 2′ y2
应用公式(8.1.9),得到残差平方和
和外在因素.那么我们所要做的检验就是考察公司效益指标对诸因素的依赖关系在两个时间 段上是否有了变化,也就是所谓经济结构的变化.又譬如,在生物学研究中,有很多试验花费 时间比较长,而为了保证结论的可靠性,又必须做一定数量的试验.为此,很多试验要分配在 几个试验室同时进行.这时,前面讨论的两批数据就可以看作是来自两个不同试验室的观测 数据,而我们检验的目的是考察两个试验室所得结论有没有差异.类似的例字还可以举出很 多.
而刻画拟合程度的残差平方和之差 RSSH − RSS 应该比较小.反过来,若真正的参数不满足
(5.1.2),则 RSSH − RSS 倾向于比较大.因此,当 RSSH − RSS 比较大时,我们就拒绝假设(5.1.2),
不然就接受它.在统计学上当我们谈到一个量大小时,往往有一个比较标准.对现在的情况,我
们把比较的标准取为 RSS .于是用统计量 (RSSH − RSS) RSS 的大小来决定是接受假设
(5.1.2),还是拒绝(5.1.2). 定理 5.1.1 对于正态线性回归模型(5.1.1)
(a )
RSS
σ2
~
χ2 n− p
(b )
若假设(8.1.2)成立,则 (RSSH
− RSS)
σ2
~
χ2 n− p
得愈好.现在在模型(5.1.1)上附加线性假设(5.1.2),再应用最小二乘法,获得约束最小二乘估计
βˆH = βˆ − ( X ′X )−1 A′( A( X ′X )−1 A′)−1 ( Aβˆ − b)
统计学习题集第五章相关与回归分析

统计学习题集第五章相关与回归分析(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--所属章节:第五章相关分析与回归分析1■在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变量数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为()。
答案:负相关。
干扰项:正相关。
干扰项:完全相关。
干扰项:非线性相关。
提示与解答:本题的正确答案为:负相关。
2■在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量数值随之增加,或一个变量的数值减少,另一个变量的数值随之减少,则称为()。
答案:正相关。
干扰项:负相关。
干扰项:完全相关。
干扰项:非线性相关。
提示与解答:本题的正确答案为:正相关。
3■下面的陈述中哪一个是错误的()。
答案:相关系数不会取负值。
干扰项:相关系数是度量两个变量之间线性关系强度的统计量。
干扰项:相关系数是一个随机变量。
干扰项:相关系数的绝对值不会大于1。
提示与解答:本题的正确答案为:相关系数不会取负值。
4■下面的陈述中哪一个是错误的()。
答案:回归分析中回归系数的显着性检验的原假设是:所检验的回归系数的真值不为0。
干扰项:相关系数显着性检验的原假设是:总体中两个变量不存在相关关系。
干扰项:回归分析中回归系数的显着性检验的原假设是:所检验的回归系数的真值为0。
干扰项:回归分析中多元线性回归方程的整体显着性检验的原假设是:自变量前的偏回归系数的真值同时为0。
提示与解答:本题的正确答案为:回归分析中回归系数的显着性检验的原假设是:所检验的回归系数的真值不为0。
5■根据你的判断,下面的相关系数值哪一个是错误的()。
答案:。
干扰项:。
干扰项:。
干扰项:0。
提示与解答:本题的正确答案为:。
6■下面关于相关系数的陈述中哪一个是错误的()。
答案:数值越大说明两个变量之间的关系越强,数值越小说明两个变量之间的关系越弱。
概率论与数理统计第五章习题解答

第五章 假设检验与一元线性回归分析 习题详解解:这是检验正态总体数学期望μ是否为提出假设:0.32:,0.32:10≠=μμH H由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验当零假设H 0成立时,变量:)1,0(~61.10.320N X n X U -=-=σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u计算得: 6.31)6.318.310.326.310.306.32(61=+++++⨯=x89.061.10.326.310-=-=-=n x u σμ因 0.89 1.96u =<它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显着为32.0kg/cm 2。
