2015-2016学年度人教版七年级数学下册《不等式与不等式组》检测题及答案
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
人教版七年级下册数学不等式与不等式组试题带答案

2021年七年级下册数学不等式与不等式组试题一、选择题(每小题3分, 共30分) 1.下列说法中, 错误的是( ) A. x =1是不等式x <2的解 B. -2是不等式2x -1<0的一个解 C. 不等式-3x >9的解集是x =-3 D. 不等式x <10的整数解有无数个 2. 下列变形不正确的是( ) A. 由b>5得4a +b>4a +5 B. 由a>b 得b<a C. 由- x>2y 得x<-4y D. -5x>-a 得x>3. 不等式3x +2<2x +3的解集在数轴上表示正确的是( )4. 小明准备用22元钱买笔和笔记本, 已知每支笔3元, 每本笔记本2元, 他买了3本笔记本后, 用剩余的钱来买笔, 那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔 5. 不等式组 的解集是( ) A. x >1 B. 1<x ≤2 C. x ≤2 D. 无解6.如果不等式组 的解集是x <2, 那么m 的取值范围是( )A. m =2B. m >2C. m <2D. m ≥2 7. 不等式组 的最小整数解是( )A. 1B. 2C. 3D. 48.小红读一本500页的书, 计划10天内读完, 前5天因种种原因只读了100页, 为了按计划读完, 则从第六天起平均每天至少要读( )姓名:学号:A. 50页B. 60页C. 80页D. 100页 9.已知不等式组 的解集中共有5个整数, 则a 的取值范围为( ) A. 7<a ≤8 B. 6<a ≤7 C. 7≤a <8 D. 7≤a ≤810.关于x 的不等式组 的解集为x<3, 那么m 的取值范围为( ) A. m =3 B. m >3 C. m <3 D. m ≥3 二、填空题(每小题4分, 共24分)11. 在下列各数: -2, -2.5, 0, 1, 6中, 不等式 x>1的解有6;不等式- x>1的解有 . 12.在实数范围内规定新运算“△”, 其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示, 则k 的值是 .13. 若不等式组 的解集为3≤x ≤4, 则不等式ax +b <0的解集为 .14. 某种商品的进价为800元, 出售时标价为1 200元, 后来由于该商品积压, 商店准备打折销售, 但要保证利润率不低于5%, 则至多可打 折.15. 对于任意实数m, n, 定义一种运算m ※n =mn -m -n +3, 等式的右边是通常的加减和乘法运算. 例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7, 且解集中有两个整数解, 则a的取值范围是 .16.对一个实数x 按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x ”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x 的取值范围是 .三、解答题(共66分)17. (18分)解下列不等式, 并将其解集在数轴上表示出来. (1)8x -1≥6x +3; (2)2x -1<10x +16.(3)解不等式2(x +1)-1≥3x +2, 并把它的解集在数轴上表示出来.18. (8分)若代数式 的值不大于代数式5k +1的值, 求k 的取值范围.19.(8分)(呼和浩特中考)已知实数a是不等于3的常数, 解不等式组并依据a的取值情况写出其解集.20. (10分)定义新运算: 对于任意实数a, b, 都有a⊕b=a(a-b)+1, 等式右边是通常的加法、减法及乘法运算.比如: 2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13, 求x的取值范围, 并在数轴上表示出来.21.(10分)某商店5月1日举行促销优惠活动, 当天到该商店购买商品有两种方案. 方案一: 用168元购买会员卡成为会员后, 凭会员卡购买商店内任何商品, 一律按商品价格的8折优惠;方案二: 若不购买会员卡, 则购买商店内任何商品, 一律按商品价格的9.5折优惠. 已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡, 所购买商品的价格为120元时, 实际应支付多少元?(2)请帮小敏算一算, 所购买商品的价格在什么范围内时, 采用方案一更合算?(2)若该商场把这100个球全部以零售价售出, 为使商场获得的利润不低于2 580元, 则采购员至少要购篮球多少个?该商场最多可盈利多少元?参考答案一、选择题(每小题3分, 共30分)1.下列说法中, 错误的是(C)A. x=1是不等式x<2的解B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x=-3D. 不等式x<10的整数解有无数个2. 下列变形不正确的是(D)A. 由b>5得4a+b>4a+5B. 由a>b得b<aC. 由-x>2y得x<-4yD. -5x>-a得x>3. 不等式3x+2<2x+3的解集在数轴上表示正确的是(D)4. 小明准备用22元钱买笔和笔记本, 已知每支笔3元, 每本笔记本2元, 他买了3本笔记本后, 用剩余的钱来买笔, 那么他最多可以买(C)A. 3支笔B. 4支笔C. 5支笔D. 6支笔5. 不等式组的解集是(B)A. x>1B. 1<x≤2C. x≤2D. 无解6.如果不等式组的解集是x<2, 那么m的取值范围是(D)A. m=2B. m>2C. m<2D. m≥27. 不等式组的最小整数解是(C)A. 1B. 2C. 3D. 48.小红读一本500页的书, 计划10天内读完, 前5天因种种原因只读了100页, 为了按计划读完, 则从第六天起平均每天至少要读(C)A. 50页B. 60页C. 80页D. 100页9.已知不等式组的解集中共有5个整数, 则a的取值范围为(A)A. 7<a≤8B. 6<a≤7C. 7≤a<8D. 7≤a≤810.关于x的不等式组的解集为x<3, 那么m的取值范围为(D)A. m=3B. m>3C. m<3D. m≥3二、填空题(每小题4分, 共24分)11. 在下列各数: -2, -2.5, 0, 1, 6中, 不等式x>1的解有6;不等式-x>1的解有-2, -2.5.12.在实数范围内规定新运算“△”, 其规则是:a△b=2a-b.已知不等式x△k≥1的解集在数轴上如图表示, 则k的值是-3.13. 若不等式组的解集为3≤x≤4, 则不等式ax+b<0的解集为x>.14. 某种商品的进价为800元, 出售时标价为1 200元, 后来由于该商品积压, 商店准备打折销售, 但要保证利润率不低于5%, 则至多可打7折.15. 对于任意实数m, n, 定义一种运算m※n=mn-m-n+3, 等式的右边是通常的加减和乘法运算. 例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7, 且解集中有两个整数解, 则a的取值范围是4≤a<5.16.对一个实数x按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x的取值范围是x>49.三、解答题(共66分)17. (18分)解下列不等式, 并将其解集在数轴上表示出来.(1)8x-1≥6x+3;解: 移项, 得8x -6x ≥3+1. 合并同类项, 得2x ≥4. 系数化为1, 得x ≥2.其解集在数轴上表示为:(2)2x -1<10x +16.解: 去分母, 得12x -6<10x +1. 移项, 得12x -10x <1+6. 合并同类项, 得2x <7. 系数化为1, 得x< .其解集在数轴上表示为:(3)解不等式2(x +1)-1≥3x +2, 并把它的解集在数轴上表示出来. 解: 去括号, 得2x +2-1≥3x +2. 移项, 得2x -3x ≥2-2+1. 合并同类项, 得-x ≥1. 系数化为1, 得x ≤-1.∴这个不等式的解集为x ≤-1, 在数轴上表示如下:18. (8分)若代数式 的值不大于代数式5k +1的值, 求k 的取值范围. 解:由题意, 得 3(2k +5)2≤5k +1. 解得k≥134.19.(8分)(呼和浩特中考)已知实数a 是不等于3的常数, 解不等式组 并依据a 的取值情况写出其解集. 解: 解不等式①, 得x ≤3. 解不等式②, 得x<a. ∵a 是不等于3的常数,∴当a>3时, 不等式组的解集为x ≤3; 当a<3时, 不等式组的解集为x<a.20. (10分)定义新运算: 对于任意实数a, b, 都有a⊕b=a(a-b)+1, 等式右边是通常的加法、减法及乘法运算.比如: 2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13, 求x的取值范围, 并在数轴上表示出来.解: (1)(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3⊕x<13,∴3(3-x)+1<13.解得x>-1.解集在数轴表示为:21.(10分)某商店5月1日举行促销优惠活动, 当天到该商店购买商品有两种方案. 方案一: 用168元购买会员卡成为会员后, 凭会员卡购买商店内任何商品, 一律按商品价格的8折优惠;方案二: 若不购买会员卡, 则购买商店内任何商品, 一律按商品价格的9.5折优惠. 已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡, 所购买商品的价格为120元时, 实际应支付多少元?(2)请帮小敏算一算, 所购买商品的价格在什么范围内时, 采用方案一更合算?解: (1)120×0.95=114(元).答: 实际应支付114元.(2)设购买商品的价格为x元, 由题意得0. 8x+168<0.95x, 解得x>1 120.答:当购买商品的价格超过1 120元时, 采用方案一更合算.22. (12分)某体育厂家批发价(元/个) 商场零售价(元/个)用品商场采购(2)若该商场把这100个球全部以零售价售出, 为使商场获得的利润不低于2 580元, 则采购员至少要购篮球多少个?该商场最多可盈利多少元?解:(1)设采购员最多可购进篮球x个, 则排球是(100-x)个, 依题意, 得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数, ∴x最大取60.答: 该采购员最多可购进篮球60个.(2)设篮球x个, 则排球是(100-x)个, 则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58.又由第(1)问得x≤60.5,∴正整数x的取值为58, 59, 60.即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,∴这100个球中, 当篮球最多时, 商场可盈利最多, 故篮球60个, 排球40个, 此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元), 即该商场最多可盈利2 600元.。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试题(包含答案解析)

