超声波检测分析报告

超声波检测分析报告
超声波检测分析报告

南京坚固高中压阀门制造有限公司

超声波探伤记录

地址:江苏省南京市浦口区桥林工业园电话:

超声波探伤记录

超声光栅测液体中的声速 实验报告

实验设计说明书题目:利用超声光栅测液体中的声速 院部:理工科基础教学部 专业班级:物理学(创新实验班)1班 学生姓名:某某某 学号:41106XXX 实验日期: 2013年5月21日

超声光栅测液体中的声速 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、实验目的 (1)学习声光学实验的设计思想及其基本的观测方法。 (2)测定超声波在液体中的传播速度。 (3)了解超声波的产生方法。 二、 仪器用具 分光计,超声光栅盒,高频振荡器,数字频率计,纳米灯。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 正文: 光声效应的发现无疑是物理学两大分支的又一次融合,利用超声光栅测量液体中的声速就是这一物理现象的应用。此次实验的仪器包括超声光栅池、超声仪、分光计、测微目镜以及光源。 由于声波是纵波,所以当超声波在液体(本实验用的是水)传播时,声波的振动会引起液体密度空间分布的周期性变化(如右图),进而导致液体的折射率亦呈周期性分布(如右图)。如果在某一时间t 0,液体密度的空间函数为: ()0s 02sin x t x π ρρρωλ??=+?- ? ?? ? ① 其中,0ρ是液体的静态密度,ρ?是密度的变化幅度,s ω是超声波的角频率,λ是超声波长,x 是超声波的传播方向,也是密度变化的空间方向;此时,折射率 的空间函数为:()0s 02sin n x n n t x πωλ? ?=+?-? ?? ?②,其中0n 为液体的静态折射率

超声检测报告模板

基桩超声波透射法 检测报告 工程名称: 工程地点: 委托单位: 检测日期: 报告编号: (检测单位名称) 年月日

###工程 基桩超声波射法检测报告 检测人员: 检测负责: 报告编写: 校核: 审核: 审定: (检测单位盖章) 年月日 地址: 邮编: 联系人: 电话: 声明:1、本检测报告涂改、换页无效。 2、如对本检测报告有异议,可在报告发出后20天内向本检测单位书面提请复议。

工程概况

受委托,于年月日至年月日对工程(概况见表1)的基桩进行超声波透射法检测,目的是检测桩身结构完整性。根据国家和省有关规范、规程和规定,并考虑本工程的具体情况(经与有关单位研究协商),确定本次试验共检测根工程桩。现将检测情况及结果报告如下: 一、检测仪器设备、基本原理和标准 1、仪器设备 检测设备采用北京铭创科技有限公司生产的“多通道超声波基桩检测仪MC-6360”。 2、基本原理 超声波透射法检测桩身结构完整性的基本原理是:由超声脉冲发射源向砼内发射高频弹性脉冲波,并用高精度的接收系统记录该脉冲波在砼内传播过程中表现的波动特性;当砼内存在不连续或破损界面时,缺陷面形成波阻抗界面,波到达该界面时,产生波的透射和反射,使接收到的透射波能量明显降低;当砼内存在松散、蜂窝、孔洞等严重缺陷时,将产生波的散射和绕射;根据波的初至到达时间和波的能量衰减特性、频率变化及波形畸变程度等特征,可以获得测区范围内砼的密实度参数。测试记录不同侧面、不同高度上的超声波动特征,经过处理分析就能判别测区内砼存在缺陷的性质、大小及空间位置(和参考强度)。 在基桩施工前,根据桩直径在大小预埋一定数量的声测管,作为换能器的通道。测试时每两根声测管为一组,通过水的耦合,超声脉冲信号从一根声测管中的换能器中发射出去,在另一根声测管中的换能器接收信号,超声仪测定有关参数,采集记录储存。换能器由桩底同时往上逐点检测,遍及各个截面。 3、检测标准 检测参照国家行业标准《建筑基桩检测技术规范》JGJ106-2014中有关规定进行。

