绝对值专题训练和答案

合集下载

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。

专题训练(二) 有理数的绝对值及偶次方的非负性

专题训练(二)  有理数的绝对值及偶次方的非负性

专题训练(二) 有理数的绝对值及偶次方的非负性类型之一 绝对值的符号化简1.任何一个有理数的绝对值一定( )A .大于0B .小于0C .不大于0D .不小于02.若a 为有理数,则-|a |表示( )A .正数B .负数C .正数或0D .负数或03.设x 是有理数,那么下列各式中一定表示正数的是( )A .2019xB .x +2019C .|2019x |D .|x |+20194.若a >3,则|6-2a |=______(用含a 的式子表示).5.若有理数a ,b 满足ab >0,则||a a +b ||b 的值可能是________. 类型之二 绝对值与数轴相结合6.[2019·河北] 点A ,B 在数轴上的位置如图2-ZT -1所示,其对应的数分别是a 和b.对于以下结论:甲:b -a<0;乙:a +b>0;丙:|a|<|b|;丁:b a>0. 其中正确的是( )图2-ZT -1A .甲、乙B .丙、丁C .甲、丙D .乙、丁7.已知a ,b 是有理数,|ab|=-ab(ab≠0),|a +b|=|a|-b.用数轴上的点A ,B 来表示a ,b ,下列正确的是( )图2-ZT -28.如图2-ZT -3,四个有理数在数轴上的对应点分别为M ,P ,N ,Q.若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是________.图2-ZT-3类型之三两个非负性的应用9.若|a|+|b|=0,则a与b的大小关系是()A.a=b=0 B.a与b互为相反数C.a与b异号D.a与b不相等10.已知|a+1|与|b-4|互为相反数,则a b的值是()A.-1 B.1 C.-4 D.411.若|x-1|+|y+2|+|z-3|=0,则(x+1)(y-2)(z-3)的值是________.12.若(a+1)2+|b-2|=0,求a2019b3的值.13.如果有理数a,b满足|ab-2|+|1-b|=0,试求:(1)a,b的值;(2)1ab +1(a+1)(b+1)+1(a+2)(b+2)+…+1(a+2016)(b+2016)的值.类型之四绝对值的最值问题14.式子|x+2|-3取最小值时,x等于()A.0 B.-1 C.-2 D.-315.式子10-|2x-5|所能取到的最________(填“大”或“小”)值是________,此时x=________.1.D[解析] 由绝对值的定义可知,任何一个有理数的绝对值一定大于等于0,题中选项只有D符合题意.2.D[解析] 当a>0时,|a|=a,-|a|为负数;当a=0时,|a|=0,-|a|=0;当a<0时,|a|=-a,-|a|=a为负数.3.D[解析] 当x≤0时,2019x≤0,不是正数,A项错误;当x≤-2019时,x+2019≤0,不是正数,B项错误;当x=0时,|2019x|=0,不是正数,C项错误;因为|x|≥0,所以|x|+2019>0,D项正确.故选D.4.2a-6[解析] 因为a>3,所以2a>6,所以6-2a<0,所以|6-2a|=2a-6.5.±2 [解析] 因为ab >0,所以a ,b 同号.若a >0,b >0,则||a a +b ||b =2;若a <0,b <0,则||a a +b ||b =-2.综上所述,||a a +b ||b 的值可能是±2. 6.C [解析] 观察数轴可得0<a <3,b <-3,所以b -a <0,故甲的说法正确;因为0<a <3,b <-3,所以a +b <0,故乙的说法错误;因为0<a <3,b <-3,所以|a |<|b |,故丙的说法正确;因为0<a <3,b <-3,所以b a<0,故丁的说法错误. 7.C [解析] 因为|ab |=-ab (ab ≠0),|a +b |=|a |-b ,所以|a |>|b |,且a <0在原点左侧,b >0在原点右侧,得到选项C 中的图形满足题意.故选C.8.P [解析] 因为点M ,N 表示的有理数互为相反数,所以原点O 在M ,N 的中间,且到点M ,N 的距离相等,所以图中表示绝对值最小的数的点是P .9.A [解析] 因为|a |+|b |=0,|a |≥0,|b |≥0,所以|a |=0,|b |=0,所以a =0,b =0.10.B [解析] 根据题意,得⎩⎨⎧a +1=0,b -4=0,解得⎩⎨⎧a =-1,b =4,则a b =(-1)4=1. 11.0 [解析] 因为|x -1|+|y +2|+|z -3|=0,所以x =1,y =-2,z =3,所以(x +1)(y -2)(z -3)=2×(-4)×0=0.12.解:由题意得,a +1=0,b -2=0,解得a =-1,b =2,所以a 2019b 3=(-1)2019×23=1×8=8.13.解:(1)由题意,得ab -2=0,1-b =0,解得a =2,b =1.(2)原式=12×1+13×2+14×3+…+12018×2017=1-12+12-13+13-14+…+12017-12018=1-12018=20172018.14.C[解析] 因为|x+2|≥0,所以当|x+2|=0时,|x+2|-3取最小值,所以x+2=0,解得x=-2.故选C.15.大1052[解析] 因为|2x-5|≥0,所以|2x-5|的最小值为0,所以式子10-12x-51所能取到的最大值为10.。

绝对值专题训练及答案

绝对值专题训练及答案

绝对值专题训练及答案1.如果|a|=﹣a,那么a的取值范围是()A .a>0 B.a<0 C.a≤0 D.a≥02.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A .1个B.2个C.3个D.4个3.计算:|﹣4|=()A .0 B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A .﹣8 B.2 C.8或﹣2 D.﹣8或25.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a6.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A .1 B.0 C.﹣1 D.﹣27.在数轴上距﹣2有3个单位长度的点所表示的数是()A .﹣5 B.1 C.﹣1 D.﹣5或18.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A .1个B.2个C.3个D.4个9.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A .a B.﹣a C.±a D.﹣|a|10.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1 D.11.a,b在数轴位置如图所示,则|a|与|b|关系是()A .|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.13.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.14.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a| 15.a为有理数,下列判断正确的是()A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A .a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A .3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A .正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A .3 B.﹣1 C.±1或±3 D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A .1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A .正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A a>0B a≥0C a<0 D自然数....24.若|m﹣1|=5,则m的值为()A .6 B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A .若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A .2 B.2或3 C.4 D.2或427.a<0时,化简结果为()A .B.0 C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A .1个B.2个C.3个D.无穷多个29.已知|x|=3,则在数轴上表示x的点与原点的距离是()A .3 B.±3 C.﹣3 D.0﹣330.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.任何一个有理数的绝对值在数轴上的位置是()A .原点两旁B.整个数轴C.原点右边D.原点及其右边33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57. 下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数58.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.59.若ab<0,试化简++.60.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.参考答案:1.因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.2.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5 A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.6.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.7.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9. 依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.10.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.13.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b14.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29. ∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.58.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160. ∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.。