一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .23.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥4.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( ) A .1种 B .2种 C .3种 D .4种 5.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( )A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a6.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( ) A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <27.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --8.如果a 、b 表示两个负数,且a b >,则( ) A .1a b> B .1b a> C .11a b> D .1ab <9.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天第2天第3天第4天第5天第6天第7天第1组1x1x1x第2组2x2x2x第3组3x3x3x第4组4x4x4xA.10首B.11首C.12首D.13首10.下列不等式组的解集,在数轴上表示为如图所示的是()A.1x>-B.12x-<≤C.12x-≤<D.1x>-或2x≤11.如果a>b,那么下列不等式不成立...的是()A.0a b->B.33a b->-C.1133a b>D.33a b->-12.下列不等式说法中,不正确的是()A.若,2x y y>>,则2x>B.若x y>,则22x y-<-C.若x y>,则22x y>D.若x y>,则2222x y--<--二、填空题13.若方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解是3x my m=⎧⎨=+⎩(m为常数),方程组111222(2)2(2)2(2)2(2)2a x yb x y ca x yb x y c+++=⎧⎨+++=⎩的解x、y满足3x y+>,则m的取值范围为______.14.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是_________.15.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.16.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.17.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.18.绝对值小于π的非负整数有____________.19.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.20.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)三、解答题21.解不等式组103124x x +≥⎧⎪⎨-<⎪⎩,并把它的解集表示在数轴上.22.某校计划安排初三年级全体师生参观黄石矿博园.现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园? (2)请你帮该校设计一种最省钱的租车方案.23.大润发超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表. 价格/类型 A 型 B 型 进价(元/只) 30 70 标价(元/只)50100(2)元旦活动期间,超市决定将A 型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B 型计算器最多打几折出售? 24.解下列不等式或不等式组: (1)22x > (2)452(1)x x +>+(3)32123x xx+>⎧⎪⎨≤⎪⎩(4)211841x xx x->+⎧⎨+<-⎩25.解下列一元一次不等式组:211132x xx x>-⎧⎪-⎨-<⎪⎩并把解集表示在数轴上.26.某市出租车的计费标准如下:行程3km以内(含3km),收费7元.行程超过3km,如果往返乘同一出租车并且中间等候时间不超过3min,超过3km的部分按每千米1.6元计费,另加收1.6元等候费;如果返程时不再乘坐此车,超过3km的部分按每千米2.4元计费.小文等4人从A处到B处办事,在B处停留时间在3min之内,然后返回A处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返.(1)若A,B两地相距1.2km,方案一付费_____元,方案二付费______元;(2)若A,B两地相距2.5km,方案一付费_____元,方案二付费______元;(3)设A,B两地相距x km(x<12),请问选择那种方案更省钱?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【详解】解:∵点P(a,b)在第二象限,∴a<0,b>0,∴-a>0,b+1>0,∴点B(﹣a,b+1)在第一象限.故选A.【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征和不等式的性质.注意第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.3.D解析:D 【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围. 【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解,∴a-1≥2, ∴a≥3. 故选:D. 【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.C解析:C 【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案. 【详解】解:设用A 型货厢x 节,B 型货厢()50x -节, 根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤,因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案. 故选:C . 【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.5.C解析:C 【分析】根据不等式a+b >0得a >-b ,-a <b ,再根据b <0得b <-b ,再比较大小关系即可. 【详解】 解:∵a+b >0, ∴a >-b ,-a <b. ∵b <0, ∴b <-b , ∴-a <b <-b <a. 故选C. 【点睛】本题考查了不等式的性质与有理数的知识点,解题的关键是熟练的掌握有理数与不等式的性质.6.D解析:D 【详解】 由题意得2021x x -<⎧⎨-≥-⎩解之得12x ≤< 故选D . 7.A解析:A 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.8.B解析:B 【分析】根据不等式的性质,两边都除以b 判断出A 、B ,两边都除以ab ,判断出C 即可得解. 【详解】∵a 、b 表示两个负数, ∴a b >两边都除以b 得,1ab<,故选项A 错误,不符合题意; a b >两边都除以a 得,1ba>,故选项B 正确,符合题意; ∵a 、b 表示两个负数, ∴0ab >,∴a b >都除以ab 得,11b a>,故选项C 错误,不符合题意; 只能判断出0ab >,但无法说明1ab <,故选项D 错误,不符合题意. 故选:B . 【点睛】本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.D解析:D根据表格及题意可得第2天、第3天、第4天、第5天的背诵最多的诗词,然后根据不等式的关系可进行求解. 【详解】解:由表格及题可得:∵每天最多背诵8首,最少背诵2首, ∴由第2天、第3天、第4天、第5天可得:128x x +≤①,238x x +≤②,1348x x x ++≤③,248x x +≤④,①+②+④-③得:2316x ≤, ∴2163x ≤, ∴123416181333x x x x +++≤+=, ∴7天后,小圆背诵的诗词最多为13首; 故选D . 【点睛】本题主要考查一元一次不等式的应用,熟练掌握不等式的性质与求法是解题的关键.10.B解析:B 【分析】根据数轴图像即可求出解集. 【详解】根据数轴可知表示的解集为12x -<≤, 即数轴上表示的是不等式组12x -<≤的解集 故选B . 【点睛】本题考查在数轴表示不等式组的解集,解答本题的关键是明确题意,利用数形结合的思想解答.11.D解析:D 【分析】根据不等式的基本性质逐项判断即可得. 【详解】A 、0a b ->,成立;B 、不等式的两边同减去3,不改变不等号的方向,即33a b ->-,成立;C 、不等式的两边同乘以正数13,不改变不等号的方向,即1133a b >,成立;D 、不等式的两边同乘以负数3-,改变不等号的方向,即33a b -<-,不成立;【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.12.B解析:B 【分析】根据不等式的基本性质,逐项判断即可. 【详解】 解:∵,2x y y >> ∴2x >,∴选项A 不符合题意; ∵x y >, ∴22x y ->-, ∴选项B 符合题意; ∵x y >, ∴22x y >, ∴选项C 不符合题意; ∵x y >, ∴22x y -<-, ∴2222x y --<-- ∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.二、填空题13.【分析】先将转化为与已知的方程组联合起来代数求出和的值即可【详解】方程组可转换为∵方程组的解集为∴方程组的解为:由②-①得:把代入①得:∴∴故答案为:m>2【点睛】本题主要考查了解二元一次方程组解不 解析:2m >【分析】先将111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩转化为1112221(2)21(2)2a x yb x yc a x y b x y c⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩与已知的方程组111222a xb yc a x b y c +=⎧⎨+=⎩联合起来代数求出x 和y 的值即可.