超声波法检测混凝土试验报告

哈尔滨工程大学 实验报告 实验名称:超声波法检测混凝土实验 班级:212 学号:05 姓名:纪强 合作者:黄昊、张艳慧 成绩:____________________________ 指导教师:梁晓羽 实验室名称:工程测试与检测技术实验室

目录 一.试验目的 二.试验仪器和设备 三.原理及试验装置 四.试验步骤 五.试验数据记录表格 六.注意事项 七.试验结果分析 八.问题讨论

一.试验目的 检测混凝土裂缝宽度,检测裂缝尺寸从而确定混凝土结构安全性。对混凝土裂缝超声检测进行实验研究,对预先设置在混凝土试件中的裂缝进行超声检测,将得到的检测数据与相应的理论值进行对比分析,讨论裂缝超声检测中存在的问题,对裂缝的检测方法提出建议。 二.试验仪器和设备 GTJ—F800 混凝土裂缝综合检测仪器,8500~11000RMB。 三.原理及试验装置 混凝土裂缝宽度检测试验原理:通过摄像头拍摄裂缝图像并放大显示在显示屏上,然后对裂缝图像进行图像处理和识别,执行特定的算法程序自动判读出裂缝宽度,仪器采用新型高精度、高灵敏度的光电转换器件进行图像采集,利用DSP 系统实现图像分析与处理,通过特征提取与优化算法自动判读裂缝宽度,同时在液晶屏上实时显示裂缝图像和裂缝宽度的测试结果。

裂缝深度检测试验原理:超声波在不同介质中传播时,将发生反射、折射、绕射和衰减等现象,表现为接收换能器上接收的超声波信号的声时、振幅、波形和频率发生相应变化,对这些变化分析处理就可以判定结构内部裂缝的深度。图中, H为试件高度;h为构造裂缝度 ;L1为射换能器距构造裂缝的水平距离;L2 为接收换能器距构造裂缝的水平距离。 四.试验步骤 制作带裂缝混凝土试件:该试件长0·6m,宽0·5m,高0·4m,混凝土强度C25,采用石子粒径30mm左右,裂缝深度90~100mm,缝宽 0~10mm。

声速的测量(超声)实验报告

声速的测量(超声) 一、实验目的: ①用共振干涉法求超声声速; ②用相位比较法求超声声速。 二、实验仪器: 超声声速测量仪、信号发生器、数字频率计、同轴电缆、示波器、游标卡尺、压电陶瓷超声换能器。 三、实验原理: ①声速的测量: 利用公式νλ,测量声波的频率ν和波长λ去求声速v。 ②声压驻波:已知两列频率、振幅和振动方向相同的平面简谐波,向相反的方向传播时,叠加的合成波就是驻波,在驻波场中质点振幅最大处为波腹,质点位移振幅近似为零处为波节,相邻波腹或波长的距离为半波长(λ/2)。 ③声波波长的测量:接收器S2输出的信息有两部分:1、驻波的信息,其振幅随S2的移动而变化,在共振时,S1、S2的距离为l:,,,此时振幅较大。2、类 似行波的信息,S1、S2用的相位差,也随着S2的移动而变化,每移动λ/2,相位差改变Π(即180°)。利用这两种信息均可测量声波波长λ。(1)共振干涉法;(2)相位比较法。 四、实验方法: ①用共振干涉法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,示波器上显示的是S2的交流信号按时间展开的图形,移动S2示波器上图形有时很大,有时很小。在S2移动范围内,仔细测多个出现极大值时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ②用相位比较法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,移动S2示波器上的图形会从椭圆变换到一条直线,再从直线变换到一个反方向的椭圆,往复变换。在S2移动范围内,仔细测多个出现直线时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ③记录实验室的实温t。 ④用当前实温和公式求出声速,与以上两种方法求出的声速进行比较, 分析。 五、数据处理: 温度:34℃频率:37500Hz 共振干涉法(单位:mm): 218.98 213.58 209.20 204.56 199.62 194.92 190.64 185.72 180.62 176.52 相位比较法(单位:mm): 174.60 169.60 164.80 160.68 155.90 151.22 146.28 141.58 136.68 131.70 共振干涉法: λ