解:这是检验正态总体数学期望μ是否大于10提出假设:10:,10:10>≤μμH H 即:10:,10:10>=μμH H由题设,样本容量5n =,221.0=σ,1.01.020==σ,km x 万1.10=,所以用U 检验当零假设H 0成立时,变量:)1,0(~51.010N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251.0101.100=-=-=n x u σμ 因 2.24 1.64u =>它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ所以可以认为这批新摩托车的平均寿命μ有显者提高。
解:这是检验正态总体数学期望μ是否小于240提出假设:240:,240:10<≥μμH H即:240:,240:10<=μμH H由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验当零假设H 0成立时,变量:)1,0(~625240N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.16252402200-=-=-=n x u σμ 因 1.959 1.64u =-<-它落入拒绝域,于是拒绝H 0,而接受H 1,即可以认为240<μ 所以可以认为今年果园每株梨树的平均产量μ显着减少。
一元线性回归分析

(n
2)
S2 ˆ0
2 ˆ0
:
2(n 2)
S 2 ˆ1
S2
n
(Xt X )2
t 1
(n
2)
S2 ˆ1
2 ˆ1
:
2(n 2)
所以根据t分布的定义,有
ˆ0 0 ~ t(n 2), ˆ1 1 ~ t(n 2)
Sˆ0
Sˆ1
进而得出了0的置信水平为1-区间估计为
et Yt Yˆt称为残差,与总体的误差项ut对应,n为样 本的容量。
样本回归函数与总体回归函数区别
1、总体回归线是未知的,只有一条。样本回归线是根据样本数 据拟合的,每抽取一组样本,便可以拟合一条样本回归线。
2、总体回归函数中的β0和β1是未知的参数,表现为常数。而样
本回归函数中的 ˆ0和是ˆ1 随机变量,其具体数值随所抽取
S 44.0632
Sef S
1 1 n
( X f X )2
n
45.543
( Xt X )2
t 1
所求置信区间为:(188.6565 97.6806)
回归分析的SPSS实现
“Analyze->Regression->Linear”
0
n
2 t1 Xt (Yt ˆ0 ˆ1 Xt ) 0
nˆ0
n
ˆ1
t 1
Xt
n
Yt
t 1
n
n
n
ˆ0
t 1
Xt
ˆ1
t 1
X
2 t
一元线性回归方程回归系数的假设检验方法

一元线性回归方程回归系数的假设检验方法
一元线性回归方程是一种统计学方法,用于研究两个变量之间的关系。
它可以
用来预测一个变量(被解释变量)的值,另一个变量(解释变量)的值已知。
回归系数是一元线性回归方程的重要参数,它可以用来衡量解释变量对被解释变量的影响程度。
回归系数的假设检验是一种统计学方法,用于检验回归系数是否具有统计学意义。
它的基本思想是,如果回归系数的值不是0,则表明解释变量对被解释变量有
显著的影响,反之则表明解释变量对被解释变量没有显著的影响。
回归系数的假设检验一般采用t检验或F检验。
t检验是检验单个回归系数是
否具有统计学意义的方法,而F检验是检验多个回归系数是否具有统计学意义的方法。
在进行回归系数的假设检验时,首先要确定检验的显著性水平,一般为0.05
或0.01。
然后,根据检验的类型,计算t值或F值,并与检验的显著性水平比较,如果t值或F值大于显著性水平,则拒绝原假设,即认为回归系数具有统计学意义;反之,则接受原假设,即认为回归系数没有统计学意义。
回归系数的假设检验是一种重要的统计学方法,它可以用来检验回归系数是否
具有统计学意义,从而更好地理解解释变量对被解释变量的影响程度。
统计 多元线性模型

第五章 多元线性模型它包括多元回归分析、多元方差分析及多元协方差分析,它是多元统计分析的基础,应用十分广泛,专著很多。
此处仅介绍实用上最重要的基本内容。
§5.1 一元线性回归模型基本模型:y X u β=+ (5-1-1)2()0, ()n u Var u I εσ==式中y, 是n 维观察值的随机向量,X 是n ×p 的已知矩阵,常被认为已知的(即不当作随机),而一般认为rank(X)=p<n ,β 是p 维未知参数,叫回归系数,u 是非观察值,它代表随机误差。
