三阶行列式的逆矩阵
二阶 三阶矩阵逆矩阵的口诀

求二、三阶矩阵逆矩阵的记忆口诀1、问题的提出在各类理工科的课程中,往往有求解矩阵逆矩阵的问题,题目本身虽然简单,但是如果按照教材给出的方法计算的话,要费一些时间,更可怕的是计算过程难免有误,容易造成结果出错。
经过一些研究,我们发现,大部分求解逆矩阵的题目,都是要求解二阶、三阶矩阵的逆。
针对此问题,给出学生相应的记忆口诀,帮助学生快速求解。
2、知识储备1.1对于n 阶方阵,如果同时存在一个n 阶方阵,使得AB=BA=E 则称A 阵可逆,并把方阵B 成为方阵A 的逆矩阵,记作A -11.2n 阶行列式A 的各个元素的代数余子式构成的矩阵,叫做A 的伴随矩阵,如下:1.3方阵A 可逆的充分必要条件是0A ≠,当A 可逆时,*1A A A -= 3、二阶矩阵的逆矩阵的记忆口诀记忆口诀:主对调,次换号,除以行列式推导:假设a b A c d ⎡⎤=⎢⎥⎣⎦,,,,a b c d R ∈,且A 可逆,那么根据知识储备1.2*d b A c a -⎡⎤=⎢⎥-⎣⎦所以呢,*1d b c a A A A A--⎡⎤⎢⎥-⎣⎦== 4、三阶矩阵的逆矩阵的记忆口诀记忆口诀:除以行列式,别忘记。
去一行,得一列,二变号,余不变,2313121) 整体要除以行列式,不能忘记2) 去掉第一行,得到矩阵剩余两行,求得逆矩阵第一列3) 所求得的逆矩阵的第二列是按照231312规律得到数字加了一个负号,其余的第一列,第三列不加负号对于三阶矩阵33,ab c A de f A R g h i ⨯⎡⎤⎢⎥=∈⎢⎥⎢⎥⎣⎦,且A 可逆 1()1()()ei hf bi hc bf ce A fg id cg ia cd af A dh ge ah gb ae hd -----⎡⎤⎢⎥=----⎢⎥⎢⎥----⎣⎦(1) 先分析公式(1)的第一列,研究如下表格公式(1)矩阵的第一列是表1所有元素的组合,组合规律称为(231312规律)Step1:表格1第一行的第二、三、一列乘以第二行的三、一、二列得到ei,fg,dhStep2:表格1中第二行的二、三、一列乘以第一行的三、一、二列得到hf,id,geStep3:由step1得到的数据减去step2得到的数据,得到公式(1)的第一列。
矩阵计算公式三阶

矩阵计算公式三阶矩阵是线性代数中的重要概念,它是由数字按照一定的规则排列成的矩形阵列。
矩阵在各个领域都有着广泛的应用,包括物理学、工程学、计算机科学等。
在矩阵计算中,我们经常会遇到三阶矩阵的运算,本文将介绍三阶矩阵的计算公式及其应用。
三阶矩阵的定义。
首先,我们来看一下三阶矩阵的定义。
一个三阶矩阵可以表示为一个3x3的矩阵,即有三行三列的矩阵。
例如,一个三阶矩阵可以表示为:A = [a11 a12 a13][a21 a22 a23][a31 a32 a33]其中,a11, a12, a13等分别代表矩阵中的元素。
在三阶矩阵中,共有9个元素,分别为a11, a12, a13, a21, a22, a23, a31, a32, a33。
三阶矩阵的加法。
三阶矩阵的加法是指两个三阶矩阵相加的操作。
两个三阶矩阵相加的规则是将它们对应位置的元素相加。
例如,对于两个三阶矩阵A和B:A = [a11 a12 a13][a21 a22 a23][a31 a32 a33]B = [b11 b12 b13][b21 b22 b23]它们的和C为:C = [a11+b11 a12+b12 a13+b13][a21+b21 a22+b22 a23+b23][a31+b31 a32+b32 a33+b33]三阶矩阵的减法。
三阶矩阵的减法与加法类似,也是将两个矩阵对应位置的元素相减。
例如,对于两个三阶矩阵A和B:A = [a11 a12 a13][a21 a22 a23][a31 a32 a33]B = [b11 b12 b13][b21 b22 b23][b31 b32 b33]它们的差D为:D = [a11-b11 a12-b12 a13-b13][a21-b21 a22-b22 a23-b23][a31-b31 a32-b32 a33-b33]三阶矩阵的数乘。
三阶矩阵的数乘是指一个矩阵中的每个元素都乘以一个常数。
例如,对于一个三阶矩阵A和一个常数k:[a21 a22 a23][a31 a32 a33]它的数乘E为:E = [ka11 ka12 ka13][ka21 ka22 ka23][ka31 ka32 ka33]三阶矩阵的乘法。
二阶、三阶矩阵逆矩阵的口诀-三阶矩阵逆矩阵公式(学练结合)