【详解】 方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩,可转换为1112221(2)21(2)2a x yb x yc a x y b x y c ⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩,∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解集为3x my m =⎧⎨=+⎩,∴方程组1112221(2)21(2)2a x y b x y c a x y b x y c ⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩的解为:1223x y m x y m ⎧+=⎪⎨⎪+=+⎩①②,由②-①得:332x =,2x =, 把2x =代入①得:1y m =-,∴2113x y m m +=+-=+>, ∴2m >, 故答案为:m>2. 【点睛】本题主要考查了解二元一次方程组,解不等式,熟知解二元一次方程组的加减消元法和代入法是解题的关键.14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.18【分析】设小王原计划购进甜味型月饼x 盒咸味型月饼y 盒则麻辣味型月饼(50-x -y )盒根据题意列出二元一次方程然后根据xy 均为正整数求出方程的解再根据题意列出不等式组即可求出x 的取值范围从而求出结解析:18【分析】设小王原计划购进甜味型月饼x 盒,咸味型月饼y 盒,则麻辣味型月饼(50-x -y )盒,根据题意,列出二元一次方程,然后根据x 、y 均为正整数,求出方程的解,再根据题意列出不等式组即可求出x 的取值范围,从而求出结论.【详解】解:设小王原计划购进甜味型月饼x 盒,咸味型月饼y 盒,则麻辣味型月饼(50-x -y )盒根据题意可得()556080100506080351210012124066x y x y x x ⎛⎫++--=⨯+--+⨯+ ⎪⎝⎭整理可得:76216x y += ∴7366y x =- ∵x 、y 均为正整数∴x 为6的倍数∴629x y =⎧⎨=⎩,1222x y =⎧⎨=⎩,1815x y =⎧⎨=⎩,248x y =⎧⎨=⎩,301x y =⎧⎨=⎩由题意可得1(50)2y x y x y ≤⎧⎪⎨≥--⎪⎩∴7366717365036626x x x x x ⎧-≤⎪⎪⎨⎡⎤⎛⎫⎪-≥--- ⎪⎢⎥⎪⎝⎭⎣⎦⎩①② 解①,得81613x ≥ 解②,得1235x ≤ ∴811623135x ≤≤ ∴1815x y =⎧⎨=⎩故答案为:18.【点睛】此题考查的是二元一次方程的应用和不等式的应用,掌握实际问题中的等量关系和不等关系是解题关键.16.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的 解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 17.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.18.0123【分析】设所求的数为x 再根据x 的绝对值小于π得出关于x 的不等式求出x 的取值范围在此取值范围内找出符合条件的x 的非负整数解的个数即可【详解】解:设该数为x ∵x 的绝对值小于π即|x|<π∴-π<解析:0,1,2,3【分析】设所求的数为x ,再根据x 的绝对值小于π得出关于x 的不等式,求出x 的取值范围,在此取值范围内找出符合条件的x 的非负整数解的个数即可.【详解】解:设该数为x ,∵x 的绝对值小于π,即|x|<π,∴-π<x <π,∵π≈3.14,∴x 的非负整数解为:0,1,2,3,故答案为:0,1,2,3.【点睛】本题考查了绝对值的性质及不等式组的整数解,解答此题的关键是根据题意得出关于x 的不等式,再根据绝对值的性质求出x 的取值范围.19.【分析】20.【分析】根据相反数正负数和有理数加减运算的性质分析即可得到答案【详解】∵∴∴∴∵∴∴∵∴∴即故答案为:【点睛】本题考查了相反数正负数有理数大小比较有理数加减运算的知识;解题的关键是熟练掌握相反数正负 解析:a a b b a b a <+<<-<-【分析】根据相反数、正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵0b -<∴0b >∴0b a a -+>∴b a a ->-,b a a +>∵0a b ⨯<∴0a <∴0a ->∵0a b +<∴b a <-∴0a a b b a b a <+<<<-<-即a a b b a b a <+<<-<-故答案为:a a b b a b a <+<<-<-.【点睛】本题考查了相反数、正负数、有理数大小比较、有理数加减运算的知识;解题的关键是熟练掌握相反数、正负数和有理数加减运算的性质,从而完成求解.三、解答题21.13x -≤<,在数轴上表示见解析.【分析】先对不等式组进行化简,然后在数轴上分别画出x 的取值,它们的公共部分就是不等式组的解集.【详解】 解:103124x x +≥⎧⎪⎨-<⎪⎩①② 由①得:1x ≥-由②得:318x -<,∴3x <,∴不等式组的解集为13x -≤<在数轴上表示如下:【点睛】本题考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.22.(1)180,(2)租36座车1辆,48座3辆最省钱.【分析】(1)设租36座的车x 辆,则租48座的客车(x ﹣1)辆.根据不等关系:租48座客车,则能少租一辆,且有一辆车没有坐满,但超过30人,列不等式组即可.(2)根据(1)中求得的人数,进一步计算不同方案的费用:①只租36座客车;②只租42座客车;③合租两种车.再进一步比较得到结论即可.【详解】解:(1)设租36座的车x 辆.据题意得:3648(2)303648(2)48x x x x --⎧⎨--⎩><, 解得:1124x x ⎧⎪⎨⎪⎩<>.∴不等式组的解集为4112x <<. ∵x 是整数,∴x =5.36×5=180(人),答:该校初三年级共有师生180人参观黄石矿博园.(2)设租36座车m 辆,租48座车n 辆,根据题意得,36m+48n≥180,∵m 、n 为非负整数,方案①:租36座车5辆,费用为:5×400=2000元;方案②:租36座车4辆,48座至少1辆,最低费用为:4×400+480=2080元; 方案③:租36座车3辆,48座至少2辆,最低费用为:3×400+2×480=2160元; 方案④:租36座车2辆,48座至少3辆,最低费用为:2×400+3×480=2240元; 方案⑤:租36座车1辆,48座至少3辆,最低费用为:1×400+3×480=1840元; 方案⑥:租48座车4辆,费用为:4×480=1920元;∴选择方案⑤:租36座车1辆,48座3辆最省钱.【点睛】本题考查了不等式组的应用和方案选择问题,正确设未知数,准确把握不等关系,列出不等式或不等式组,是解决问题的关键.23.(1)A 型计算机进购40只,B 形计算机进购80只;(2)B 型计算器最多打八折出售【分析】(1)设A 型计算器进购x 只,B 形计算器进购y 只,列二元一次方程组求解;(2)设B 型计算器打m 折,先算出A 型计算器和B 形计算器的单个利润,然后列不等式求解.【详解】解:(1)设A 型计算器购进x 只,B 形计算器购进y 只, 列式:12030706800x y x y +=⎧⎨+=⎩,解得4080x y =⎧⎨=⎩, 答:A 型计算器购进40只,B 形计算器购进80只;(2)设B 型计算器打m 折,A 型计算器的单个利润是500.93015⨯-=(元),B 型计算器的单个利润是()10070107010m m ⎛⎫⨯-=- ⎪⎝⎭元, 列式:()15408010701400m ⨯+-≥60080056001400m +-≥8006400m ≥8m ≥,答:B 型计算器最多打八折出售.【点睛】本题考查二元一次方程组的应用和不等式的应用,解题的关键是根据题意列出方程组或不等式进行求解.24.(1)1x >;(2)32x >-;(3)16x -<≤;(4)3x >. 【分析】(1)两边同除以2即可得;(2)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得; (3)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集; (4)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集.【详解】(1)22x >,两边同除以2,得1x >;(2)452(1)x x +>+, 4522x x +>+,4225x x ->-,23x >-,32x >-; (3)32123x x x +>⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >-,解不等式②得:6x ≤,则不等式组的解集为16x -<≤;(4)211841x x x x ->+⎧⎨+<-⎩①②, 解不等式①得:2x >,解不等式②得:3x >,则不等式组的解集为3x >.【点睛】本题考查了解一元一次不等式、解一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.25.x>-1,数轴表示见解析.【分析】根据不等式的性质分别求出两个不等式的解集即可求出不等式组的解集,表示在数轴上即可.【详解】解:211132x xx x>-⎧⎪-⎨-<⎪⎩解21x x>-得:x>-1,解1132x x--<得: x>-3,∴原不等式组的解集为x>-1,表示在数轴上如图:【点睛】此题考查一元一次不等式组的解及数轴表示,难度一般.26.(1)15,8.6;(2)15,11.8;(3)当0<x<5时,方案二更省;当x=5时,方案一、二一样;当5<x<12时,方案一更省.【分析】(1)根据题意分别列出表示两种方案费用的代数式,进行计算即可得到答案;(2)根据题意分别列出表示两种方案费用的代数式,进行计算即可得到答案;(3)当0<x≤1.5时,得到方案一:15元;方案二:8.6元,于是得到方案二更省钱;当1.5<x≤3时,求得方案一:15元;方案二:()7 1.623 1.6 3.2 3.8x x+-+=+,即当x=3,有最大费用13.4元,13.4<15,于是得到方案二更省钱;当x>3时;求得方案一:7+2.4(x-3)+8=2.4x+7.8;方案二:7+1.6(2x-3)+1.6=3.2x+3.8;列方程或不等式,再讨论即可得到结论.【详解】解:(1) 1.2<3,∴方案一:7+42=7+8=15⨯(元),方案二:7+1.6=8.6(元),故答案为:15,8.6.(2)∵2.5<3,∴方案一付费:7+4×2=15元,方案二付费:()7+53 1.6 1.611.8-⨯+=,故答案为:15,11.8.(3)当0<x≤1.5时,方案一:7+42=7+8=15⨯元;方案二:7+1.6=8.6元,∴方案二更省钱;当1.5<x≤3时,方案一:7+42=7+8=15⨯元;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+,即当x=3,最大费用为:13.4元, 方案二:13.4<15∴方案二更省钱;当x >3时;方案一:()7 2.438 2.47.8x x +-+=+;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+;当2.47.8 3.2 3.8x x +=+时,解得:5x =;∴当x=5时,两者均可,当2.47.8x +<3.2 3.8x +时,0.8x ∴-<4-,∴x >5,所以x >5时方案一更省,当2.47.8x +>3.2 3.8x +时,0.8x ∴->4-,∴x <5,所以x <5时,方案二更省;综上可得:当0<x <5时,方案二更省; 当x=5时,方案一、二一样; 当5<x <12 时,方案一更省.【点睛】本题考查了列代数式,一元一次方程的应用,一元一次不等式的应用,最优化选择问题,解答本题的关键是根据题目所示的收费标准,列出x 的关系式,再计算与比较.。