混凝土无损检测实验报告

无损混凝土检测技术实验报告 班级: 组号: 姓名: 指导教师: 2015年6月3日

目录 实验一、混凝土配制实验 (2) 实验二、回弹法检测混凝土的强度 (3) 实验三、超声法检测混凝土强度 (6) 实验四、综合法检测混凝土的强度 (9) 五、实验总结与分析 (11) 参考文献 (12)

学生实验守则 1.实验前必须预习有关实验指导书,了解实验内容、目的和方法, 并写出预习报告。否则,不得进行实验; 2.学生进入实验室,不得大声喧哗、打闹,应严格遵守实验室各项 制度; 3.实验室内各种仪器设备未经有关人员同意,不得任意动用; 4.使用仪器设备应严格遵守操作规程,发现异常现象立即停止使用, 并及时向指导教师报告。因违反操作规程(或未经允许使用)而造成设备损坏,按学校规定处理; 5.实验时应严肃认真,亲自动手,并及时记录和整理实验数据。实 验结束,应将实验结果交指导教师审阅; 6.实验完毕,应将仪器设备擦洗、整理,清扫地面,经指导教师同 意后,方可离开; 7.实验报告应及时完成,不得转抄他人结果,并按指定时间交给指 导教师批阅。

实验一、混凝土配制实验 实验条件:湿度51 %,温度25 ℃实验时间:2015 年 4 月 2 日 1. 实验目的: 制作强度为C45混凝土试块,为之后的强度检测实验做准备 2. 实验仪器: 搅拌机,磅秤,天平,台秤,拌板,拌铲,盛器等 3. 实验原材料: 1.配制 25 L混凝土材料用量: 水泥 9.92 kg 砂 13.60 kg 卵石 31.74 kg 水 4.25 kg 外加剂 g ( %) 水泥标号:42.5;石料最大粒径30㎜;砂表观密度2600㎏/ m3;石子表观密度2630㎏/m3; 2.普通混凝土配合比:水泥:砂:卵石:水=397:544:1270:170 3.砂率:30% 4.水胶比:W/B=aa×?b/(?cu,0+aa×ab×?b)=0.43 4. 试验方法: 1.根据计算所得的配合比配置25L混凝土并拌合 2.将配制好的混凝土装模,在振动台上振实成型 3.将成型后试件编号并静置,一天后进行拆模将混凝土试块放入标准养护室中养护28d

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

实验报告超声波

袂四川大学实验报告书 羁课程名称:实验名称:超声波探伤实验 专业:班号:姓名:学号: 蕿系别: 肅实验日期:2013年3月10日同组人姓名:教师评定成绩: 芃一、实验名称 蚃超声波探伤实验 莈二、实验目的 荿1.了解探伤仪的简单工作原理 蚄2.熟悉超声波探伤仪、探头和标准试块的功用 膁3.了解有关超声波探伤的国家标准 莁4.掌握超声波探伤的基本技能 葿三、主要实验仪器 肅CTS-22型超声波探伤仪试块探头直尺机油 袃四、实验原理