求二、三阶矩阵逆矩阵的记忆口诀1、问题的提出在各类理工科的课程中,往往有求解矩阵逆矩阵的问题,题目本身虽然简单,但是如果按照教材给出的方法计算的话,要费一些时间,更可怕的是计算过程难免有误,容易造成结果出错。
经过一些研究,我们发现,大部分求解逆矩阵的题目,都是要求解二阶、三阶矩阵的逆。
针对此问题,给出学生相应的记忆口诀,帮助学生快速求解。
2、知识储备1.1 对于n 阶方阵,如果同时存在一个n 阶方阵,使得 AB=BA=E则称A 阵可逆,并把方阵B 成为方阵A 的逆矩阵,记作A -11.2 n 阶行列式A 的各个元素的代数余子式构成的矩阵,叫做A 的伴随矩阵,如下:112111222212......*.......n n n n nn A A A A A A A A A A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1.3 方阵A 可逆的充分必要条件是0A ≠,当A 可逆时,*1A A A -= 3、二阶矩阵的逆矩阵的记忆口诀记忆口诀:主对调,次换号,除以行列式推导: 假设a b A c d ⎡⎤=⎢⎥⎣⎦,,,,a b c d R ∈,且A 可逆,那么根据知识储备1.2 *d b A c a -⎡⎤=⎢⎥-⎣⎦所以呢,*1d b c a A A A A--⎡⎤⎢⎥-⎣⎦== 4、三阶矩阵的逆矩阵的记忆口诀记忆口诀:除以行列式,别忘记。
去一行,得一列,二变号,余不变,231 3121) 整体要除以行列式,不能忘记2) 去掉第一行,得到矩阵剩余两行,求得逆矩阵第一列3) 所求得的逆矩阵的第二列是按照231 312 规律得到数字加了一个负号,其余的第一列,第三列不加负号对于三阶矩阵33,ab c A de f A R g h i ⨯⎡⎤⎢⎥=∈⎢⎥⎢⎥⎣⎦,且A 可逆 1()1()()ei hf bi hc bf ce A fg id cg ia cd af A dh ge ah gb ae hd -----⎡⎤⎢⎥=----⎢⎥⎢⎥----⎣⎦(1) 先分析公式(1)的第一列,研究如下表格1 2 3 1d e f 2 g h i公式(1)矩阵的第一列是表1所有元素的组合,组合规律称为(231312规律)Step1: 表格1 第一行的第二、三、一列乘以第二行的三、一、二列得到ei , fg , dhStep2: 表格1中第二行的二、三、一列乘以第一行的三、一、二列得到hf , id , geStep3: 由step1得到的数据减去step2得到的数据,得到公式(1)的第一列。
三阶方阵逆矩阵公式

三阶方阵逆矩阵公式
1、方阵的逆矩阵等于方阵的伴随矩阵与方阵对应的行列式的值的倒数的积;
即A^-1=A*/(|A|).
只有当|A|≠0时,方阵A才可逆。
这种方法并不简便。
2、利用初等变换求逆矩阵;
一般是将矩阵(A,E)化为(E,A^-
1)的形式;从而得到A逆矩阵;
3、也可以利用分块矩阵求逆矩阵;
但是,这种方法不能单独使用。
其实就是把一个高阶方阵分成若干个低阶方阵,然后利用前两种方法求出低阶方阵的逆矩阵。
这种方法不适用于三阶矩阵的逆矩阵。
因为三阶矩阵本身是很低阶的。
使用下面的示例来演示前两种方法。
例如,求以下三阶矩阵的逆矩阵:
解法1:(1)先求|A|,即A所对应的行列式,判断A有没有逆矩阵:
∴A有逆方阵.
(2)然后求A的伴随矩阵:
(3)最后代入公式求A的逆矩阵:
解法2:对(A,E)施行初等变换:即
(1)第三行乘以-1加到第一行得:
(2)第三行加到第二行得:
(3)第一行乘-2加到第三行得:
(4)第三行乘以负1交换到第二行得:
(5)第三行除以5,然后第三行分别乘以12和4,加到第二行和第一行,得:
看,两种方法得到的结果是一样的。
二阶三阶矩阵逆矩阵的口诀