人教版初中数学七年级数学下册第五单元《不等式与不等式组》检测(有答案解析)(2)

一、选择题1.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥ 2.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ).A .B .C .D .3.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个4.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D .5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b < C .2a b b +> D .2a ab >6.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( )A .5B .0C .-1D .-27.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .8.不等式组10840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D . 9.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤710.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D .11.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( ) A .12a ≤≤ B .12a ≤< C .12a <≤ D .12a << 12.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数 C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7 二、填空题13.a b ≥,1a -+_____1b -+14.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 15.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______. 16.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.17.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________. 18.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______. 19.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.20.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题21.解不等式(或组):(1)2934x x++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩22.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.A 型B 型 价格(万元/)15 12 月污水处理能力(吨/月) 250 200(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.23.某校计划安排初三年级全体师生参观黄石矿博园.现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园?(2)请你帮该校设计一种最省钱的租车方案.24.解不等式,并把解集在数轴上表示出来.(1)()4521x x +≤+(2)()1113125y y y +<--25.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.26.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a ,求a 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D .【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.2.C解析:C【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围.【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限,∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩, 解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选C .【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P 的坐标所在的象限.3.B解析:B【分析】直接利用一元一次不等式的解法分析得出答案.【详解】解:3(x-1)≤5-x3x-3≤5-x ,则4x≤8,解得:x≤2,故不等式3(x-1)≤5-x 的正整数解有:1,2共2个.故选:B .【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.4.A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b ,当a 与b 异号时,有11a b>,故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.C解析:C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可.【详解】解:3114x x +>⎧⎨-≤⎩①②解不等式①得 x >-2,解不等式②得 x≤5,所以不等式组的解集为-2<x≤4,所以,这个不等式组的最小整数解是-1,故选C .【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.7.B解析:B【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论.【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <,在数轴上表示为:故选:B .【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质8.A解析:A【分析】先对不等式组进行化简,找出它们的公共部分,然后在数轴上分别表示出x 的取值范围.【详解】解:不等式组10840x x ->⎧⎨-≤⎩①②由①得,x >1,由②得,x ⩾2, 故不等式组的解集为:x ⩾2, 在数轴上可表示为:故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,注意在数轴上表示解集时,空心圈和实心圈的区别.9.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x ≤2,得:x ≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.10.C解析:C【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】36030xx+>⎧⎨-≤⎩①②,解①得:2x>-,解②得:3x≤,在数轴上表示如图所示:不等式组的解集为23x-<≤.故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.C解析:C【分析】先解含参的不等式组,根据不等式组仅有四个整数解得到关于a的不等式组,求解即可.【详解】解:132(2)x ax x≥-⎧⎨≤+⎩①②,解不等式①,得1x a≥-,解不等式②,得:4x≤,∵不等式组仅有四个整数解,∴011a<-≤,解得12a<≤,故选:C .【点睛】本题考查解不等式组,根据解集的情况得到关于a 的不等式组是解题的关键.12.C解析:C【分析】根据平行线的判定、无理数、平面直角坐标系和不等式组的解判断即可.【详解】解:A 、两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行,是真命题;B 、在实数7.5-,π-,2中,有3个有理数,2个无理数,是真命题;C 、在平面直角坐标系中,点P (2a-1,a+7)在x 轴上,a+7=0,a=-7,则点P 的坐标为(-15,0),原命题是假命题;D 、不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7,是真命题; 故选:C .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号.14.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成 解析:-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可.【详解】解:∵||1(2)3m m x --= ∴2011m m -≠⎧⎨-=⎩,解得m=-2. 故答案为-2.【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.15.5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围【详解】解:∵点P(m ﹣62m ﹣9)关于x 轴的对称点在第三象限∴点P 在第二象限∴m ﹣6<0且2m ﹣9>0解得:<m<6∴m 的取值范围是<m<解析:5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围.【详解】解:∵点P (m ﹣6,2m ﹣9)关于x 轴的对称点在第三象限,∴点P 在第二象限,∴m ﹣6<0且2m ﹣9>0, 解得:92<m<6, ∴m 的取值范围是92<m<6, ∴m 的整数解为5;故答案为 5.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),要注意先判断出点P 在第二象限.16.30【分析】设额温枪的数量为消毒酒精的数量为剩余100元钞票的数量为a10元为b 根据题意列出方程组然后分别代入可能的a 和b 即可求得【详解】解:∵题中所有的钱数(68201255510010)均是0或解析:30【分析】设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b ,根据题意列出方程组,然后分别代入可能的a 和b ,即可求得.