人教版七年级数学上册《a除以a的绝对值》专题训练-附带答案

人教版七年级数学上册《a除以a的绝对值》专题训练-附带答案

人教版七年级数学上册《a 除以a 的绝对值》专题训练-附带答案类型一 分类讨论两个字母的取值范围1.若0||||aba b += 则||ab ab -=___【答案】1【解析】【分析】 由题意知aba b =- 可知a b ,互为相反数 去绝对值后计算求解即可.【详解】解:∵0aba b += ∵aba b =-∵a b ,互为相反数∵0ab < ∵1ababab ab -==--.故答案为:1【点睛】本题考查了相反数的应用 绝对值的性质 解题的关键熟练掌握绝对值的性质.2.若有理数a b 满足ab >0 则||||||a b aba b ab ++=___.【答案】−1或3【解析】【分析】根据已知得出a 、b 同号 分为两种情况:①当a >0 b >0时 ②当a <0 b <0时去掉绝对值符号求出即可.【详解】解:∵ab >0∵a 、b 同号 ①当a >0 b >0时 则||||||a bab a b ab ++=1+1+1=3;②当a <0 b <0时 则||||||a b ab a b ab ++=−1+(−1)+1=−1;故答案为:−1或3.【点睛】本题考查了绝对值的应用 运用分类讨论 注意:当a ≥0时 |a |=a 当a ≤0时 |a |=−a 是解答此题的关键.3.如果0y x << 则化简x xyx xy +=________ .【答案】0【解析】【分析】根据绝对值的意义及有理数乘除法运算法则进行分析化简.【详解】解:∵0x > ∵1xx =∵0,0x y >< ∵1xyxy =- ∵xxyx xy +=1-1=0故答案为:0.【点睛】本题考查绝对值的化简 有理数的乘除法运算 理解绝对值的意义掌握有理数乘除法运算法则是解题关键.4.已知ab >0 则||||aba b +=___.【答案】2或-2【解析】【分析】根据ab >0 可知a 、b 同号 再分类讨论求解即可.【详解】解:∵ab >0∵a 、b 同号当a 、b 都是正数时 112||||aba b +=+=;当a 、b 都是负数时112||||a b a b +=--=-; 故答案为:2或-2.【点睛】 本题考查了有理数的乘除法法则和绝对值化简 解题关键是明确a 、b 同号 并能够分类讨论求出代数式的值.5.若0mn > 则nmnmm n mn ++=__________.【答案】1-或3##3或-1【解析】【分析】根据依题意分类讨论 分0,0m n <<和0,0m n >>两种情况 进而根据绝对值的意义化简即可. 【详解】0mn >∴0,0m n <<或0,0m n >>当0,0m n <<时 ,m m n n =-=- mn mn = ∴nmnmm n mn ++=111--+1=-当0,0m n >>时 ,m m n n == mn mn = ∴nmnm m n mn ++=111++3=故答案为:1-或3.【点睛】本题考查了有理数的乘法法则 同号得证 绝对值的意义 分类讨论是解题的关键.6.已知a 、b 为有理数 且0ab ≠ 则||||a ba b +=________.【答案】2±或0【解析】【分析】分0a >、0b > 0a >、0b < 0a <、0b > 0a <、0b <四种情况分别求解可得.【详解】解:当0a >、0b >时 原式112=+=;当0a >、0b <时 原式110=-=;当0a <、0b >时 原式110=-+=;当0a <、0b <时 原式112=--=-;故答案为:2±或0.【点睛】本题主要考查绝对值 解题的关键是熟练掌握绝对值的性质及分类讨论思想的运用.7.若0ab < 则||||||a b ab a b ab ++=_______. 【答案】1-【解析】【分析】讨论a 和b 的符号 逐一求解即可.【详解】解:∵0ab <∵0a < 0b >或0a > 0b <若0a > 0b < 则1111a b ab a b ab ++=--=-; 若0a < 0b > 则1111a b ab a b ab ++=-+-=-; 综上所述 a b ab a b ab++的值为1- 故答案为:1-.【点睛】本题考查绝对值的性质 分情况讨论是解题的关键.类型二 分类讨论三个字母的取值范围8.a b c a b c++的值是______. 【答案】±1或3±##3±或 1±【解析】【分析】分别讨论a b c ,,的取值 然后去掉绝对值符号即可求值.【详解】①当0a > 0b > 0c >时 原式1113=++=;②当0a < 0b > 0c >时 原式1111=-++=;③当0a > 0b < 0c >时 原式1111=-+=;④当0a > 0b > 0c <时 原式1111=+-=;⑤当0a < 0b < 0c >时 原式1111=--+=-;⑥当0a > 0b < 0c <时 原式1111=--=-;⑦当0a < 0b > 0c <时 原式1111=-+-=-;⑧当0a < 0b < 0c <时 原式1113=---=-;综上所述 abca b c ++的值是±1或3±.故答案为:±1或3±【点睛】本题考查了绝对值 关键掌握分类讨论的思想解题.9.已知1a b ca b c ++=- 则abcabc 的值为______.【答案】1【解析】【分析】 由1abca b c ++=-可得a 、b 、c 中 只能有两个负数 一个正数 即abc >0然后代入求解即可. 【详解】解:∵1abca b c ++=-∵在a 、b 、c 中 只能有两个负数 一个正数∵abc >0 ∵abc abcabc abc ==1.故答案为1.【点睛】本题主要考查了有理数除法 灵活运用有理数的特点成为解答本题的关键.10.若n =||||||a b c a b c ++ abc <0 则n 的值为 _____.【答案】1或﹣3##-3或1【解析】【分析】由题意可知 a b c 三个数都为负数或是其中一个为负数、另两个为正数 再结合绝对值的性质即可得解.【详解】解:因为:abc <0所以a b c 三个有理数都为负数或其中一个为负数①当a b c 都是负数 则||||||a b c a b c++=---a b c a b c =-1-1-1=-3; ②当a b c 中有一个为负数 可假设a <0 b >0 c >0 则||||||a b c a b c++=-++a b c a b c =-1+1+1=1 故答案为:1或﹣3.【点睛】本题考查绝对值的性质 有理数的乘法法则 以及有理数的加减运算 熟练掌握绝对值的性质是解题关键.11.三个有理a 、b 、c 满足abc <0 (a +b )(b +c )(a +c )=0 则代数式||||||333a b c a b c++的值为_____. 【答案】13 【解析】【分析】根据已知条件可得a 、b 、c 这三个数其中一个为负数 其余两个为正数数 分为三种情况:①当0a <时 a 与b 异号 a 与c 异号 0b > 0c > ②当0b <时 a 与b 异号 b 与c 异号 0a > 0c > ③当0c <时 b 与c 异号 a 与c 异号 0a > 0b > 由此即可求出答案.【详解】解:∵(a +b )(b +c )(a +c )=0∵a +b =0或b +c =0或a +c =0∵a 与b 异号 或b 与c 异号 或a 与c 异号∵abc <0∴符合条件的只有一种情况: a 、b 、c 这三个数其中一个为负数 其余两个为正数分为以下三种情况:①当0a <时 a 与b 异号 a 与c 异号 0b > 0c >||||||11113333333333a b c a b c a b c a b c -++=++=-++=; ②当0b <时 a 与b 异号 b 与c 异号 0a > 0c >||||||11113333333333a b c a b c a b c a b c --++=++=++=; ③当0c <时 b 与c 异号 a 与c 异号 0a > 0b >||||||-11-113333333333a b c a b c a b c a b c ++=++=++= 综上所述 ||||||a b c a b c++的值为13. 故答案为13. 【点睛】本题考查了有理数的乘法 加法 绝对值的意义 解此题的关键是熟练掌握绝对值的代数意义 当a >0 |a |=a ;当a =0 |a |=0;当a <0 |a |=﹣a .12.若abc ≠0 则:a b b c c a a b b c c a ++=___.【答案】3或-1【解析】【分析】分四种情况进行讨论:①a 、b 、c 均为正数 ②a 、b 、c 均为负数 ③a 、b 、c 两正一负 ④a 、b 、c 两负一正 分别求值即可.【详解】解:当a 、b 、c 均为正数时 a b b c c a a b b c c a++=1+1+1=3; 当a 、b 、c 均为负数时a b b c c a a b b c c a++=1+1+1=3; 当a 、b 、c 两正一负时a b b c c a a b b c c a++=1-1-1=-1; 当a 、b 、c 两负一正时a b b c c a a b b c c a++=1-1-1=-1; 综上所述:a b b c c a a b b c c a++的值为3或-1 故答案为3或-1.【点睛】本题考查绝对值的性质 熟练掌握绝对值的性质 分类讨论是解题的关键.13.若三个非零有理数a b c 满足1a b c a b c ++= 则abc abc =_______. 【答案】﹣1【解析】【分析】根据绝对值的性质对a 、b 、c 的正负讨论化简绝对值 进而求解即可.【详解】解:当a 、b 、c 同正数时 则11131a b c a b c ++=++=≠ 不符合题意 故舍去 当a 、b 、c 同负数时 则11131a b c a b c++=---=-≠ 不符合题意 故舍去 当a 、b 、c 两正数、一负数时 则1+111a b c a b c++=-= 符合题意 ∵abc <0 ∵1abc abc abc abc -==- 当a 、b 、c 两负数、一正数时 则11111a b c a b c++=--=-≠ 故舍去 综上 abcabc =﹣1 故答案为:﹣1.【点睛】本题考查绝对值、有理数的加减混合运算 熟练掌握绝对值的性质 利用分类讨论解决问题是解答的关键.14.已知0abc ≠ 0a b c ++= 则a b c a b c ++的值等于_________.【答案】±1【解析】【分析】根据多个数相乘的计算法则以及多个数相加的计算法则分析判断出a 、b 、c 有两正一负或一正两负 然后分情况讨论求解.【详解】解:∵abc ≠0 且a +b +c =0则a 、b 、c 有两正一负或一正两负当一正两负时 不妨设a >0 b <0 c <0原式=1+(-1)+(-1)=-1;当两正一负时 不妨设a >0 b >0 c <0原式=1+1+(-1)=1综上所述 原式的值为1±.故答案为:1±.【点睛】本题考查了绝对值的化简 掌握多个数相乘或相加时符号的确定方法 理解绝对值的意义 利用分类讨论思想解题是关键.15.