常用的特例:1、 回归模型如果X 的第一列全是1,而其它变量为定量的数字,这时上式可化为如下回归模型:0111,1, 1,,i i p i p i y x x u i n βββ--=++++= (5-1-2)1n y y y ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 01p βββ-⎛⎫ ⎪= ⎪ ⎪⎝⎭, 1n u u u ⎛⎫⎪= ⎪ ⎪⎝⎭, 111,11,111p n n p x x X x x --⎛⎫⎪= ⎪ ⎪⎝⎭(5-1-3) 上述式子更常用的表达法为:01111,p p y x x u βββ--=++++ (5-1-4)其中u 是随机项2()0, ()u Var u εσ==2、方差分析模型如(5-1-1) 中X 内元素取值非1即0,则该模型就是方差分析,称X 为设计矩阵。
例在有k 个处理组的单因素方差分析中,记i n 为第i 个处理中的试验数,令1, k ij n n n y =++为第j 个处理中的第i 个试验结果,这时方差分析模型常写成下式: , 1,,, 1,,ij j ij j y u i n j k μτ=++== (5-1-5)这里μ表示n 次试验的平均水平, j τ表示第j 种处理的效应, ij u 表示随机误差。
用下述记号,这个模型可化为线性模型:121112121110011001010, 101000010011001k n n k kn y y y y X y y y ⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭, 1211112121, k n n k k n k u u u u u u u μτβτ⎛⎫ ⎪ ⎪ ⎪ ⎪⎛⎫ ⎪⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; 要检验k 个处理中有否显著性差异,就是检验01:k H ττ==,1:i j H ττ≠至少有一项这就是一个指标时上章中多母体的均值相等性检验。
一元线性回归模型检验

§2.4 一元线性回归的模型检验一、经济意义检验。
二、在一元回归模型的统计检验主要包括如下几种检验1、拟合优度检验(R2检验;2、自变量显著性检验(t检验;3、残差标准差检验(SE检验。
•主要检验模型参数的符号、大小和变量之间的相关关系是否与经济理论和实际经验相符合。
一、经济意义检验i•二、统计检验•回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。
•尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。
那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。
1、拟合优度检验拟合优度检验:对样本回归直线与样本观测值之间拟合程度的检验。
度量拟合优度的指标:判定系数(可决系数R2(1、总离差平方和的分解已知由一组样本观测值(X i ,Y i ,通过估计得到如下样本回归直线ii X Y 10ˆˆˆββ+=i i i i i i i y e Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=总离差平方和的分解ii X Y 10ˆˆˆββ+=ˆ(ˆY Y y i i -=i i i i i i i ye Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=Y 的i 个观测值与样本均值的离差由回归直线解释的部分回归直线不能解释的部分离差分解为两部分之和总离差平方和的分解公式:TSS=RSS+ESS,TSS 总离差平方和,ESS 为回归平方和,RSS 为残差平方和.((((((((0ˆˆˆ,0.0ˆˆ(ˆ(ˆˆ(2ˆˆ: 1022222222ˆˆˆˆˆˆ=+===-=-=--+=+=-+-=-+--+-=-+-=-=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ii i i i i ii i i i i i i i i i i i i i i i i i i i i i X e e Y e e e Y Y e Y Y e Y Y ESS RSS y e Y Y Y Y TSS Y Y Y YY Y Y YY Y Y Y Y Y Y Y ββ而因为证明TSS=ESS+RSSY的观测值围绕其均值的总离差(total variation可分解为两部分:一部分来自回归线(ESS,另一部分则来自随机部分(RSS。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