【详解】解:∵题中所有的钱数(6820,125,55,100,10)均是0或5结尾,且1元钞票的数量不超过9张∴1元钞票的数量是5设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b 根据题意得()()682012555100105682012555100105x y a b y x b a ⎧-+=++⎪⎨-+=++⎪⎩两式子相减可整理得:97x y b a -=- ∵9b ≤∴9x y -=,7b a -=∴b a -有三种情况①b=7,a=0②b=8,a=1③b=9,a=2将三种情况分别代入上述方程组计算得情况①和②算出x 和y 不是整数,不符合题意情况③情况符合题意:=39x 和=30y ,且39>30,符合题意故购买的消毒酒精的数量为30瓶故答案为:30【点睛】本题考查四元一次方程组与不等式的应用,找出题中数量关系,列出方程组,并整体得出两个未知数的方程是解题的关键,要注意钞票张数是整数. 17.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.18.0<m≤1【分析】不等式组整理后表示出不等式组的解集由不等式组有3个整数解确定出m 的范围即可【详解】解:不等式组整理得:解得:由不等式组有3个整数解即整数解为123则m 的取值范围是0<m≤1故答案为解析:0<m≤1【分析】不等式组整理后,表示出不等式组的解集,由不等式组有3个整数解,确定出m 的范围即可.【详解】 解:不等式组整理得:72x m x ≥⎧⎪⎨<⎪⎩, 解得:72m x ≤<, 由不等式组有3个整数解,即整数解为1,2,3,则m 的取值范围是0<m≤1.故答案为:0<m≤1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.20.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.三、解答题21.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备;第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)购买3台A 型污水处理设备,7台B 型污水处理设备更省钱【分析】(1)设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,由不等量关系购买A 型号的费用+购买B 型号的费用≤136;A 型号每月处理的污水总量+B 型号每月处理的污水总量≥2150,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.【详解】设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,根据题意,得1512(10)136250200(10)2150x x x x +-≤⎧⎨+-≥⎩, 解这个不等式组,得:1353x ≤≤.∵x 是整数,∴x=3或x=4或x=5.当x=3时,10﹣x=7;当x=4时,10﹣x=6;当x=5时,10-x=5.答:有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备; 第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).因为135>132>129,所以应购污水处理设备A 型号3台,B 型号7台.答:购买3台A 型污水处理设备,7台B 型污水处理设备更省钱.【点睛】此题考查方案类不等式组的实际应用,有理数的混合运算,正确理解题意,根据题意列得不等式组是解题的关键.23.(1)180,(2)租36座车1辆,48座3辆最省钱.【分析】(1)设租36座的车x 辆,则租48座的客车(x ﹣1)辆.根据不等关系:租48座客车,则能少租一辆,且有一辆车没有坐满,但超过30人,列不等式组即可.(2)根据(1)中求得的人数,进一步计算不同方案的费用:①只租36座客车;②只租42座客车;③合租两种车.再进一步比较得到结论即可.【详解】解:(1)设租36座的车x 辆. 据题意得:3648(2)303648(2)48x x x x --⎧⎨--⎩><, 解得:1124x x ⎧⎪⎨⎪⎩<>.∴不等式组的解集为4112x <<. ∵x 是整数,∴x =5.36×5=180(人),答:该校初三年级共有师生180人参观黄石矿博园.(2)设租36座车m 辆,租48座车n 辆,根据题意得,36m+48n≥180,∵m 、n 为非负整数,方案①:租36座车5辆,费用为:5×400=2000元;方案②:租36座车4辆,48座至少1辆,最低费用为:4×400+480=2080元; 方案③:租36座车3辆,48座至少2辆,最低费用为:3×400+2×480=2160元; 方案④:租36座车2辆,48座至少3辆,最低费用为:2×400+3×480=2240元; 方案⑤:租36座车1辆,48座至少3辆,最低费用为:1×400+3×480=1840元; 方案⑥:租48座车4辆,费用为:4×480=1920元;∴选择方案⑤:租36座车1辆,48座3辆最省钱.【点睛】本题考查了不等式组的应用和方案选择问题,正确设未知数,准确把握不等关系,列出不等式或不等式组,是解决问题的关键.24.(1)32x ≤-,数轴见解析;(2)y >5,数轴见解析 【分析】先对不等式进行求解,求出解集,然后在数轴上表示出解集即可.【详解】解:(1)∵()4521x x +≤+,即4225x x -≤-, 即32x ≤-, ∴不等式的解集为:32x ≤-;(2)()1113125y y y +<-- 即133522y y y +-<-, 即33102y -<-, 故5y >, 故不等式的解集为:5y >.【点睛】本题考查的是一元一次不等式的解法,解此类题目经常用到数轴,注意x 或y 是否取得到,若取得到则为实心否则为空心.25.(1)-3;(2)x 6=.【分析】(1)根据新定义列式计算即可;(2)根据新定义分两种情况列方程求解即可.【详解】解:()121-<,∴()21213-⊗=--=-故答案为:3-()2①当3x 732x -≥-时,即x≥2()()3x 732x 2-⊗-=即3x 732x 2-+-=x 6=.②当3x 732x -<-时,即x<2()()3x 732x 2-⊗-=即()3x 732x 2---=125x =(不合题意,舍去) x 6.∴=【点睛】本题主要考察了新定义的计算,解一元一次方程以及有理数的混合运算,解题的关键是熟练掌握解一元一次方程的一般步骤和有理数的混合运算法则.26.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解; (2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒),5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+ ⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.。
人教版七年级下册数学第九章 不等式与不等式组含答案(配有卷)

人教版七年级下册数学第九章不等式与不等式组含答案一、单选题(共15题,共计45分)1、现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为( )A. B. C.D.2、如图,用不等式表示数轴上所示的解集,正确的是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23、若,则关于x的不等式的解集A. B. C. D.4、不等式组的整数解共有6个,则a的解集是()A. B. C. D.5、不等式1+x<0的解集在数轴上表示正确的是()A. B. C. D.6、在数轴上表示不等式x﹣2>0的解集,其中正确的是()A. B. C.D.7、下列用数轴表示不等式的解集正确的是()A. B. C. D.8、不等式组的解集为()A. B. C. D.9、解不等式,下列去分母正确的是()A. B. C.D.10、使得关于 x 的不等式组无解,且使分式方程的解小于 4 的所有整数a 的个数是().A.2B.3C.4D.511、如图,天平右边托盘里的每个砝码的质量都是1kg,则图中显示物体质量的范围是()A.大于2kgB.小于3kgC.大于2kg且小于3kgD.大于2kg或小于3kg12、不等式组的解集在数轴上表示为( )A. B. C. D.13、若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B. C.D.14、若关于x的一元一次不等式组恰有个整数解,那么a的取值范围是()A. B. C. D.15、不等式组的解集是()A. B. C. D.二、填空题(共10题,共计30分)16、若a<b<0,则1﹣a、1﹣b之间的大小关系为:________ (用“<”连接).17、如果不等式的解集为x>1,那么a必须满足________.18、写出一个能使不等式成立的x的值________.19、某药品说明书上标明药品保存的温度是(10±4)℃,设该药品合适的保存温度为t,则温度t的范围是________20、若不等式组有三个整数解,则的取值范围是________.21、已知关于x的不等式(1﹣a)x>3的解集为x<,则a的取值范围是________.22、若不等式-2x<2m+4 与不等式 2x+1>5 有相同的解集,则 m 的值________.23、已知关于x的不等式(-a)x>(-a)的解集为x<1,化简|a-2|-|1-a|=________.24、已知关于x的不等式组的整数解共有4个,则a的取值范围是________25、不等式组的所有整数解是________.三、解答题(共6题,共计25分)26、已知,且x-y<0,求k的取值范围27、为了增加同学们对新冠肺炎防控知识的了解,某班级组织了一次测验,共有15道选择题,评分标准为:答对一道题给2分,答错一道题扣2分,不答题不给分也不扣分.小强同学在答题时除了有2道题不会没有给出答案外,对其它题都给出了答案,若他想让自己的总分不低于16分,那么他至少要答对几道题?28、解不等式:4x﹣2≥2(x+2)29、解不等式,并把它的解集表示在数轴上。
(常考题)人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试(包含答案解析)