已知a b c 为三个不等于0的数 且满足abc >0 a +b +c <0 则||||||a b c a b c++的值为_________________.【答案】1-【解析】【分析】根据abc >0 a +b +c <0 可以确定,,a b c 中有2个负数进而根据绝对值的意义求解即可.【详解】abc >0 a +b +c <0 则,,a b c 中有2个负数设0,0,0a b c <<> 则||||||a b c a b c ++1111=--+=- 故答案为:1-【点睛】本题考查了有理数的乘法及除法运算 有理数的加法运算 化简绝对值 根据题意分析得出,,a b c 中有2个负数是解题的关键.16.已知a b c 都是有理数 且满足1a b c a b c ++= 那么6abc abc -=_______. 【答案】7【解析】【分析】 根据||||||1a b c a b c ++=可以看出 a b c 中必有两正一负 从而确定a bc <0 进而可出求6||abc abc -的值. 【详解】解:根据绝对值的意义:一个非零数的绝对值除以这个数 等于1或-1.1a a =或-1 又1a b c a b c++= 则其中必有两个1和一个-1 即a b c 中两正一负. ∵a bc <0 则1abc abc=- 则()6617abc abc -=--=. 故答案为:7.【点睛】此题考查有理数加减法 绝对值 整式的除法 解题关键在于得出a b c 中必有两正一负. 17.已知1abc abc =- 则a b c a b c++的值是_____ 【答案】1或-3【解析】【分析】 由1abc abc=- 可知a 、b 、c 的符号有两种可能的情况:①a 、b 、c 全是负数;②a 、b 、c 两正一负.由此分类探讨求得答案即可.【详解】 解:1abc abc =-①a 、b 、c 全是负数 则abca b c ++=-1-1-1=-3;②a 、b 、c 两正一负a b c abc++一定两个1与一个-1的和计算结果是1+1-1=1. 故答案为:1或-3. 【点睛】本题考查了绝对值的意义和化简 注意分类探讨得出答案. 18.已知,,a b c 都个等于零 且||||||||a b c abc a b c abc ++-的最大值是m 最小值为n 则mn mn=______. 【答案】-1 【解析】 【分析】由a b c 分别以三正 三负 一正二负 二正一负 分别讨论. 【详解】解:当a b c 三个都大于0 可得2||||||||abcabca b c abc ++-= 当a b c 都小于0 可得2||||||||a b c abc a b c abc ++-=- 当a b c 一正二负 可得2||||||||a b c abc a b c abc ++-=- 当a b c 二正一负 可得2||||||||abcabca b c abc ++-=2m ∴= 2n =-∴原式=-1 故答案为:-1. 【点睛】此题考查有理数的除法 绝对值的意义 以及代数式求值等知识. 19.若0a b c ++=(,,a b c 均不为0) 则||||||a ab abc a ab abc++的值是__________. 【答案】1 -1或-3 【解析】 【分析】根据a +b +c =0以及所求式子 得到a b c 中两正一负或一正两负 利用绝对值的代数意义化简 计算即可得到结果. 【详解】 解:∵a +b +c =0∵a b c 中两正一负或一正两负 假设a >0 b >0 c <0 原式=1+1-1=1 假设a >0 b <0 c >0 原式=1-1-1=-1 假设a <0 b >0 c >0 原式=-1-1-1=-3 假设a <0 b <0 c >0 原式=-1+1+1=1 假设a <0 b >0 c <0 原式=-1-1+1=-1 假设a >0 b <0 c <0 原式=1-1+1=1 故答案为:1 -1或-3. 【点睛】此题考查了有理数的混合运算 以及绝对值的代数意义 熟练掌握运算法则是解本题的关键. 20.设a b c 为不为零的实数 且0abc > 那么||||||a b c x a b c =++ 则x 的值为________. 【答案】3或-1 【解析】 【分析】根据正数的绝对值是正数 负数的绝对值等于他的相反数 可化简掉绝对值的负号 再根据有理数的除法 可得答案. 【详解】 解:∵abc >0∵a >0 b >0 c >0或a 、b 、c 中有两个负数; 当a >0 b >0 c >0时 x =1+1+1=3; 当a 、b 、c 中有两个负数时 x =1-1-1=-1; 故答案为:3或-1. 【点睛】本题考查了实数的除法运算 解题的关键是掌握分类讨论. 21.若abc >0 a +b +c =0 则b c c a a b abc+++++=____.【答案】1-. 【解析】 【分析】根据条件判断a 、b 、c 与0的大小关系 然后根据绝对值的性质即可求出答案.【详解】解:∵abc >0 a +b +c =0∵a 、b 、c 中必有两个是负数 一个是正数 不妨设0a > 0b < 0c < ∵0a b c ++=∵0a b c +=-> 0b c a +=-< 0a c b +=-> ∵b c c a a b abc+++++=a b ca b c---++=a b c ab c--++ =111-- =1-.故答案为:1-. 【点睛】本题考查了绝对值的意义 解题的关键是正确判断a 、b 、c 与0的大小关系 本题属于基础题型.类型三 综合解答22.在解决数学问题的过程中 我们常用到“分类讨论”的数学思想 下面是运用分类讨论的数学思想解决问题的过程 请仔细阅读 并解答题目后提出的“探究”. 【提出问题】三个有理数a 、b 、c 满足abc >0 求++a b c a b c的值.【解决问题】由题意得:a b c 三个有理数都为正数或其中一个为正数 另两个为负数. ①当a b c 都是正数 即a >0 b>0 c>0时 则:++a b c a b c=ab c a b c++=1+1+1=3;②当a b c 有一个为正数 另两个为负数时 设a >0 b<0 c<0 即:++a b c a b c=a b ca b c --++=1+(−1)+(−1)=−1 所以++a b c a b c的值为3或−1. 【探究】请根据上面的解题思路解答下面的问题: (1)已知a <0 b>0 c>0 则a a=b b=c c= ;(2)三个有理数a b c 满足abc <0 求++a b c ab c的值;(3)已知|a |=3 |b|=1 且a<b 求a +b 的值.【答案】(1)-1;1;1;(2)1或-3(3)−2或−4. 【解析】 【分析】(1)根据绝对值的性质即可求解;(2)分2种情况讨论:①当a b c 都是负数 即a <0 b <0 c <0时;②a b c 有一个为负数 另两个为正数时 设a <0 b >0 c >0 分别求解即可;(3)利用绝对值的代数意义 以及a 小于b 求出a 与b 的值 即可确定出a +b 的值. 【详解】(1)∵a <0 b>0 c>0 ∵a a =- b b = c c = 则a a=-1b b=1c c=1;故填:-1;1;1; (2)∵abc <0∵a b c 都是负数或其中一个为负数 另两个为正数 ∵①当a b c 都是负数 即a <0 b <0 c <0时 则a b c a b c++=---ab c a b c=-1-1-1=-3;②a b c 有一个为负数 另两个为正数时 设a <0 b >0 c >0 则a b c a b c++=-++a b c a b c=−1+1+1=1.(3)∵|a|=3 |b|=1 且a <b ∵a =−3 b =1或−1 则a +b =−2或−4. 【点睛】本题主要考查了有理数的混合运算 绝对值 有理数的除法 解题的关键是讨论a 与ab 的取值情况.23.在解决数学问题的过程中 我们常用到"分类讨论"的数学思想 下面是运用"分类讨论"的数学思想解决问题的过程 请仔细阅读 并解答问题. 【提出问题】已知有理数a b c 满足abc >0 求||||||a b c a b c++的值. 【解决问题】解∵由题意 得 a b c 三个有理数都为正数或其中一个为正数 另两个为负数.①当a b c 都为正数 即a >0 b >0 c >0时||||||a b c a b c++=a b ca b c ++=1+1+1=3②当a b c 中有一个为正数 另两个为负数时 不妨设a >0 b <0 c <0 则||||||a b c a b c++=a b ca b c--++=1+(-1)+(-1)=-1 综上所述||||||a b c a b c++的值为3或-1 【探究拓展】请根据上面的解题思路解答下面的问题;(1)已知a b 是不为0的有理数 当|ab|=-ab 时 ||||a ba b += (2)已知a b c 是有理数 当abc <0时 求||||a b a b ++||c c = (3)已知a b c 是有理数 a +b +c =0 abc <0 求||||||b c c a a ba b c +++++= 【答案】(1)0;(2)3-或1;(3)1-. 【解析】 【分析】(1)分0,0a b ><和0,0a b <>两种情况 先化简绝对值 再计算有理数的除法与加减法即可得; (2)分,,a b c 都是负数和,,a b c 中一个为负数 另两个为正数两种情况 先化简绝对值 再计算有理数的除法与加减法即可得;(3)先化简已知等式可得a b c +=- c a b +=- b c a +=- 再根据0abc <得出,,a b c 中只有一个为负数 另两个为正数 然后化简绝对值 计算有理数的除法与加减法即可得. 【详解】解:(1)由题意 分以下两种情况: ①当0,0a b ><时 1(1)0a b a b a b a b+=+=+-=- ②当0,0a b <>时 110a b a b a b a b+=+=-+=- 综上0a ba b+= 故答案为:0;(2)由题意得:,,a b c 都是负数或其中一个为负数 另两个为正数 ①当,,a b c 都是负数 即0,0,0a b c <<<时 则1(1)(1)3a a a b c a b c b b c c---++=++=-+-+-=-;②当,,a b c 中有一个为负数 另两个为正数时 不妨设a 0,b 0,c 0<>> 则1111a b c a b c a b c a b c++=++=-++=-; 综上a b ca b c++的值为3-或1 故答案为:3-或1;(3)因为0a b c ++= 0abc < 所以,,a b c 均不为0所以a b c +=- c a b +=- b c a +=- 所以,,a b c 中只有一个负数 另两个为正数 不妨设0a < 0b > 0c >所以1(1)(1)1b c c a a b a b ca b c a b c+++---++=++=+-+-=-- 故答案为:1-. 【点睛】本题考查了化简绝对值、有理数的加减法与除法 读懂题意 掌握分类讨论思想和有理数的运算法则是解题关键.。