三、拟合优度检验P134
对样本回归直线与样本观测值之间拟合程 度的检验。度量拟合优度的指标:判定系 数(可决系数)R2 1、 总离差平方和的分解 2、几个概念 3、判定系数R2统计量 4、例题 返回
第五章:一元线性回归模型的假 设检验
目录
第一节 经典线性回归模型的基本假定 第二节 OLS估计量的性质:高斯-马尔可夫 定理 第三节 一元线性回归模型的假设检验 第四节 预测 考核要求和作业
第一节 经典线性回归模型的基本假定
经典线性回归模型:classical liner regression model ,CLRM 一、9个假定 二、假定的意义 返回
当X是非随机的时,该假定自动满足 X是抽样时候人为设定的:比如前例中把家庭收入分
组
假定5:正态性假定:随机误差项服从正态分布
i ~ N (0, )
2
假定6:样本容量N>待估参数个数 假定7:解释变量 X值有变异性
即X有一个相对较大的取值范围 如果X只在一个狭窄的范围内变动,则无法充分估计X
这样的零假设也称为“稻草人假设”,如果稻草人假设 成立,说明解释变量X不是被解释变量Y的一个显著性的 影响因素 返回
2、ols估计量服从t分布
ˆ bi bi 由于t ~ t (n 2), 稻草人假设为 i 0 b Sbi ˆ bi 则t ~ t (n 2) Sbi ˆ bi、Sbi 都由OLS法估计得来
x i 2 E (b0 b1 X i ui ) xi
ˆ E (Y ) XE (b1 )
b0 b1 X ) Xb1 ( b0
返回
注:令
xi K i , K i 是常数),且K i 0; K i X i 1 ( 2 xi
3、最小方差性
ˆ ˆ 先求b0、b1的方差:
2
xi2 xi2 2 2 2 2 2 2 2 2 (xi ) (xi ) xi
X i2 ˆ Var (b0 ) 2 nxi2
附:证明
ˆ ) Var[( 1 X xi )Y ] Var(b0 i n xi2 xi 2 1 1 2 ( X 2 ) (Yi) ( XK i) 2 Var n xi n 1 2 XK i 1 X 2 K i2) 2 ( X 2 K i2) 2 n2 n n xi xi 1 1 X2 ( X 2 2 2 ) 2 ( 2 ) 2 n xi xi n xi (
(OLS)估计量有最小方差。这使得OLS估计 量有着优良的性质可以进行统计推断
完全满足这些假定的方程在现实中是不存 在的,但这些假定为我们提供了一个比较 的基准,本课其他部分主要是围绕假定不 被满足时,分析后果,提出解决办法。返 回
第二节 OLS估计量的性质:高斯-马 尔可夫定理 p127
一、高斯-马尔可夫定理
一、9个假定
1、零均值假定 2、同方差假定 3、无自相关假定 4、随机误差项和解释变量不相关假定 5、正态性假定 6、样本容量N>待估参数个数 7、解释变量 X值有变异性 8、无多重共线性假定 9、参数线性假定
零均值假定
假定1:随机误差项均值为零 随机误差项囊括了大量未包括进模型的各 种变量影响之和,他们相互抵消,对被解 释变量没有系统性影响 E(µ|Xi)=0,简写为E(µi)=0
对被解释变量Y的系统影响。 例:如果收入差异不大,我们无法观察支出Y的变动
假定8 :如果有多个解释变量,要求解释变量间 没有很强的线性关系
无多重共线性
假定9:线性:回归模型对参数而言是线性的
二、假定的意义
如果满足这些假定,则高斯-马尔可夫定理 成立:
在所有线性无偏估计量中,普通最小二乘
ˆ E (b1 ) b1
ˆ 证:E(b1)
ˆ E (b0 ) b0
ˆ 证:E(b0) ˆ E (Y b X )
1
xi E (Yi ) 2 xi
xi b1 2 E (ui ) xi b1 K i E (ui ) b1
xi E( Yi) 2 xi
二、ols估计量的概率分布 返回
一、高斯-马尔可夫定理
在所有线性无偏估计量中,普通最小二乘 (OLS)估计量有最小方差。
即OLS估计量是最佳线性无偏估计量
1、线性
2、无偏性 3、最小方差性 4、小结 返回
高斯-马尔科夫理论所考虑的 各种估计值分类图
最 小 二 乘 估 计 值 | 方 差 最 小