一、选择题1.定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a ﹣b .例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x ﹣7)☆(3﹣2x )=2的解为x=( )A .1B .125C .6或125D .62.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下 4.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a > B .3a ≤ C .3a < D .3a ≥ 5.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个6.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种7.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 8.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 9.若|65|56x x -=-,则x 的取值范围是( )A.56x>B.56x<C.56x≥D.56x≤10.不等式组10840xx->⎧⎨-≤⎩的解集在数轴上表示为()A.B.C.D.11.若0a<,则关于x的不等式221ax x-<+的解集为()A.32xa<-B.32xa>-C.32xa>-D.32xa<-12.不等式组32153xx->⎧⎨-<-⎩的解集在数轴上的表示是()A.B.C.D.二、填空题13.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A、B、C三类糖果.已知一班分别购买 A、B、C三类糖果各3千克、2千克、5千克,二班分别购买A、B、C三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A与C单价差大于25元.则三班分别购买A、B、C三类糖果各2千克、3千克、4千克的总金额为______元.14.已知不等式组4313xx a-≤≤-⎧⎪⎨->⎪⎩有解,那么a的取值范围是___________.15.不等式组63024xx x-⎧⎨<+⎩的解集是__.16.已知点()6,29P m m--关于x轴对称的点在第三象限,则m的整数解是______.17.不等式组233225xx x-≥⎧⎨+>-⎩的解集是__________.18.已知关于x的不等式组10x ax-≥⎧⎨->⎩的整数解共有3个,则a的取值范围是________.19.关于x的不等式2x-a≤-3的解集如图所示,则a的值是______ .20.已知x ﹣y=3,且x >2,y <1,则x+y 的取值范围是_____.三、解答题21.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩22.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.(2)如果甲、乙两种汽车每辆车的租车费用分别为2500元和2000元,请你选择最省钱的一种方案.23.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(2)哪种方案更省钱?并说明理由.24.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?25.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x -+>-; (2)2(1)0210x x +<⎧⎨-⎩. 26.解不等式组:22(4)133x x x x -≤+⎧⎪-⎨+>⎪⎩,并求出它的所有整数解的和.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分3x-7≥3-2x和3x-7<3-2x两种情况,依据新定义列出方程求解可得.【详解】解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得:x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得:x=125(不符合前提条件,舍去),∴x的值为6.故选:D.【点睛】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x的不等式及解一元一次不等式、一元一次方程的能力.2.A解析:A【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【详解】解:∵点P(a,b)在第二象限,∴a<0,b>0,∴-a>0,b+1>0,∴点B(﹣a,b+1)在第一象限.故选A.【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征和不等式的性质.注意第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.C解析:C【解析】分析:本题可设玻璃球的体积为x ,再根据题意列出不等式组求得解集得出答案即可. 详解:设玻璃球的体积为x ,则有33001804300180x x -⎧⎨-⎩<> 解得30<x <40.故一颗玻璃球的体积在30cm 3以上,40cm 3以下.故选C .点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围. 4.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D .【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.5.B解析:B【分析】直接利用一元一次不等式的解法分析得出答案.【详解】解:3(x-1)≤5-x3x-3≤5-x ,则4x≤8,解得:x≤2,故不等式3(x-1)≤5-x 的正整数解有:1,2共2个.故选:B .【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.6.C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.7.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.9.D解析:D【分析】先根据绝对值的性质判断出65x-的符号,再求出x的取值范围即可.【详解】∵6556x x -=-,∴650x-≤,∴56x≤.故选:D.【点睛】本题考查了绝对值的性质以及解一元一次不等式,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.10.A解析:A【分析】先对不等式组进行化简,找出它们的公共部分,然后在数轴上分别表示出x的取值范围.【详解】解:不等式组10 840 xx->⎧⎨-≤⎩①②由①得,x>1,由②得,x⩾2,故不等式组的解集为:x⩾2,在数轴上可表示为:故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,注意在数轴上表示解集时,空心圈和实心圈的区别.11.B解析:B【分析】先移项,再合并,最后把系数化为1,即可求出答案.【详解】移项,得:212ax x -<+,合并同类项得:(2)3a x -<,∵0a <,∴20a -<, ∴32x a >-, 故选:B .【点睛】 本题主要考查了一元一次不等式的解法,要注意系数化为1时,因为0a <,所以不等号的方向要改变.12.C解析:C【分析】先解不等式组求出其解集,然后根据不等式的解集在数轴上的表示方法进行判断即可.【详解】解:对不等式组32153x x ->⎧⎨-<-⎩, 解不等式3x -2>1,得x >1,解不等式x -5<﹣3,得x <2,∴不等式组的解集是1<x <2,不等式组的解集在数轴上表示为:.故选:C .【点睛】本题考查了一元一次不等式组的解法和不等式的解集在数轴上的表示,属于基础题目,熟练掌握解一元一次不等式组的方法是解题的关键. 二、填空题13.296【分析】可设A 单价x 元B 单价y 元由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2可得xy 的关系式再由A 与C 单价差大于25元可得一元一次不等式根据各单价是低于50元解析:296【分析】可设A 单价x 元,B 单价y 元,由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2,可得x 、y 的关系式,再由A 与C 单价差大于25元,可得一元一次不等式,根据各单价是低于50元/千克的整数求出符合题意的解即可【详解】解:设A 单价x 元,B 单价y 元三类糖果单价和为108元得C 单价为(108-x-y )元又一班和二班购买糖果的总金额比值为3∶2可得: 325(108)324(108)2x y x y x y x y ++--=++-- 整理可得:2x+3y=216①又A 与C 单价差大于25元,即x-(108-x-y )>25整理可得:2x+y>133,将①中的2x 代入可得:y<41.5又A 、B 、C 三类糖果单价是低于50元/千克的整数,故:若y=41,代入①得x=46.5,不符合题意若y=40,代入①得x=48,符合题意若y=39,代入①得x=49.5,不符合题意若y=38,代入①得x=51,不符合题意y 越小,x 越大,故后面x 的结果均大于50,不符合题意故x=48,y=40,108-x-y=20由上可知:A 类糖果的单价是48元B 类糖果的单价是40元C 类糖果的单价是20元故分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为:48×2+40×3+20×4=296(元)故答案为:296【点睛】本题考查一元一次不等式的解法,利用条件建立一元一次不等式并结合题意准确得到A 、B 、C 三类糖果的单价是解本题的关键14.【分析】先求出不等式组中第二个不等式的解再结合数轴根据不等式组有解即可得【详解】解得:在数轴上表示两个不等式的解如下:要使不等式组有解则解得故答案为:【点睛】本题考查了一元一次不等式组的解熟练掌握不 解析:1a <-【分析】先求出不等式组中第二个不等式的解,再结合数轴,根据不等式组有解即可得.【详解】解103x a ->得:3x a >, 在数轴上表示两个不等式的解如下:要使不等式组有解,则33a <-,解得1a <-,故答案为:1a <-.【点睛】本题考查了一元一次不等式组的解,熟练掌握不等式组的解法是解题关键.15.【分析】分别解两个不等式得到和x <4然后根据同大取大同小取小大于小的小于大的取中间小于小的大于大的无解确定不等式组的解集【详解】解:解不等式得:解不等式得:则不等式组的解集为故答案为【点睛】本题考查 解析:2x【分析】分别解两个不等式得到2x 和x <4,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集.【详解】解:解不等式630x -,得:2x ,解不等式24x x <+,得:4x <,则不等式组的解集为2x ,故答案为2x .【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 16.5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围【详解】解:∵点P(m ﹣62m ﹣9)关于x 轴的对称点在第三象限∴点P 在第二象限∴m ﹣6<0且2m ﹣9>0解得:<m<6∴m 的取值范围是<m<解析:5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围.【详解】解:∵点P (m ﹣6,2m ﹣9)关于x 轴的对称点在第三象限,∴点P 在第二象限,∴m ﹣6<0且2m ﹣9>0, 解得:92<m<6, ∴m 的取值范围是92<m<6, ∴m 的整数解为5;故答案为 5.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),要注意先判断出点P 在第二象限.17.