人教版七年级数学上册第2章 绝对值的化简 专题训练(含答案)

人教版七年级数学上册第2章   绝对值的化简  专题训练(含答案)

人教版七年级上册第二章整式的加减绝对值的化简专题训练1.若有理数在数轴上的位置如图所示,则化简:|a+c|-|a-b|-|c-b|的结果为( ) A.0 B.-2a C.-2b D.-2c2.如果|x-4|与(y+3)2互为相反数,则2x-(-2y+x)的值是( )A.-2 B.10 C.7 D.63. 有理数a,b在数轴上的位置如图所示,则化简|a-b|+a的结果为( )A.b B.-b C.-2a-b D.2a-b4.已知有理数a<0,b>0,化简:|2a-b|+|b-a|.5.若x,y为非零有理数,且x=|y|,y<0,化简:|y|+|-2y|-|3y-2x|.6.有理数a,b,c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c-b____0,a+b____0,a-c____0;(2)化简:|c-b|+|a+b|-|a-c|.7.有理数a,b,c在数轴上的位置如图所示,化简代数式:|a-c|-|b|-|b-a|+|b+a|.8. 已知a,b,c,d为有理数,若a,b,c,d在数轴上的位置如图所示,且|c|=|d|-7,先化简下式并求其值:|c-a-b|-|a+c-d|-|c-b|.9.已知有理数a,b,c在数轴上对应点的位置如图所示.解答下列各题:(1)判断下列各式的符号:(填“>”或“<”)a-b____0,b-c____0,c-a____0,b+c____0;(2)化简:|a-b|+|b-c|-|c-a|+|b+c|. 10.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|b-c|+2|c+a|-3|a-b|. 11.有理数a,b,c在数轴上的位置如图所示,化简|a+c|-|a-b|+|b+c|-|b|.12.有理数a,b,c在数轴上的位置如图所示,化简式子3|a-b|+|a+b|-|c-a|+2|b-c|. 13.若有理数m,n在数轴上的位置如图所示,请化简|m+n|+|m-n|-|n|.14.在数轴上表示有理数a,b,c的点的位置如图所示,求式子|a|-|a+b|+|c-a|+|b-c|化简后的结果.15.有理数a,-b在数轴上的位置如图所示,试化简|1-3b|-2|2+b|+|2-3a|.16.已知a ,b ,c 在数轴上对应的点如图:(1)化简|b -c|-|b +c|+|a -c|-|a +c|-|a +b|;(2)若|a|=3,b 2=1,c 的倒数为-12,求(1)的值.参考答案1. D2. A3. A4. 解:因为a <0,b >0,所以2a -b <0,b -a >0,原式=-(2a -b)+(b -a)=-2a +b +b -a =-3a +2b5. 解:因为x =|y|且y <0,所以x >0,-2y >0,3y -2x <0,原式=-y +(-2y)-(-3y +2x)=-2x6. 解:(1) >,<,<(2)原式=c -b +[-(a +b)]-[-(a -c)]=c -b -a -b +a -c =-2b7. 解:因为a -c <0,b >0,b -a >0,a +b <0,所以原式=c -a -b -b +a -b -a =-a -3b +c8. 解:由数轴知c -a -b >0,a +c -d <0,c -b >0.原式=(c -a -b)-[-(a +c -d)]-(c -b)=c -a -b +a +c -d -c +b =c -d.因为|c|=|d|-7,所以c =d -7,所以原式=c -d =-79. 解:(1)>,>,<,<(2)原式=(a -b)+(b -c)+(c -a)-(b +c)=a -b +b -c +c -a -b -c =-b -c10. 解:由图可知,c <a <0<b ,所以b -c >0,c +a <0,a -b <0,原式=b -c -2(c +a)-3(b -a)=b -c -2c -2a -3b +3a =a -2b -3c11. 解:由图可知:a +c <0,a -b >0,b +c <0,b <0,原式=-(a +c)-(a -b)-(b +c)+b =-a -c -a +b -b -c +b =-2a +b -2c12. 解:由图可知c >0,a <b <0,则a -b <0,a +b <0,c -a >0,b -c <0,原式=-3(a -b)-(a +b)-(c -a)-2(b -c)=-3a +3b -a -b -c +a -2b +2c =-3a +c13. 解:由图可知:m <-1<0<n <1,则m +n <0,m -n <0,n >0,|m +n|+|m -n|-|n|=-(m +n)-(m -n)-n =-m -n -m +n -n =-2m -n14. 解:由数轴可知a <0,b <0,c >0,∴a +b <0,c -a >0,b -c <0,∴原式=-a-[-(a+b)]+(c-a)+[-(b-c)]=-a+a+b+c-a-b+c=2c-a15. 解:原式=3b-1-2(2+b)+3a-2=3b-1-4-2b+3a-2=3a+b-716. 解:(1)由数轴可知a<c<0<b,且|a|>|c|>|b|,则原式=(b-c)-[-(b+c)]+[-(a-c)]-[-(a+c)]-[-(a+b)]=b-c+b+c-a+c+a+c+a+b=a+3b+2c(2)由已知结合数轴可知a=-3,b=1,c=-2,则a+3b+2c=-3+3×1+2×(-2)=-4。

绝对值的运算+答案

绝对值的运算+答案

绝对值的专题训练知识梳理:1、概念:一般的,数轴上表示数a的点与的距离叫做a的绝对值.记作: .2、代数定义: 一个正数的绝对值是;一个负数的绝对值是;0的绝对值是;即(0);0(0);(0).a aa aa a>⎧⎪==⎨⎪-<⎩3、绝对值的性质:(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。