A 型脉冲反射式超声波探伤仪,仪器屏横坐标表示超声波在工件中的传播时 膀实验中广泛应用的是 间(或传播距离)纵坐标表示反射回波波高。根据光屏上缺陷波的位置和高度,可以确定缺陷的位置和大小。 A 型脉冲式超声波探伤仪的工作原理:电路接通后,同步电路产生同步脉冲信号,同时触发发射、扫描电路。发射电路被触发后产生高频脉冲作用于探头,通过探头的逆电压效应将电信号转换为声信号,发射超声波。超声波在遇到异质界面(缺陷或底面)反射回来呗探头吸收。通过探头的正电压效应将信号转换为电信号,并送至放大电路呗放大检波,然后加到荧光屏垂直偏转板上,形成重叠的缺陷波 F 和底波B。扫描电路被处罚后产生锯齿波,加到荧光屏水平偏转板上,形成一条扫描亮线,将缺陷波 F 和底波B按时间展开。其工作原理图如下图所示: 薈五、实验内容与步骤 蒆一.超生波探伤仪的使用、仪器性能的测定、仪器与直探头综合性能测定 莁实验要求: 1. 掌握仪器主要性能:水平线性、垂直线性和动态范围的测试方法; 罿 2. 掌握仪器和直探头主要综合性能:盲区、分辨力、灵敏度余量的测试方法。 蚈背景知识: 蚃1. 仪器的主要性能: 肃 A. 水平线性仪器荧光屏上时基线水平刻度值与实际声程成正比的程度。 蚈 B. 垂直线性仪器荧光屏上的波高与输入信号幅度成正比的程度。 螈 C. 动态范围指反射信号从垂直极限衰减到消失所需的衰减量。 肄 2. 仪器与探头的主要综合性能: 蒁 A. 盲区从探侧面到能发现缺陷的最小距离成为盲区,其内缺陷不能发现。 螁 B. 分辨力在荧光屏上区分距离不同的相邻两缺陷的能力。 袈 C. 灵敏度余量指仪器与探头组合后在一定范围内发现微小缺陷的能力。 蒅 D. 声束扩散角扩散角的大小取决于超声波的波长与探头晶片直径的大小。

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共装置图。 波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。

无损检测 超声波检测

超声波检测 华北科技学院机电工程学院 摘要:超声无损检测是在现代工业生产中应用的非常广泛的一种无损检测 方法,它对于提高产品的质量和可靠性有着重要的意义。尽管随着电子技 术的发展,国内出现了一些数字化的超声检测仪器,但其数据处理及扩展 能力有限,缺乏足够的灵活性。而虚拟仪器是近年来刚刚发展起来的一种 新的仪器构成方式,它是一种、通讯技术和测量技术相结合的产物,具有 很大的灵活性和扩展性,具有旺盛的生命力。 关键词:无损检测;超声波探伤;计算机技术;通讯技术 Abstract:As a kind of NDT(Non-Destructive Testing),UT (Ultrasonic Testing) is widely used in modern industry, which plays a very important role in improving the quality and the reliability of product. Although along with technical development in electronics, some digital UT instruments have been developed at home, its expand- ability and the ability of processing data limited. VI (Virtual Instru- ment) is a new Instrument structure developed recent years and is an outcome which combines the computer technique, the communication technique together with the measure technique, which has huge expandability, flexibility and the prosperous vitality. Keywords:NDT(Non-Destructive Testing) UT (Ultrasonic Testing) computer technique communication technique

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告 一实验目的 1.了解超声波的物理特性及其产生机制; 2.学会用相位法测超声波声速并学会用逐差法处理数据; 3.测量超声波在介质中的吸收系数及反射面的反射系数; 4.并运用超声波检测声场分布。 5.学习超声波产生和接收原理, 6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。 7.观察和测量声波的双缝干涉和单缝衍射 二实验条件 HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪 三实验原理 1、超声波的有关物理知识 声波是一种在气体。液体、固体中传播的弹性波。声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。 声波频谱分布图 振荡源在介质中可产生如下形式的震荡波: 横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。 纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。 表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。 板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。

超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。 2、理想气体中的声速值 声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为 μrRT =V (1) 式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730= 代入式(1)得, 00001V 1)(V T t T t T rR t T rR ++?+===μμ (2) 对于空气介质,0℃时的声速0V = m s 。若同时考虑到空气中的蒸汽的影响,校准后 声速公式为: s m p p T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强。 3、共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气传播,到达接收器,如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波,反射面处为位移的波节。改变接收器与发射源之间的距离l ,在一系列特定的距离上,媒质中出现稳定的驻波共振现象。此时,l 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。不难看出,在移动接收器的过程中,相邻两次达到共振所对应的接收面之间的距离即为半波长。因此,若保持频率 v 不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离(2/λ),就可以用λv =V 计算声速。 声压变化与接收器位置的关系:

超声实验实验报告

近代物理实验实验报告 超声实验 何昊东工物50 指导老师:王合英2017-3-9 【摘要】: 超声学是一门主要研究超声的产生方法和探测技术、超声在介质中的传播规律、 超声与物质的相互作用,包括在微观尺度的相互作用以及超声的众多应用的学科。本实验利用超声在介质中的传播规律测量了超声探头的延迟时间、横波在不同介质中传播的折射角和纵、横波在不同介质中的传播速度,并利用测量得到的传播速度求出了不同介质的弹性模量和泊松比。最后利用超声测距的原理模拟了超声水下勘测,了解了超声在水下勘测和医疗中的作用。 关键词: 超声水下勘测弹性模量 一、引言 超声的研究和发展与媒质中超声的产生和接收的研究密切相关。 自1883年人类首次制成超声气哨,这一类机械型超声换能器在不断改进后至今仍广泛地应用于流体媒质的超声应用当中。 20世纪初,随着电子学的发展人们发现了一些晶体材料的压电效应和磁致伸缩效应,1917年,法国人朗之万利用天然石英晶体制成了第一个夹心式超声换能器用来探查海底的潜艇。随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型换能器等多种超声换能器。 随着材料科学的发展,机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜等材料的出现使得产生和检测超声波的频率,由几十千赫提高到上千兆赫,波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。超声学的一个发展方向便是不断的提高超声的频率,利用超高频超声声子来进行物质结构方面的等基础研究。 同时,近10年来随着计算机图像学的迅猛发展,超声由于其具有的对身体无创伤,机器技术门槛低,检查费用低廉等优势,超声诊断也随之发展起来,并被广泛地应用于工业机械探伤和医疗诊断方面。此外,超声洁牙器、超声洗碗机等产品也相继问世。超声技术已经

超声波探伤仪探头标定实验指导书 (1)

实验三超声波探伤仪探头标定实验指导书 1、实验目的 1、熟练掌握数字探伤仪的使用方法; 2、掌握超声波探伤仪探头校准方法 3、理解探头K值、探测灵敏度的含义。 2、预习内容 1、熟悉探伤仪使用说明书 2、了解实验设备 3、深刻理解实验内容和方法。 3、实验内容 完成探头如下标定内容:校距离、校K值、制作距离波幅曲线、确定检测范围、确定探伤灵敏度。 4、注意事项 探头K值应为2(探头规格2.5P 1313 K2),由于要执行GB4730-93标准,根据此标准可知,校准用的标准试块为CSK-ⅠA,对比试块为CSK- ⅢA,当工件厚度为20mm时,则判废线为 16+5dB,定量线为 16-3dB,评定线为 16-9dB,此三条线的 16是指CSK-ⅢA试块上的人工缺陷(短横孔),三条线分别加减多少dB是以 16短横孔为基准。 5、 实验条件 1、 PXUT-320C超声波探伤仪 2、 CSK-IA、CSK-IIIA试块 3、 2.5PX13 K2探头 六、实验方法 1、校距离(或称距离校准): 准备好CSK-ΙA型试块和2.5P 1313K2探头,在仪器待命状态下,光标在A扫前闪动,按↑、↓键,推滚出“校准”功能, 光标在扫查前闪动,按键进入扫查,按

键,功能窗显示 ,按→键,使显示刻度变成1:1,按 键,功能窗显示 ,按←键,将100mm左、右刻度移到观察范围内。按两次 键,功能窗显示 ,按→键将闸门拉宽到适当宽度,再按 键,功能窗显示 ,按←、→键将闸门移动套住100mm左、右的适当范围,见图1. 图1 参考图2,移动探头,寻找R100圆弧的反射回波,按“峰值搜索”键,寻找最大反射回波,当找到最大反射回波后,坐标下方显示 S=×××mm,及××%,此时,S的值应大于100,大于的数既是超声波在探头楔块中走过的距离,这个数对我们计算被检工件中的近场长度是

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长:由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容

1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。 如有侵权请联系告知删除,感谢你们的配合!