【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案【详解】解:不等式组由①得:由②得:x>-7∴不等式组的解集为:故答案为:【点睛】本题考查不等式组的求解掌握求每个不等式解集交集方法是 解析:71x -<≤-【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案.【详解】解:不等式组233225x x x -≥⎧⎨+>-⎩①②,由①得: 1x ≤-,由②得:x>-7, ∴不等式组的解集为:71x -<≤-,故答案为:71x -<≤-.【点睛】本题考查不等式组的求解,掌握求每个不等式解集交集方法是解题关键.18.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的 解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.19.1【分析】首先用a 表示出不等式的解集然后解出a 【详解】∵2x-a≤-3∴x≤∵x≤-1∴a=1故答案为1【点睛】不等式的解集在数轴上表示出来的方法:>空心圆点向右画折线≥实心圆点向右画折线<空心圆点解析:1【分析】首先用a 表示出不等式的解集,然后解出a .【详解】∵2x-a≤-3,∴x≤32a -, ∵x≤-1,∴a=1.故答案为1.【点睛】 不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.20.1<x+y <5【分析】利用不等式的性质解答即可【详解】解:∵x ﹣y=3∴x=y+3又∵x >2∴y+3>2∴y >﹣1又∵y <1∴﹣1<y <1①同理得:2<x <4②由①+②得﹣1+2<y+x <1+4∴x解析:1<x+y <5【分析】利用不等式的性质解答即可.【详解】解:∵x ﹣y=3,∴x=y+3,又∵x >2,∴y+3>2,∴y >﹣1.又∵y <1,∴﹣1<y <1①同理得:2<x <4②由①+②得﹣1+2<y+x <1+4∴x+y 的取值范围是1<x+y <5故答案为1<x+y <5.【点睛】本题考查了一元一次不等式组的应用,关键是先根据已知条件用一个量如y 取表示另一个量如x ,然后根据题中已知量x 的取值范围,构建另一量y 的不等式,从而确定该量y 的取值范围,同法再确定另一未知量x 的取值范围.三、解答题21.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆;(2)最省钱的租车方案为:租用甲种汽车5辆,乙种汽车3辆.【分析】(1)可根据租用甲、乙两种型号的汽车座位总数不小于290,可载行李总数不小于100件列出不等式组,求出x 的取值,看在取值范围中x 可取的整数的个数即为方案数.(2)根据(1)中方案分别计算甲、乙所需要的费用,然后比较,花费较少的即为最省钱的租车方案.【详解】解:(1)由租用甲种汽车x 辆,则租用乙种汽车()8x -辆.由题意得:()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩解得:56x ≤≤.即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)租汽车的总费用为:()25002000850016000x x x +-=+(元)当x 取最小值时,总费用最省,因此当5x =时,总费用最省当5x =时,总费用为:50051600018500⨯+=元最省钱的租车方案为方案一:租用甲种汽车5辆,乙种汽车3辆.【点睛】本题主要考查的是一元一次不等式组的应用,找出题目的不等关系是解题的关键. 23.(1)有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备;第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)购买3台A 型污水处理设备,7台B 型污水处理设备更省钱【分析】(1)设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,由不等量关系购买A 型号的费用+购买B 型号的费用≤136;A 型号每月处理的污水总量+B 型号每月处理的污水总量≥2150,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.【详解】设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,根据题意,得1512(10)136250200(10)2150x x x x +-≤⎧⎨+-≥⎩, 解这个不等式组,得:1353x ≤≤.∵x 是整数,∴x=3或x=4或x=5.当x=3时,10﹣x=7;当x=4时,10﹣x=6;当x=5时,10-x=5.答:有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备; 第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).因为135>132>129,所以应购污水处理设备A 型号3台,B 型号7台.答:购买3台A 型污水处理设备,7台B 型污水处理设备更省钱.【点睛】此题考查方案类不等式组的实际应用,有理数的混合运算,正确理解题意,根据题意列得不等式组是解题的关键.24.(1)一个甲种笔记本需10元,一个乙种笔记本需5元;(2)25个【分析】(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元列二元一次方程组解答; (2)设需要购买a 个甲种笔记本,列不等式解答.【详解】解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元,15202501025225x y x y +=⎧⎨+=⎩,解得105x y =⎧⎨=⎩, 答:购买一个甲种笔记本需10元,一个乙种笔记本需5元.(2)设需要购买a 个甲种笔记本,105(35)300a a +-≤,解得:25a ≤,答:至多需要购买25个甲种笔记本.【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,正确理解题意是解题的关键. 25.(1) 2.4x <,数轴见解析;(2)1x <-,数轴见解析【分析】(1)根据去分母、去括号、移项、合并、系数化为1求出不等式的解集即可;(2)分别解两个不等式得到1x <-和12x,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集,再用数轴表示解集.【详解】解:(1)去分母得:2(4)326x x ->+-, 82326x x ->+-,23268x x -->--,512x ->-,2.4x <,在数轴上表示为:;(2)()210210x x ⎧+<⎨-⎩①②, 解不等式①得:1x <-, 解不等式②得:12x, 所以不等式组的解集是1x <-, 在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组):求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 26.不等式组的解集是24x -≤<,所有整数解的和为3.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】22(4)133x x x x -≤+⎧⎪⎨-+>⎪⎩①②, 解不等式①得,2x ≥-,解不等式②得,4x <,所以,不等式组的解集是24x -≤<,所以,它的所有整数解是-2,-1,0,1,2,3,∴所有整数解的和为:()2101233-+-++++=.【点睛】本题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
新人教版七年级数学下册第九章《不等式与不等式组》检测试题及答案(1)
人教版七年级数学下册第九章不等式与不等式组复习测试题含答案一、选择题1. 下列式子:①x +2≤3;②x =3;③4x +3y >0;④x -1≠5;⑤ 3>0是不等式的有( )A. 2个B. 3个C. 4个D. 5个 2.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( )①去分母,得5(x +2)>3(2x -1);②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m≤0D. -1≤m<0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,某单位为一灾区中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A. 60B. 70C. 80D. 9010.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
七年级数学(下)(人教版)第9章 不等式与不等式组 检测题(含详解)
第九章 不等式与不等式组检测题〔时辰 :120分钟,总分值:100分〕一、选择 题〔共10小题,每题3分,总分值30分〕1.不等式的解集在数轴上表示 精确 的选项是〔 〕2.不等式-1<≤2在数轴上表示 精确 的选项是〔 〕3.解集在数轴上表示 为如以下图的不等式组是〔 〕A .B .C .D . 4.关于 的不等式2-≤1的解集如以下图,那么的取值是〔 〕A .0B .-3C .-2D .-15.将不等式组的解集在数轴上表示 出来,精确 的选项是〔 〕6.已经清楚 <,那么以下不等式中不精确 的选项是〔 〕A .4<4B .+4<+4C .-4<-4D .-4<-47.称心 -1<≤2的数在数轴上表示 为〔 〕A .B .C . D第4题图A .B .C .D .8.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,那么他用的时辰大年夜概为〔〕A.1小时~2小时 B.2小时~3小时C.3小时~4小时 D.2小时~4小时9.假设方程3(+1)+1=(3-)-5的解是负数,那么的取值范围是〔〕A.>-1.25 B.<-1.25 C.>1.25 D.<1.2510.某种出租车的收费标准:起步价7元〔即行驶距离不逾越3 km都需付7元车费〕,逾越3 km后,每增加 1 km,加收2.4元〔缺少 1 km按1 km计〕.某人乘这种出租车从甲地到乙地共付车费 19元,那么甲地到乙地行程的最大年夜值是〔〕A.5 km B.7 km C.8 km D.15 km二、填空题〔共8小题,每题3分,总分值24分〕11.当________时,不等式(2-)<8的解集为>.12.从小明家到黉舍的行程是2 400米,假设小明早上7点离家,要在7点30分到40分之间到达黉舍,设步行速度为米/分,那么可列不等式组为__________________,小明步行的速度范围是_________.13.假设 =,=,且>2>,那么的取值范围是________.14.已经清楚=3是方程-2=-1的解,那么不等式(2-)<的解集是.15.假设不等式组的解集是>3,那么的取值范围是.16.已经清楚关于的不等式组的整数解共有5个,那么的取值范围是.17.小明用100元钞票购得笔记本跟钢笔共30件,已经清楚每本笔记本2元,每支钢笔5元.那么小明最多能买支钢笔.18.某种商品的进价为800元,出售时标价为1 200元,后因由于该商品积压,市廛准备打折销售,但要保证利润率不低于5%,那么至多可打折.