(2)绝对值等于0的数只有一个,就是0。

(3)绝对值等于同一个正数的数有两个,这两个数互为相反数。

(4)互为相反数的两个数的绝对值相等。

专题训练一一、选择题:1、绝对值等于6在数轴上对应的点有()A. 6B. -6C. 0D. 6或-62、绝对值等于其本身的数有()A. 1个B. 0个C. 2个D. 无数个3、下列各式中,等号不正确的是()A.88-= B.88-=-- C.88-= D.88--=4、在数轴上数a到原点的距离等于9,则a的值为()A. 9B. -9C. 9±D. 05、下列说法不正解的是()A.如果a的绝对值比它本身大,则a一定是负数。

B.如果两个数不相等,那么它们的绝对值也必不相等。

C.两个负有理数,绝对值大的离原点远。

D.两个负有理数,大的离原点近。

二、填空题:6、+10= ,-1.9= ,-=π .7、--3= ,+-0.39= ,-+18= ,-+22=() .8、 -7的绝对值是 ,绝对值等于7的数是 .9、绝对值最小的数是 ,绝对值等于本身的数为 .10、绝对值小于4的所有整数有 .11、绝对值等于5的数有 个,它们是 .12、绝对值不大于1的整数是 .13、在23-2-2-234,,中,绝对值最小的数是 ,离原点最远的是 . 14、1-8的倒数是 . 15、若=3a ,则=a ;若9a -=,则a = .专题训练二一、选择题:1、若0x x +=,则x 一定是( )A. 非负数B. 0C. 非正数D. 负数2、若x y =,则x,y 的关系是( )A. x=yB. x=-yC. x+y=0或x-y=0D. x=0且y=03、若-2a =,则a 的值为( )A. 2B. -2C. 0D. 2±4、一个数a 在数轴上的对应点在原点左边,且6a =,则a 的值为( )A. 6B. 6或-6C. -6D. 以上都不对5、若1a a=,则a 是( ) A. 正数 B. 是有理数 C. 正数或负数 D. 是正整数6、若0a ≥,那么( )A. 0a >B. 0a ≠C. 0a <D. a 为任意数7、若-=-8a ,则a 的值为( )A. 8±B. 8C. -8D. 08、如图,下列各式正确的是( )A. b 10-<B. a b >C. 11a a -=-D. b a a b -=-二、填空题:9、 2--= ,2= 1= ,= ,3.14π-= ,-= .10、若20,50a a -=-=,则a b += .11、若12a -<<时,则2a += ,3a -= .12、若x y <,则x y -= ,+y x -= .13、若a a -=,则a = ,a π-= .三、计算14、若实数a,b 满足3360a b -+-=,求2a-3b 的值.b -1 0 a 115、若4+7+30--+=,求-2x+3y-5z的值.x y z16、若a,b满足()2-++=,求20202021110a b+的值.a b绝对值的专题训练答案知识梳理:1、原点a2、它本身它的相反数0专题训练一:1、D2、C3、D4、C5、B6、10 1.9 π7、-3 0.39 -18 -228、7 7±9、0 0,110、-3,-2,-1,0,1,2,311、两5±12、-1,0,113、-2,3 -2 414、815、39±±,专题训练二:1、C2、C3、D4、C5、A6、D7、A8、D9、-3.14π10、711、a+2 3-a12、y-x y-x13、0 π14、解得a=1, b=6 原式=-615、解得x=4 y=7 z=-3 原式=2816、解得a=1 b=-1 原式=0。