二阶三阶矩阵逆矩阵的口诀SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#求二、三阶矩阵逆矩阵的记忆口诀1、问题的提出在各类理工科的课程中,往往有求解矩阵逆矩阵的问题,题目本身虽然简单,但是如果按照教材给出的方法计算的话,要费一些时间,更可怕的是计算过程难免有误,容易造成结果出错。
经过一些研究,我们发现,大部分求解逆矩阵的题目,都是要求解二阶、三阶矩阵的逆。
针对此问题,给出学生相应的记忆口诀,帮助学生快速求解。
2、知识储备1.1对于n 阶方阵,如果同时存在一个n 阶方阵,使得AB=BA=E则称A 阵可逆,并把方阵B 成为方阵A 的逆矩阵,记作A -11.2n 阶行列式A 的各个元素的代数余子式构成的矩阵,叫做A 的伴随矩阵,如下: 1.3方阵A 可逆的充分必要条件是0A ≠,当A 可逆时,*1A A A -= 3、二阶矩阵的逆矩阵的记忆口诀记忆口诀:主对调,次换号,除以行列式推导:假设a b A c d ⎡⎤=⎢⎥⎣⎦,,,,a b c d R ∈,且A 可逆,那么根据知识储备1.2*d b A c a -⎡⎤=⎢⎥-⎣⎦ 所以呢,*1d b c a A A A A--⎡⎤⎢⎥-⎣⎦==4、三阶矩阵的逆矩阵的记忆口诀记忆口诀:除以行列式,别忘记。
去一行,得一列,二变号,余不变,2313121) 整体要除以行列式,不能忘记2) 去掉第一行,得到矩阵剩余两行,求得逆矩阵第一列3) 所求得的逆矩阵的第二列是按照231312规律得到数字加了一个负号,其余的第一列,第三列不加负号对于三阶矩阵33,ab c A de f A R g h i ⨯⎡⎤⎢⎥=∈⎢⎥⎢⎥⎣⎦,且A 可逆 1()1()()ei hf bi hc bf ce A fg id cg ia cd af A dh ge ah gb ae hd -----⎡⎤⎢⎥=----⎢⎥⎢⎥----⎣⎦(1) 先分析公式(1)的第一列,研究如下表格公式(1)矩阵的第一列是表1所有元素的组合,组合规律称为(231312规律)Step1:表格1第一行的第二、三、一列乘以第二行的三、一、二列得到ei,fg,dhStep2:表格1中第二行的二、三、一列乘以第一行的三、一、二列得到hf,id,geStep3:由step1得到的数据减去step2得到的数据,得到公式(1)的第一列。
三阶行列式运算

三阶行列式运算
【原创实用版】
目录
1.三阶行列式的定义
2.三阶行列式的运算法则
3.三阶行列式的应用举例
正文
一、三阶行列式的定义
三阶行列式是一个 3x3 的矩阵,由九个元素组成,这些元素按照一
定的规则排列,并赋予一定的符号。
三阶行列式的一般形式为:a11 a12 a13
a21 a22 a23
a31 a32 a33
二、三阶行列式的运算法则
1.行列式与数的乘法:若 c 为常数,则 cA 为:
c * a11 a12 a13
0 * a21 a22 a23
0 * a31 a32 a33
2.行列式的加法和减法:两个 3x3 行列式相加减,对应位置上的元
素相加减。
3.行列式的乘法:两个 3x3 行列式相乘,按照行列式的乘法规则进
行计算,即将一个行列式的每一行与另一个行列式的每一列对应元素相乘,然后将结果相加。
三、三阶行列式的应用举例
1.计算三角形的面积:给定一个三角形的三个顶点坐标 (x1, y1),(x2, y2),(x3, y3),可以计算出该三角形的面积。
2.计算两个向量的夹角:给定两个向量 A 和 B,可以计算出它们之间的夹角。
3.计算矩阵的逆矩阵:对于一个 3x3 的矩阵,可以通过计算其行列式来判断是否存在逆矩阵,并求出逆矩阵。
矩阵的行列式和逆矩阵

矩阵的行列式和逆矩阵矩阵是线性代数中的重要概念,广泛应用于各个领域的数学中。
在研究矩阵的性质和运算中,行列式和逆矩阵是两个关键的概念。
本文将详细介绍行列式和逆矩阵的定义、性质以及计算方法。
一、行列式的定义和性质行列式是矩阵非常重要的一个属性,它具有许多重要的性质。
一个n×n 矩阵 A 的行列式记作 |A| 或 det(A),其中 n 表示矩阵的阶数。
行列式的定义有很多种,这里我们主要介绍按行或按列展开的定义方法。
对于 2×2 的矩阵 A,其行列式定义为:|A| = a11*a22 - a12*a21对于 3×3 的矩阵 A,其行列式定义为:|A| = a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31 -a12*a21*a33 - a11*a23*a32行列式具有许多重要的性质,包括:1. 当矩阵的某一行(或某一列)全为零时,行列式的值为零。
2. 若矩阵的两行(或两列)互换,则行列式的值变号。
3. 若矩阵的某一行(或某一列)的元素成比例,则行列式的值为零。
4. 若矩阵的某一行(或某一列)的元素上下对称,那么行列式的值为零。
5. 二阶和三阶矩阵的行列式可以通过定义直接计算,高阶矩阵的行列式计算可以通过展开定理,将矩阵按任意一行(或一列)展开成余子式的乘积再求和来计算。
二、逆矩阵的定义和性质逆矩阵是矩阵论中的重要概念,用于解决线性方程组以及矩阵的运算问题。
对于 n 阶方阵 A,如果存在一个 n 阶方阵 B,使得 AB = BA = I (I 为单位矩阵),则矩阵 B 称为矩阵 A 的逆矩阵,并记作 A^-1。
逆矩阵的定义表明,如果一个矩阵A 存在逆矩阵,则A 是可逆的;反之,如果矩阵 A 不可逆,则不存在 A 的逆矩阵。
逆矩阵具有一些重要的性质:1. 只有方阵才能有逆矩阵,即非方阵的矩阵不存在逆矩阵。
2. 如果矩阵 A 的逆矩阵存在,则它是唯一的。
三阶矩阵的转置 逆矩阵行列式