三、解答题〔共6小题,总分值46分〕19.(6分)解不等式组,并把它的解集表示在数轴上:20.〔8分〕已经清楚关于的方程的解为非负数,求的取值范围.21.〔8分〕国庆节时代,电器市场火爆.某市廛需要购进一批电视机跟洗衣机,按照市场调查,决定电视机进货量非常多于洗衣机的进货量的一半.电视机与洗衣机的进价跟售价如下表:类不电视机洗衣机进价〔元/台〕 1 800 1 500售价〔元/台〕 2 000 1 600方案购进电视机跟洗衣机共100台,市廛最多可筹集资金161 800元.〔1〕请你帮助市廛算一算有多少多种进货方案?〔不考虑除进价之外的其他费用〕〔2〕哪种进货方案待市廛销售购进的电视机与洗衣机终了后获得利润最多?并求出最多利润.〔利润=售价-进价〕22.〔8分〕今秋,某市白玉村水果喜获歉收,果农王灿收获枇杷20吨,桃子12吨.现方案租用甲、乙两种货车共8辆将这批水果全部运往当地销售,已经清楚一辆甲种货车可装枇杷4吨跟桃子1吨,一辆乙种货车可装枇杷跟桃子各2吨.〔1〕王灿怎么样安排甲、乙两种货车可一次性地运到销售地?有多少多种方案?〔2〕假设甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,那么果农王灿应选择哪种方案,使运输费最少?最少运费是多少多?23.〔8分〕2021年我市某县准备 20周年县庆,园林局部决定使用现有的3 490盆甲莳花草跟 2 950盆乙莳花草搭配两种园艺外型共50个摆放在迎宾大道两侧,已经清楚搭配一个种外型需甲莳花草 80盆,乙莳花草 40盆,搭配一个种外型需甲莳花草 50盆,乙莳花草 90盆.〔1〕某校九年级〔1〕班课外活动小组承接了谁人园艺外型搭配方案的方案,征询符合题意的搭配方案有多少多种?请你帮助方案出来.〔2〕假设搭配一个种外型的本钞票是800元,搭配一个种外型的本钞票是960元,试说明〔1〕中哪种方案本钞票最低?最低本钞票是多少多元?24.〔8分〕一经销商方案购进某品牌的A型、B型、C型三款共60部,每款至多要购进8部,且偏偏用完购机款61 000元.设购进A型部,B型部.三款的进价跟预售价如下表:〔1〕用含,的式子表示购进C型的部数;〔2〕求出与之间的函数关系式;〔3〕假设所购进全部售出,综合考虑各种因素,该经销商在购销这批过程中需不的支出各种费用共1 500元.①求出预估利润〔元〕与〔部〕的函数关系式;〔注:预估利润=预售总额-购机款-各种费用〕②求出预估利润的最大年夜值,并写出现在购进三款各多少多部.第九章不等式与不等式组检测题参考答案1.A 分析:不等式的解集为.应选A.2.A 3.D4.B 分析:≤,又不等式的解为:≤-1,因此=-1,解得:=-3.5.C 分析:解不等式组得.6.C分析:按照不等式的根天分质,不等式单方同时加上或减去一致个数,不等号的倾向波动;不等式单方同时乘或除以一致个负数,不等号的倾向波动,同时乘或除以一致个负数,不等号的倾向要修改 .7.B分析:留心解集表示时的倾向及点的空心与实心的区不.8.D分析:行程肯定,速度的范围开门见山决定所用时辰的范围 . 9.A分析:先通过解方程求出用表示的的式子,然后按照方程解是负数,掉掉落关于的不等式,求解不等式即可.10.C11.>2 分析:按照不等式的性质,不等号倾向发生修改,因此x的系数小于0. 12.60米/分~80米/分分析:7点出发,要在7点30分到40分之间到达黉舍,意味着小明在30分钟之内的行程不克不迭逾越2 400米,而40分钟时的行程至多到达2 400米.由此可列出不等式组.13.1<a<4 分析:按照题意,可掉掉落不等式组解不等式组即可.14.x<分析:先将x=3代入方程,可解得a=-5,再将a=-5代入不等式解不等式得出结果.15.m3 分析:解不等式组可得结果由于不等式组的解集是x>3,因此结合数轴,按照“同大年夜取大年夜〞原那么,不行看出结果为m3.16.-3<a≤-2 分析:解不等式组可得结果a≤x≤2,因此五个整数解为2、1、0、-1、-2,因此-3<a≤-2.17.13 分析:设小明一共买了x本笔记本,y支钢笔,按照题意,可得,可求得y≤.由于y为正整数,因此最多可以买钢笔13支.18.7 分析:设最低打x折,由题意可得,解得x≥7.19.解:解不等式①,得;解不等式②,得.在一致条数轴上表示不等式①②的解集,如以下图:第19题答因此,原不等式组的解集是.20.解:解关于x的方程,得.由于方程的解为非负数,因此有≤0,解得≥.21.解:〔1〕设市廛购进电视机x台,那么购进洗衣机〔100-x〕台,按照题意,得解不等式组,得≤x≤.即购进电视机最少34台,最多39台,市廛有6种进货方案.〔2〕设市廛销售终了后赚钱为y元,按照题意,得y=〔2 000-1 800〕x+(1 600-1 500)(100-x)=100x+10 000.由于100>0,因此当x最大年夜时,y的值最大年夜.即当x=39时,市廛赚钱最多为13 900元.22.解:〔1〕设安排甲种货车x辆,那么安排乙种货车〔8-x〕辆,依题意,得4x + 2〔8-x〕≥20,且x + 2〔8-x〕≥12,解此不等式组,得x≥2,且x≤4,即2≤x≤4.由于x 是正整数,因此x可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车乙种货车方案一2辆6辆方案二3辆5辆〔2〕方案一所需运费300×2+240×6= 2 040〔元〕;方案二所需运费300×3+240×5 =2 100〔元〕;方案三所需运费300×4 +240×4 =2 160〔元〕.因此王灿应选择方案一运费最少,最少运费是2 040元.23.解:设搭配种外型个,那么种外型为个,依题意,得:解谁人不等式组,得:,.是整数,可取,因此可方案三种搭配方案:①种园艺外型个,种园艺外型个;②种园艺外型个,种园艺外型个;③种园艺外型个,种园艺外型个.〔2〕由于种外型的本钞票高于种外型,因此种外型越少,本钞票越低,故应选择方案③,本钞票最低,最低本钞票为:〔元〕24.解:〔1〕60-x-y;〔2〕由题意,得900x+1 200y+1 100〔60-x-y〕= 61 000,拾掇得y=2x-50.〔3〕①由题意,得= 1 200x+1 600y+1 300〔60-x-y〕-61 000-1 500,拾掇得=500x+500.②购进C型部数为:60-x-y =110-3x.按照题意列不等式组,得解得29≤x≤34.因此x范围为29≤x≤34,且x为整数.由于是x的一次函数,k=500>0,因此随x的增大年夜而增大年夜.因此当x取最大年夜值34时,有最大年夜值,最大年夜值为17 500元.现在购进A型34部,B型18部,C型8部.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《不等式与不等式组》测试题(一)
一、 精心选一选,你一定能行(每小题3分,共30分)
1.一家三口(父母和女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,女儿按半价优惠。
”乙旅
行社告知:“家庭旅游可按团体票价,即每人均按 的收费。
”若这两家旅行社每人的原票价相同,那么 ( )
A.甲比乙优惠
B.乙比甲优惠
C.甲与乙相同
D.与原票价相同
2.已知a 是有理数,下列格式总正确的是 ( )
A.20a >
B.11a ->
C.10a -≥
D.11a a +>--
3.ABC ∆的三边,,a b c 都是正整数,且满足a b c ≤≤,如果4c =,那么这样的三角形共有
( )
A.4
B.6
C.8
D.10
4.四个小朋友玩跷跷板,他们的体重分别为,,,P Q R S ,如图,则他们的大小关系是( )
A.P R S Q >>>
B.Q S P R >>>
C.S P Q R >>>
D.S P R Q >>> S P R P PR
QS
5.若不等式组0{321
x a x -≥->-的整数解有5个,则a 的取值范围是 ( ) A.3a <- B.4a >-
C.3a >-
D.43a -<≤-
6.不等式组211{841
x x x x ->++<-的解集是( ) A.3x < B.3x >- C.3x <- D.3x >
7.一次知识竞赛共有30道题,规定答对一道得4分,打错或不答得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对( )道题
A.23 .
B.24
C.25
D.26
8.若点(2,1)A a a -+在第二象限,则a 的取值范围是 ( )
A.2a >
B.12a -<<
C.1a <-
D.1a <
9.若式子221x x
-+的值是负数,则x 的取值范围是 ( ) A.2x > B.0x > C.2x <且0x ≠ D.2x <
10.两个式子1x -与3x -的值的符号相同,则x 的取值范围是 ( )
A.3x =
B.1x <
C.12x <<
D.1x <或3x >
二、精心填一填,马到成功(每题3分,共30分)
11.当x_____时,代数式6124
x x --的值是负的。
12.要使21x p
-+保持非负值,则x 的取值范围是_________ 13.不等式组{
3610x x ≤+> 的整数解是_____ 14.已知三角形的三边长分别为2,2,x.则整数x 的值可为_____
15.若23396a x +->是关于x 的一元一次不等式,则a=______
16.满足-1326x ≤-<的所有的x 的整数之和是______
17.已知一个球队共得了14场,恰红赢的场比平的场数和输的场数都要少,那么这个球队最多赢了_____场。
18.已知关于x 的不等式(1)2a x ->的解集是21x a
<-,则a 的取值范围是______ 19.学生若干人,住若干房间,若每间住4人,则剩19人没处住,若每间住6人,则有一间不满也不空,则共有_____个房间,有_____人。
20.如果112
x <<,则(21)(1)x x --_____0. 三.解答题(共60分)
1.解下列不等式(组),并把解集在数轴上表示出来。
(1)181326x x x x +++
<++ (9分)
(2)35582
x -≤
≤ (9分)
(3){2(2)513(2)82x x x x
+<+-+<(10分)
2.(10分)若不等式
52122x ax ++-<的解集是12x >,求a 的取值。
3.(10分)已知关于x 的方程3(2)273x a +-=+的解不大于
51(23)52a a x x ++=得解,求a 的取值范围。
4.(12分)七(1)班有50名学生,每人血药制作一间A 型或B 型陶艺品,学校现有甲种材料36kg ,乙种材料29kg ,制作A,B 两种型号的陶艺品用材料情况如下表:
需甲材料 需乙材料 一件A 型陶艺品 0.9kg 0.3kg
一件B型陶艺品0.4kg1kg
()1设制作B型陶艺品x件,求x的取值范围
()2请你根据学校现有材料,分别写出七(1)班制作A型和B性的件数。
答案
一、1.B 2.C 3.B 4.D 5.D 6.D 7.B 8.A 9.A 10.D
二、11、12
x >- 12.7x ≥- 13、1-12x -<≤ 14、4或5或6 15、—1 16、2 17、4 18、1a > 19、10或11或12 59或63或67 20、< 三、1、(!)3x <(2)57x ≤≤(3)1x < 2、3a = 3、1712x ≥-
4、(1)1820x ≤≤ (2)A 型32件B 型18件或A 型31件B 型19件或A 型30件B 型20件。