高考数学一轮复习专题训练—绝对值不等式

高考数学一轮复习专题训练—绝对值不等式

绝对值不等式考纲要求1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b,c∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a.知识梳理1.绝对值三角不等式定理1:如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-b|≤|a-c|+|c-b|,当且仅当(a-c)(c-b)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集.不等式a>0a=0a<0|x|<a {x|-a<x<a}∅∅|x|>a {x|x>a或x<-a}{x|x∈R且x≠0}R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法.①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.1.利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题;若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.2.绝对值三角不等式|a±b|≤|a|+|b|,从左到右是一个放大过程,从右到左是缩小过程,证明不等式可以直接用,也可利用它消去变量求最值.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若|x|>c的解集为R,则c≤0.()(2)不等式|x-1|+|x+2|<2的解集为∅.()(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.()(4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.()(5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.()答案(1)×(2)√(3)×(4)×(5)√2.不等式|x-1|-|x-5|<2的解集是()A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5)答案 A解析①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1.②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4,③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).3.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.答案(-∞,-3]∪[3,+∞)解析由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴|x+1|+|x-2|的最小值为3,要使原不等式有解,只需|a|≥3,即a≥3或a≤-3.4.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 答案 2解析 因为|kx -4|≤2,所以-2≤kx -4≤2,所以2≤kx ≤6.因为不等式的解集为{x |1≤x ≤3},所以k =2.5.(2021·天津联考)若对任意的x ∈R ,不等式|x -1|-|x +2|≤|2a -1|恒成立,则实数a 的取值范围为________.答案 (-∞,-1]∪[2,+∞)解析 ∵y =|x -1|-|x +2|≤|(x -1)-(x +2)|=3, ∴要使|x -1|-|x +2|≤|2a -1|恒成立, 则|2a -1|≥3,2a -1≥3或2a -1≤-3, 即a ≥2或a ≤-1,∴实数a 的取值范围是(-∞,-1]∪[2,+∞). 6.(2021·郑州质量预测)已知函数f (x )=|x +1|-a |x -1|. (1)当a =-2时,解不等式f (x )>5; (2)若f (x )≤a |x +3|恒成立,求a 的最小值. 解 (1)当a =-2时,f (x )=⎩⎪⎨⎪⎧1-3x ,x ≤-1,-x +3,-1<x ≤1,3x -1,x >1.当x ≤-1时,由1-3x >5,得x <-43;当-1<x ≤1时,无解;当x >1时,由3x -1>5,得x >2. 故f (x )>5的解集为⎝⎛⎭⎫-∞,-43∪(2,+∞). (2)由f (x )≤a |x +3|得a ≥|x +1||x -1|+|x +3|,由|x -1|+|x +3|≥2|x +1|, 得|x +1||x -1|+|x +3|≤12,故a ≥12(当且仅当x ≥1或x ≤-3时等号成立),故a 的最小值为12.考点一 绝对值不等式的解法【例1】 (2020·全国Ⅰ卷)已知函数f (x )=|3x +1|-2|x -1|.(1)画出y =f (x )的图象; (2)求不等式f (x )>f (x +1)的解集.解 (1)由题设知f (x )=⎩⎪⎨⎪⎧-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.画出y =f (x )的图象如图(1)所示.图(1)(2)函数y =f (x )的图象向左平移1个单位长度后得到函数y =f (x +1)的图象,如图(2)所示.图(2)易得y =f (x )的图象与y =f (x +1)的图象的交点坐标为⎝⎛⎭⎫-76,-116. 由图象可知,当且仅当x <-76时,y =f (x )的图象在y =f (x +1)的图象上方. 故不等式f (x )>f (x +1)的解集为⎝⎛⎭⎫-∞,-76. 【例2】 (2021·驻马店联考)已知函数f (x )=|x +a |+|2x -1|(a ∈R). (1)当a =-1时,求不等式f (x )≥2的解集; (2)若f (x )≤2x 的解集包含⎣⎡⎦⎤12,34,求a 的取值范围.解 (1)当a =-1时,不等式f (x )≥2可化为|x -1|+|2x -1|≥2, 当x ≤12时,不等式为1-x +1-2x ≥2,解得x ≤0;当12<x <1时,不等式为1-x +2x -1≥2,无解; 当x ≥1时,不等式为x -1+2x -1≥2,解得x ≥43.综上,原不等式的解集为(-∞,0]∪⎣⎡⎭⎫43,+∞.(2)因为f (x )≤2x 的解集包含⎣⎡⎦⎤12,34,所以不等式可化为|x +a |+2x -1≤2x ,即|x +a |≤1.解得-a -1≤x ≤-a +1,由题意知⎩⎨⎧-a +1≥34,-a -1≤12,解得-32≤a ≤14.所以实数a 的取值范围是⎣⎡⎦⎤-32,14. 感悟升华 1.用零点分段法解绝对值不等式的步骤(1)求零点;(2)划区间、去绝对值符号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.2.含绝对值的函数本质上是分段函数,绝对值不等式可利用分段函数的图象的几何直观性求解,体现了数形结合的思想.【训练1】 (2019·全国Ⅱ卷)已知f (x )=|x -a |x +|x -2|(x -a ). (1)当a =1时,求不等式f (x )<0的解集; (2)若x ∈(-∞,1)时,f (x )<0,求a 的取值范围. 解 (1)当a =1时,f (x )=|x -1|x +|x -2|(x -1). 当x <1时,f (x )=-2(x -1)2<0; 当x ≥1时,显然f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1).(2)当a <1时,若a ≤x <1,则f (x )=(x -a )x +(2-x )(x -a )=2(x -a )≥0,不合题意;所以a ≥1, 当a ≥1,x ∈(-∞,1)时,f (x )=(a -x )x +(2-x )(x -a )=2(a -x )(x -1)<0. 所以,a 的取值范围是[1,+∞). 考点二 绝对值不等式性质的应用【例3】 设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 由|x -1|<a 3可得|2x -2|<2a 3,|2x +y -4|≤|2x -2|+|y -2|<2a 3+a3=a .【例4】 若f (x )=⎪⎪⎪⎪3x +1a +3|x -a |的最小值为4,求a 的值. 解 因为f (x )=⎪⎪⎪⎪3x +1a +3|x -a |≥⎪⎪⎪⎪⎝⎛⎭⎫3x +1a -3x -3a =⎪⎪⎪⎪1a +3a ,由⎪⎪⎪⎪1a +3a =4得a =±1或a =±13.感悟升华 1.求含绝对值的函数最值时,常用的方法有三种: (1)利用绝对值的几何意义.(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |. (3)利用零点分区间法.2.含绝对值不等式的证明中,关键是绝对值三角不等式的活用. 【训练2】 设函数f (x )=x 2-x -15,且|x -a |<1. (1)解不等式|f (x )|>5;(2)求证:|f (x )-f (a )|<2(|a |+1).(1)解 因为|x 2-x -15|>5,所以x 2-x -15<-5或x 2-x -15>5,即x 2-x -10<0或x 2-x -20>0,解得1-412<x <1+412或x <-4或x >5,所以不等式|f (x )|>5的解集为⎩⎨⎧⎭⎬⎫x |x <-4或1-412<x <1+412或x >5.(2)证明 因为|x -a |<1,所以|f (x )-f (a )|=|(x 2-x -15)-(a 2-a -15)|=|(x -a )(x +a -1)|=|x -a |·|x +a -1|<1·|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|<1+|2a -1|≤1+|2a |+1=2(|a |+1),即|f (x )-f (a )|<2(|a |+1). 考点三 绝对值不等式的综合应用 角度1 绝对值不等式恒成立问题【例5】 (2021·陇南二诊)已知a ≠0,函数f (x )=|ax -1|,g (x )=|ax +2|. (1)若f (x )<g (x ),求x 的取值范围;(2)若f (x )+g (x )≥|2×10a -7|对x ∈R 恒成立,求a 的最大值与最小值之和. 