无损检测实验报告

无损检测实验报告 一、实验目的 1.通过实验了解六种无损检测(超声检测、射线检测、涡流检测、磁粉检测、 渗透检测、声发射检测)的基本原理。 2.掌握六种无损检测的方法,仪器及其功能和使用方法。 3.了解六种无损检测的使用范围,使用规范和注意事项。 二、实验原理 (一)超声检测(UT) 1. 基本原理 超声波与被检工件相互作用,根据超声波的反射、透射和散射的行为,对被检工件经行缺陷测量和力学性能变化进行检测和表征,进而进行安全评价的一种无损检测技术。 金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A 扫描方式的,所谓A 扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 2. 仪器结构 a)仪器主要组成 探头、压电片和耦合剂。 其中,探头分为直探头、斜探头。压电片受到电信号激励便可产生振动发射超声波,当超声波作用在压电片上时,晶片受迫振动引起的形变可转换成相应的电信号,从而接受超声波。耦合剂是为了使超声波更有效的传入工件,在探头与工件表面之间施加的一层透生介质为耦合剂,作用在于排除探头与工件之间的空气。 b)主要旋钮 F1-F6 菜单键,不同状态下有不同功能。 0ABC\4MNO 调节键,调节参数值的大小。 设置及检测键。 快捷键。dB 增益,2GHI 闸门,范围,移位。 电源键。 射线的种类很多,其中易于穿透物质的有X射线、丫射线、中子射线三种。这三 种射线都被用于无损检测,其中X射线和丫射线广泛用于锅炉压力容器焊缝和其他工业

《声速测量》实验报告

《声速测量》实验预习报告 一、 实验原理 1. 理论计算 理想气体中声波的传播速度为 M RT v γ= 其中,γ为比热容比,M是气体的摩尔质量,T是绝对温度,R=8.31441J/(mol ·K) 在室温t 下,干燥空气中的声速为 01T t v v + = 其中,s m v /5.3310=,K T 15.2730=。 但实际中空气并不是干燥的,所以修正的结果为 ??? ? ? ?+???? ? ?+=p rp T t v s 31.0115.3310 其中,r 为相对湿度,p s 为饱和蒸汽压,Pa p 510013.1?=。 2. 实验方法 由于λf v =,故只要测出频率和波长,就可以求出声速。 其中,声波频率由声源振动频率得到,再用相位法测得波长即可。波可以看成是相位的传播。沿传播方向上的任意两点,只要他们的振动状态相同,即同相或者相位差为2π的整数倍,

这时两点间的距离应等于波长λ的整数倍,即λn l=。 当在发射器的声波中沿传播方向移动接受器时,总可以找到一 个位置,使得接受器接受到的电信号和发射器的激励电信号同 相。继续移动接受器,知道接受的信号再一次和激励电信号同 相的时候,移过的距离必然等于声波的波长。利用利萨如图形 在两个电信号同相或反相时椭圆退化为友斜或左斜直线即可 判断。 二、实验步骤 1.连接电路。函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接受器的输出端和示波器的 通道2相连。函数信号发生器置于正弦波输出,频率置于100kHz 档,输出幅度调到峰值10V左右。 2.用示波器观察加在声波发射器上的电信号和超声波接受器输出的电信号。先将函数信号发生器的频率调节到40kHz左右,然后细调频率,使接受器输出信号最大,记下此频率,即超声 波频率。实验过程中若有改变,记下最大最小值,最后取平均 值。 3.用相位法测波长。利用利萨如图找出同相点,每遇到一个同相点就测一次接受器的位置x,连续测20个,并用逐差法处 理。得到波长的平均值。计算声速。 4.在测量开始和结束时,先后记录室温t1和t2,以及相对湿