三阶矩阵的转置逆矩阵行列式1.引言1.1 概述概述部分将介绍本篇文章的主题和主要内容。
本篇文章将探讨关于三阶矩阵的转置,逆矩阵和行列式的相关知识。
在线性代数中,矩阵是一个重要的概念,被广泛应用于各个领域。
其中,三阶矩阵是最简单且常见的一种矩阵类型。
转置、逆矩阵和行列式是三阶矩阵的重要性质和计算方法,对于矩阵的运算和分析起着关键作用。
在本文的第一部分,我们将探讨三阶矩阵的转置。
转置是矩阵运算中常见的一种操作,可以通过交换矩阵的行和列来得到新的矩阵。
我们将介绍转置的定义和性质,并提供三阶矩阵转置的具体计算方法。
在第二部分,我们将研究三阶矩阵的逆矩阵。
逆矩阵是指对于一个可逆矩阵A,存在一个矩阵B,使得A与B的乘积等于单位矩阵。
我们将介绍逆矩阵的定义和性质,并提供三阶矩阵逆矩阵的计算方法。
最后,在第三部分,我们将研究三阶矩阵的行列式。
行列式是一个与矩阵相关的重要概念,用于计算矩阵的特征值和特征向量。
我们将介绍行列式的定义和性质,并提供三阶矩阵行列式的具体计算方法。
通过全面了解三阶矩阵的转置、逆矩阵和行列式,我们可以更好地理解和应用矩阵运算。
本文旨在为读者提供一个清晰的概念和计算方法,并帮助读者在实际问题中运用到这些知识。
希望读者通过阅读本文能够对三阶矩阵的转置、逆矩阵和行列式有更深入的理解。
1.2文章结构文章结构部分的内容可以包括以下内容:在文章结构部分,我们将介绍本文的组织结构,以帮助读者更好地理解和阅读本文。
本文主要分为两个部分:正文和结论。
正文部分将围绕三阶矩阵的转置、逆矩阵和行列式展开讨论。
首先,我们将介绍三阶矩阵的转置,包括其定义和性质。
然后,我们将详细介绍三阶矩阵转置的计算方法。
接下来,我们将转向三阶矩阵的逆矩阵,在这一部分中,我们将讨论逆矩阵的定义和性质,并探讨三阶矩阵逆矩阵的计算方法。
最后,我们将进入三阶矩阵的行列式部分,包括行列式的定义和性质,以及三阶矩阵行列式的计算方法。
在结论部分,我们将简要总结本文的内容,并提出一些结论和观点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三阶行列式的逆矩阵
要求一个三阶行列式的逆矩阵,首先需要确定这个行列式是可逆的,即其行列式的值不为零。
然后,可以使用伴随矩阵来求解。
假设有一个三阶方阵 A,它的逆矩阵为 B,那么有以下等式成立:
A *
B = B * A = I
其中 I 为单位矩阵。
对于一个三阶行列式,其逆矩阵的具体计算步骤如下:
1. 计算行列式的值 D = |A|。
2. 计算 A 的伴随矩阵 Adj(A)。
伴随矩阵的元素是由 A 的代数余子式组成,其每个元素 Aij 的代数余子式 Cij 即是将 A 中去掉第 i 行和第 j 列后剩下的元素按原来的顺序组成的 2 阶行列式的值,再乘以 (-1)^(i+j)。
即,
Adj(A) = |C11 C12 C13|
|C21 C22 C23|
|C31 C32 C33|
3. 计算 A 的伴随矩阵的转置矩阵 Adj(A)T。
4. 计算 A 的逆矩阵 B。
逆矩阵 B = (1/D) * Adj(A)T。
注意:在步骤2和步骤3中,需要先计算每个元素的代数余子式和转置矩阵,再进行矩阵的组合。
这样,在给定一个三阶行列式的情况下,就可以求出其逆矩阵。