解 (1)因为f (x )<g (x ), 所以|ax -1|<|ax +2|,两边同时平方得a 2x 2-2ax +1<a 2x 2+4ax +4, 即6ax >-3,当a >0时,x >-12a ,即x 的取值范围是⎝⎛⎭⎫-12a ,+∞;当a <0时,x <-12a ,即x 的取值范围是⎝⎛⎭⎫-∞,-12a . (2)因为f (x )+g (x )=|ax -1|+|ax +2|≥|(ax -1)-(ax +2)|=3, 所以f (x )+g (x )的最小值为3,所以|2×10a -7|≤3,则-3≤2×10a -7≤3, 解得lg 2≤a ≤lg 5,故a 的最大值与最小值之和为lg 2+lg 5=lg 10=1. 角度2 绝对值不等式能成立问题【例6】 (2021·东北三省三校联考)已知函数f (x )=|2x +a |+1. (1)当a =2时,解不等式f (x )+x <2;(2)若存在a ∈⎣⎡⎦⎤-13,1时,使不等式f (x )≥b +|2x +a 2|的解集非空,求b 的取值范围. 解 (1)当a =2时,函数f (x )=|2x +2|+1, 不等式f (x )+x <2化为|2x +2|<1-x . 当1-x ≤0时,即x ≥1时,该不等式无解. 当1-x >0时,原不等式化为x -1<2x +2<1-x . 解之得-3<x <-13.综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x -3<x <-13.(2)由f (x )≥b +|2x +a 2|, 得b ≤|2x +a |-|2x +a 2|+1,设g (x )=|2x +a |-|2x +a 2|+1,则不等式的解集非空,即不等式有解, 所以不等式等价于b ≤g (x )max .由g (x )≤|(2x +a )-(2x +a 2)|+1=|a 2-a |+1, 所以b ≤|a 2-a |+1.由题意知存在a ∈⎣⎡⎦⎤-13,1,使得上式成立,而函数h (a )=|a 2-a |+1在a ∈⎣⎡⎦⎤-13,1上的最大值为h ⎝⎛⎭⎫-13=139, 所以b ≤139,即b 的取值范围是⎝⎛⎦⎤-∞,139. 感悟升华 1.不等式恒成立问题,存在性问题都可以转化为最值问题解决.2.(1)在例6第(1)问,可作出函数y =|2x +2|与y =1-x 的图象,观察、计算边界,直观求得不等式的解集.(2)第(2)问把不等式解集非空,转化为求函数的最值.存在性问题转化方法:f (x )>a 有解⇔f (x )max >a ;f (x )<a 有解⇔f (x )min <a . 【训练3】 (2021·呼和浩特模拟)已知函数f (x )=|2x -a |+2|x +1|. (1)当a =1时,解关于x 的不等式f (x )≤6;(2)已知g (x )=|x -1|+2,若对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=|2x -1|+2|x +1|,则f (x )=⎩⎪⎨⎪⎧-4x -1,x <-1,3,-1≤x ≤12,4x +1,x >12.当x <-1时,由-4x -1≤6,得-74≤x <-1;当-1≤x ≤12时,f (x )≤6恒成立;当x >12时,由4x +1≤6,得12<x ≤54.综上,f (x )≤6的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-74≤x ≤54. (2)∵对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立, ∴{y |y =f (x )}⊆{y |y =g (x )}. 又f (x )=|2x -a |+2|x +1|≥|2x -a -(2x +2)| =|a +2|,g (x )=|x -1|+2≥2, ∴|a +2|≥2,解得a ≤-4或a ≥0,∴实数a 的取值范围是(-∞,-4]∪[0,+∞).1.(2020·全国Ⅱ卷)已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解 (1)当a =2时,f (x )=⎩⎪⎨⎪⎧7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥112. (2)因为f (x )=|x -a 2|+|x -2a +1|≥|a 2-2a +1|=(a -1)2, 故当(a -1)2≥4,即|a -1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a <3时,f (a 2)=|a 2-2a +1|=(a -1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞). 2.已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解 (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.则当x ≥1时,f (x )=2>1恒成立,所以x ≥1; 当-1<x <1时,f (x )=2x >1, 所以12<x <1;当x ≤-1时,f (x )=-2<1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x |x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a≥1,故0<a ≤2. 综上,a 的取值范围为(0,2].3.(2021·安徽江南十校模拟)已知函数f (x )=|x -1|+|x +2|.(1)求不等式f (x )<x +3的解集;(2)若不等式m -x 2-2x ≤f (x )在R 上恒成立,求实数m 的取值范围.解 (1)当x <-2时,f (x )<x +3可化为1-x -x -2<x +3,解得x >-43,无解; 当-2≤x ≤1时,f (x )<x +3可化为1-x +x +2<x +3,解得x >0,故0<x ≤1; 当x >1时,f (x )<x +3可化为x -1+x +2<x +3,解得x <2,故1<x <2. 综上可得,f (x )<x +3的解集为(0,2).(2)不等式m -x 2-2x ≤f (x )在R 上恒成立,可得m ≤x 2+2x +f (x )恒成立, 即m ≤[]x 2+2x +f x min .y =x 2+2x =(x +1)2-1的最小值为-1,此时x =-1.f (x )=|x -1|+|x +2|≥|x -1-x -2|=3,当且仅当-2≤x ≤1时,取得等号, 则[x 2+2x +f (x )]min =-1+3=2,所以m ≤2,即m 的取值范围是(-∞,2].4.已知f (x )=|x +1|+|x -m |.(1)若f (x )≥2,求m 的取值范围;(2)已知m >1,若∃x ∈(-1,1),f (x )≥x 2+mx +3成立,求m 的取值范围. 解 (1)因为f (x )=|x +1|+|x -m |≥|m +1|,所以只需|m +1|≥2,所以m +1≥2或m +1≤-2,解得m ≥1或m ≤-3,即m 的取值范围为(-∞,-3]∪[1,+∞).(2)因为m >1,所以当x ∈(-1,1)时,f (x )=m +1,所以f (x )≥x 2+mx +3,即m ≥x 2+mx +2,所以m (1-x )≥x 2+2,m ≥x 2+21-x , 令g (x )=x 2+21-x =1-x 2-21-x +31-x =(1-x )+31-x-2(-1<x <1). 因为-1<x <1,所以0<1-x <2,所以(1-x )+31-x≥23(当且仅当x =1-3时取“=”), 所以g (x )min =23-2,所以m ≥23-2.故实数m 的取值范围是[23-2,+∞).5.(2021·南昌摸底测试)已知f (x )=|2x +1|+|x -1|.(1)求不等式f (x )≥2的解集;(2)若f (x )≥a |x |恒成立,求a 的取值范围.解 (1)∵f (x )=|2x +1|+|x -1|≥2,①当x ≤-12时,⎩⎪⎨⎪⎧ x ≤-12,-2x -1-x +1≥2⇒x ≤-23; ②当-12<x <1时,⎩⎪⎨⎪⎧ -12<x <1,2x +1-x +1≥2⇒0≤x <1;③当x ≥1时,⎩⎪⎨⎪⎧x ≥1,2x +1+x -1≥2⇒x ≥1. 综上所述,f (x )≥2的解集为⎝⎛⎦⎤-∞,-23∪[0,+∞). (2)由题意知|2x +1|+|x -1|≥a |x |恒成立,①当x =0时,2≥a ·0恒成立,得a ∈R ;②当x ≠0时,|2x +1|+|x -1||x |=⎪⎪⎪⎪2+1x +⎪⎪⎪⎪1-1x ≥a 恒成立, 因为⎪⎪⎪⎪2+1x +⎪⎪⎪⎪1-1x ≥⎪⎪⎪⎪2+1x+1-1x =3,所以a ≤3. 综上所述,符合条件的实数a 的取值范围是(-∞,3].6.(2021·长春模拟)已知函数f (x )=|x +2|+|x -1|-a .(1)当a =4时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,设a 的最大值为s ,当正数m ,n 满足12m +n +2m +3n =s 时,求3m +4n 的最小值.解 (1)当a =4时,|x +2|+|x -1|-4≥0,当x <-2时,-x -2-x +1-4≥0,解得x ≤-52; 当-2≤x ≤1时,x +2-x +1-4≥0,解得x ∈∅;当x >1时,x +2+x -1-4≥0,解得x ≥32. ∴函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-52或x ≥32. (2)∵函数f (x )的定义域为R ,∴|x +2|+|x -1|-a ≥0对任意的x ∈R 恒成立,∴a ≤|x +2|+|x -1|对任意的x ∈R 恒成立,又|x +2|+|x -1|≥|x +2-x +1|=3,∴a ≤3,∴s =3,∴12m +n +2m +3n=3,且m >0,n >0, ∴3m +4n =(2m +n )+(m +3n )=13[(2m +n )+(m +3n )]·⎝⎛⎭⎫12m +n +2m +3n =13⎣⎢⎡⎦⎥⎤3+22m +n m +3n +m +3n 2m +n ≥13(3+22)=1+223,当且仅当m =1+2215,n =3+215时取等号, ∴3m +4n 的最小值为1+223.。