随机扰动项代表了未引入模型的随机影响之和,依据中
心极限定理,大量独立同分布的随机变量之和趋向于正 态分布
2、服从正态分布的变量的线性组合依然服从正态 分布,则
X i2 2 ˆ b0 ~ N (b0 , ) 2 nxi
ˆ b1 ~ N (b1 ,
2
x
2 i
)
3、由于随机误差项的方差 2未知,则OLS 估计量的 ˆ bi bi 2 的总体方差 bi 也未知。但 ~ N (0,1);
且在所有线性无偏估计量中方差最小
4)前面的等式中包含了随机误差项的方差 2,多数时候 2是未知的, ˆ (Yi Yi ) 2 ei2 2 2 ˆ 需要做出估计,随机误差项的方差 的估计量为: (n 2) (n 2) ˆ ˆ 则OLS 估计量b 、b 的方差和标准差的估计量为:
线性无 偏估计 值
线 性 估 计 值
所 有 的 估 计 值
返回
1、线性性:参数估计量是被解释变量Yi的线性组合:
ˆ ˆ b1、b0都是Yi的线性函数
ˆ xi yi xi (Yi Y ) xiYi (xi ) Y xi Y b1 i 2 2 xi2 xi2 xi2 xi xi
返回
4、小结:估计量的统计性质
ˆ 1 )线性性:参数的估计量b j ( j 1, 2,, k )是Yi的线性组合
ˆ 2)无偏性:E (b j ) b j ( j 1, 2,, n)
3)最小方差性:
b0、b1的方差分别为:
ˆ Var (b1 )
2
x
2 i
X i2 2 ˆ Var (b0 ) 2 nxi
随机误差项均值为零 p123 图7-1
Y X=1000
X=1100
X=900
具体的 支出水 平是围 绕其条 件均值 波动的, 这种波 动的 “均值 为0”
X
散点图
同方差假定
假定2:随机误差项方差相同
VAR(i ) ,随机误差项的方差俱为
2
2
即与给定X相对应的Y值以相同方差分布在其条件 均值周围。 如果不满足这个假定,即为“异方差” 异方差的图示
一、检验
对模型和所估计的参数加以评定,判断在 经济理论上是否有意义,在统计上是否显 著等。 检验包括:
1)经济意义的检验 2)统计推断检验* 3)计量经济学检验* 4)预测检验* 返回
二、参数的显著性检验 p132
1、“稻草人假设” 2、ols估计量服从t分布 3、检验步骤 4、例题 返回
1、稻草人假设
回归分析是要判断解释变量X是否是被解释变量Y 的一个显著性的影响因素。 在一元线性模型中,就显著性检验。
计量经计学中,主要是针对变量的参数真值是 否为“零”来进行显著性检验的。即
H 0 : bi 0 H1 : bi 0
b
i
(n 2) Sb2i
b2
i
~ 2 (n 2)
ˆ bi bi 则t ~ t (n 2), 可以利用该信息进行统计检验 Sbi
返回
第三节 一元线性回归模型的假设检验 p130
一、检验 二、参数的显著性检验 三、回归的拟合优度检验 四、回归分析结果的报告 五、综合实例:美国商业部门工资和生产 率的关系 返回
xi ˆ 令 2 K i , K i 是常数),则b1 K iYi ( xi 且K i 0; K i X i 1
ˆ ˆ b0 Y b1 X
xi xi 1 Y X Yi ( X )Yi 2 2 xi n xi
返回
2、无偏性,估计量的均值=其对应参数的真值
如同需要指明样本均值服从何种分布,才可对
总体均值进行统计推断一样。
样本回归系数是Y的线性函数,因此其概率 分布取决于Y,而Y的概率分布取决于随机 误差项 返回
有了样本回归系数的OLS估计量的分布信息, 就可以利用它进行总体回归系数的统计推断
1、正态性假定:随机误差项服从正态分布,
i ~ N (0, 2 )
返回
3、检验步骤:
(1)对总体参数提出假设 H0: b1=0,
ˆ b1 t S bˆ
H1:b10
(2)以原假设H0构造t统计量,并由样本计算其值
1
(3)给定显著性水平,查t分布表,得临界值t /2,df=(n2)
(4) 比较,判断 若 |t|> t /2(n-2),则拒绝H0 ,接受H1 ;
0 1
S
2 ˆ b1
ˆ
2 2 i
x
(n 2)x
e
2 i 2 i
, Sbˆ S
1
2 ˆ b1
X ˆ S 2 , Sb0 2 nx n(n 2)xi
2 b0 2 i 2 i
ei2 X i2
2 Sb0
返回
二、ols估计量的概率分布 p129
假设检验需要指明总体参数(即总体回归 系数)的估计量(即样本回归系数)服从 何种分布
异方差的图示
X=1000时,Y的 分布更靠拢均值。 即方差相对较小。