有理数中绝对值六大模型应用答案与解析

有理数中绝对值六大模型应用答案与解析

有理数中肯定值六大模型应用答案与解姓名: _______________________________指导: ______________________________日期: ______________________________数学学习有时候就是开启巧门的过程,实际上就是建立一个模型思路,理解透彻了,会做一道题就会这一类题。

学习的过程就是不断思索总结的过程,这才是会学的技巧。

中国移动 4β,∣ιll 0 0 23% 目 19:58 /专题突破1绝对常用六大模型及应用∙do …...文件预览专题突破一、绝对值模型常用六大类型及应用领会模型,识别模型,应用模型一模型之一、・∣0∣ + ∣0∣=0"模型每一顼都为0.(该题型应用了 I a |左0的性 质)已知:I x∙1 I ♦ I x+2 | =0,求x 、y 的值若| a∙3 |与| 3b-6 |互为相反数,求a∙b 的值• ∣0∣÷∣ 1 ∣≡1w ∙⅛z 分类讨论,前项为0.后项为L 或者前项为L c 为整数,且 | a ・b | ♦ | c ・b | =1 .则 | oa | + | a∙b | ♦ | bc | 的值为() b |、∣c∙b ∣的值进行分类讨论 、I c∙b |为非负整数,又,・,| a∙b | ♦ | c-b I =1或;C ∕.b≈c | a-b | ≈ | b∙a | ≈ | c-a | ≡1.∖ | c-a | + | a-b | + | b∙c | =1+1+0=2原式:2 活学活用:1、已知:a 、b 、c 为整数‘且方"'∙Q ' =1,则U ”向b+ o °的值为()2、已知:(a+b ) 2+ | b+5 ∣ ≡b+5f 且 ∣ 2a-b∙1 ∣ ≡0,求ab 的值分析:∙∙∙ (a+b)2^o, | b+5 | NO Λb+5^0.∖ ( a÷b ) 2+ ∣ b+5 ∣ = (a+b ) ^+b+5=b÷5 /. ( a+b ) ^≡0.∙,a=-b又「∣ 2a∙bT ∣ =0 ∕.3a≡1 a=1∕3 b≡∙1∕3 ∕.ab=-1Z9模型之三、里对他的蒙要住展澳樊:∣a ∣ >0 a (β>0)]α = 'O (α = 0)-α (a‹G)所有和绝对值有关的问裁最关键的就是刈步3的总号例1、已知:若I X∙2 | +×-2≡0求x 的取值范困分析:原式变形为| x-2 | ≡2∙x Λ2-X >0 ΛX ≤2例2、: •• •• 型顼知析.«后已分中国移动"M O 323% F* 19:58专题突破1绝对常用六大模型及应用.d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值专题训练及答案1.如果|a|=﹣a,那么a的取值范围是〔〕A .a>0B.a<0C.a≤0D.a≥02.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数〔〕A .1个B.2个C.3个D.4个3.计算:|﹣4|=〔〕A .0B.﹣4C.D.44.假设x的相反数是3,|y|=5,那么x+y的值为〔〕A .﹣8B.2C.8或﹣2D.﹣8或25.以下说法中正确的选项是〔〕A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a6.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,那么点B表示的数是〔〕A .1B.0C.﹣1D.﹣27.在数轴上距﹣2有3个单位长度的点所表示的数是〔〕A﹣5B1C﹣1D﹣5或1....8.在﹣〔﹣2〕,﹣|﹣7|,﹣|+3|,,中,负数有〔〕A .1个B.2个C.3个D.4个9.如图,数轴上的点A所表示的是实数a,那么点A到原点的距离是〔〕A .a B.﹣a C.±a D.﹣|a|10.a、b、c 大小如下图,那么的值为〔〕A .1B.﹣1C.±1D.11.a,b在数轴位置如下图,那么|a|与|b|关系是〔〕A .|a|>|b|B.|a|≥|b|C.|a|<|b|D.|a|≤|b|12.|a|=﹣a、|b|=b、|a|>|b|>0,那么以下正确的图形是〔〕A .B.C.D.13.有理数a、b在数轴上的位置如下图,化简|a﹣b|+|a+b|.14.a、b、c在数轴上的位置如下图,化简|a|+|c﹣b|+|a﹣c|+|b﹣a| 15.a为有理数,以下判断正确的选项是〔〕A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.假设ab<0,且a>b,那么a,|a﹣b|,b的大小关系为〔〕A a>|a﹣b|>B a>b>|a﹣C|a﹣b|>a>b D|a﹣b|>b>a.b.b|..17.假设|a|=8,|b|=5,a+b>0,那么a﹣b的值是〔〕A .3或13B.13或﹣13C.3或﹣3D.﹣3或1318.以下说法正确的选项是〔〕A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.假设|a|=|b|,那么a与b互为相反数D.假设一个数小于它的绝对值,那么这个数为负数19.一个数的绝对值一定是〔〕A .正数B.负数C.非负数D.非正数20.假设ab>0,那么++的值为〔〕A .3B.﹣1C.±1或±3D.3或﹣121.:a>0,b<0,|a|<|b|<1,那么以下判断正确的选项是〔〕A .1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a22.假设|﹣x|=﹣x,那么x是〔〕A .正数B.负数C.非正数D.非负数23.假设|a|>﹣a,那么a的取值范围是〔〕A .a>0B.a≥0C.a<0D.自然数24.假设|m﹣1|=5,那么m的值为〔〕A .6B.﹣4C.6或﹣4D.﹣6或425.以下关系一定成立的是〔〕A .假设|a|=|b|,那么a=bB.假设|a|=b,那么a=bC.假设|a|=﹣b,那么a=bD.假设a=﹣b,那么|a|=|b|26.a、b互为相反数,且|a﹣b|=6,那么|b﹣1|的值为〔〕A .2B.2或3C.4D.2或427.a<0时,化简结果为〔〕A .B.0C.﹣1D.﹣2a28.在有理数中,绝对值等于它本身的数有〔〕A .1个B.2个C.3个D.无穷多个29.|x|=3,那么在数轴上表示x的点与原点的距离是〔〕A .3B.±3C.﹣3D.0﹣330.假设|a|+|b|=|a+b|,那么a、b间的关系应满足〔〕A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.|m|=4,|n|=3,且mn<0,那么m+n的值等于〔〕A .7或﹣7B.1或﹣1C.7或1D.﹣7或﹣132.任何一个有理数的绝对值在数轴上的位置是〔〕A .原点两旁B.整个数轴C.原点右边D.原点及其右边33.以下各式的结论成立的是〔〕A.假设|m|=|n|,那么m>n B.假设m≥n,那么|m|≥|n| C.假设m<n<0,那么|m|>|n| D.假设|m|>|n|,那么m>n34.绝对值小于4的整数有〔〕A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有〔〕个.A .7B.6C.5D.436.假设x的绝对值小于1,那么化简|x﹣1|+|x+1|得〔〕A .0B.2C.2x D.﹣2x37.3.14﹣π的差的绝对值为〔〕A .0B.3.14﹣πC.D.38.以下说法正确的选项是〔〕A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的选项是〔〕A.﹣〔﹣5〕的相反数是〔﹣5〕B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.假设|a|>0,那么a一定不为零40.|a|>a,|b|>b,且|a|>|b|,那么〔〕A .a>b B.a<b C.不能确定D.a=b41.|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________ .42.从1000到9999中,四位数码各不一样,且千位数与个位数之差的绝对值为2的四位数有_________ 个.43.最大的负整数是_________ ,绝对值最小的有理数是_________ .44.最大的负整数,绝对值最小的数,最小的正整数的和是0 _________ .45.假设x+y=0,那么|x|=|y|.〔_________ 〕46.绝对值等于10的数是_________ .47.假设|﹣a|=5,那么a= _________ .48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,那么A的最小值是_________ .49.﹣3.5的绝对值是_________ ;绝对值是5的数是_________ ;绝对值是﹣5的数是_________ .50.绝对值小于10的所有正整数的和为_________ .51.化简:|x﹣2|+|x+3|,并求其最小值.52.假设a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.假设|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2019|+|x﹣2019|的最小值.55.假设|a|=﹣a,那么数a在数轴上的点应是在〔〕A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧56.a=12,b=﹣3,c=﹣〔|b|﹣3〕,求|a|+2|b|+|c|的值.57. 以下判断错误的选项是〔〕A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数58.同学们都知道,|5﹣〔﹣2〕|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:〔1〕求|5﹣〔﹣2〕|= _________ .〔2〕设x是数轴上一点对应的数,那么|x+1|表示_________ 与_________ 之差的绝对值〔3〕假设x为整数,且|x+5|+|x﹣2|=7,那么所有满足条件的x为_________ .59.假设ab<0,试化简++.60.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣〔﹣1〕|那么表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x ﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与________ 在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决以下问题〔1〕当|x﹣2|+|x+3|=5时,x可取整数_________ 〔写出一个符合条件的整数即可〕;〔2〕假设A=|x+1|+|x﹣5|,那么A的最小值是_________ ;〔3〕假设B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________ ,此时x为_________ ;〔4〕写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.参考答案:1.因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.应选C.2.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.应选B.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.应选D.4.x的相反数是3,那么x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.那么x+y的值为﹣8或2.应选D5 A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.应选C.6.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.应选C.7.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.应选D.8.∵﹣〔﹣2〕=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.应选C.9. 依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.应选B.10. 根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.应选A.11.∵a<﹣1,0<b<1,∴|a|>|b|.应选A12.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,应选D.13.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b14.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣〔c﹣b〕﹣〔a﹣c〕+b﹣a=﹣a﹣c+b﹣a+c+b ﹣a =2b﹣3a.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.应选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b应选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.应选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、假设一个数小于它的绝对值,那么这个数为负数,符合绝对值的性质,故正确.应选D.19.一个数的绝对值一定是非负数.应选C.20.因为ab>0,所以a,b同号.①假设a,b同正,那么++=1+1+1=3;②假设a,b同负,那么++=﹣1﹣1+1=﹣1.应选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.应选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.应选C.23.假设|a|>﹣a,那么a的取值范围是a>0.应选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.应选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.应选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.应选D.27.∵a<0,∴==0.应选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.应选D.29. ∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;应选A.30.设a与b异号且都不为0,那么|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.应选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,应选B.32.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.应选D.33.A、假设m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、假设m=3,n=﹣4,m≥n,那么|m|<|n|,故结论不成立;C、假设m<n<0,那么|m|>|n|,故结论成立;D、假设m=﹣4,n=3,|m|>|n|,那么m<n,故结论不成立.应选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.应选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.应选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x ﹣1|=x+1+1﹣x=2.应选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣〔3.14﹣π〕=π﹣3.14.应选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.应选C.39.A、﹣〔﹣5〕=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.应选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.应选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+〔4+x﹣2y〕=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对〞,分别是:〔0,2〕,〔1,3〕,〔2,4〕,〔3,5〕,〔4,6〕,〔5,7〕,〔6,8〕,〔7,9〕,∵〔0,2〕只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不一样,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1 ,绝对值最小的有理数是0 .44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为〔√〕46.绝对值等于10的数是±10.47.假设|﹣a|=5,那么a= ±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=〔x﹣b〕+〔20﹣x〕+〔20+b﹣x〕=40﹣x,又x最大是20,那么上式最小值是40﹣20=20.4 3.5 ;绝对值是5的数是±5;绝对值是﹣5的数是不存在.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故此题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×〔﹣6〕=6﹣18=﹣12;②x=﹣3,y=6,原式=2×〔﹣3〕+3×6=﹣6+18=1254.∵2019=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2019|+|x﹣2019|=〔x﹣1〕+〔x﹣3〕...+〔1001﹣x〕+〔1003﹣x〕+〔1005﹣x〕+...+〔2019﹣x〕 =2〔2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.应选D.56. ∵a=12,b=﹣3,∴c=﹣〔|b|﹣3〕=﹣〔3﹣3〕=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.应选A.58.〔1〕|5﹣〔﹣2〕|=|5+2|=7;〔2〕|x+1|表示x与﹣1之差的绝对值;〔3〕∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x 与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣〔﹣5〕=7,|x+5|+|x ﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160. ∵|x+3|=|x﹣〔﹣3〕|,∴|x+3|可看成x与﹣3的点在数轴上的距离;〔1〕x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;〔2〕|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;〔3〕|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;〔4〕|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.。

相关文档
最新文档