超声波无损检测报告表格

无损检测报告 项目名称: xxxx有限公司 xxxx项目 产品(设备)编号CFJG 委托单位: xxxx有限公司 检测单位:xxxxx公司质量管理部 操作人:级别: 报告人:级别: II 审核人:级别: II (公章) 年月日

焊缝超声波检测报告首页 委托单位:xxxx钢结构有限公司报告编号:CFJG 共9页第 1 页 产品和检测器 材产品(设备)名称厂房钢结构产品(设备)编号CFJG 材料牌号Q345B 坡口形式V 接头形式对接焊接方法手工焊 仪器型号CTS-2020 探头型号 2.5G10×10K2 试块型号 CSK-ⅠA, CSK-Ⅲ A 表面处理打磨 耦合剂工业糨糊委托人陈德方 技术要求检测标准JB/T4730.3-2005 检测方法横波 检测比例100 % 表面补偿 6 dB 检测面单面双侧检测灵敏度Φ1×6-9dB 合格级别Ⅲ 焊缝(管线)编号板材 厚度 mm 焊缝 长度 mm 检测情况一次返修二次返修三次返修 评 定 级 别检测 长度 mm 检 测 比 例 % 扩探 长度 mm 部位 长 度 m m 部位 长 度 m m 部位 长 度 m m GJ-1 E1 14 300 300 100 ⅢE214 300 300 100 ⅢE314 300 300 100 ⅢE414 300 300 100 ⅢE514 300 300 100 ⅢE614 300 300 100 ⅡE710 200 200 100 ⅢE810 200 200 100 ⅢE910 200 200 100 ⅢE1010 200 200 100 ⅡF1 8 500 500 100 ⅡF2 8 500 500 100 Ⅱ 检测说明与结 果1、本产品按JB/T4730.3-2005 标准进行检测与评定,焊缝质量符合Ⅲ级要求。 2. CFJG表示框架总编号,GJ表示每榀框架的编号,例如:GJ-1表示第一榀的编号。每榀框架翼缘板焊缝的表示方法用字母“E”表示,从右至左依次为E1、E2 (10) 每榀框架腹板焊缝的表示方法用字母“F”表示,从右至左依次为F1、F2 (6) 3. 检测位置见附页示意图。

超声波实验报告

1. 拟合出直线为94059.02 14979.0+?=t X 。 所以水中声速应该为0.14979 cm/μs ,即1497.9m/s ,与理论值1464m/s 误差为2.3%<3%。 2.实验中使用铝合金样品 当样品长度为25.05mm 时,三次测得的△t 均为8μs ,则△t/2=4μs 。传播速度应为25.05/8=6.2625mm/μs ,即626.5m/s 。 当样品长度为50.02mm 时,三次测得的△t 均为16μs ,则△t/2=8μs 。传播速度应为50.02/8=6.2525mm/μs ,即625.5m/s 。 由此,声波在样品中的传播速度为(626.5+625.5)/2 m/s=625 m/s 。 3.选择较短的铝合金圆柱样品(d1=25.05mm )作为腹壁,较长的铝合金圆柱样品(d2=50.02mm )作为脏器壁。 第一反射面t1=1.88μs ,第二反射面t2=3.20μs , 第三反射面t3=4.00μs ,第四反射面t4=13.88μs , 声波在铝合金中的传播速度为6250m/s ,在水中的传播速度为1464m/s , d1=1464*(3.20-1.88)/1000000=1.932mm d2=6250*(4.00-3.20)/1000000=5.000mm d3=1464*(13.88-4.00)/1000000=14.464mm 4.测量超声仪器对于铝合金材料的分辨力: d2=39mm ,d1=30mm ,△d=39-30mm=9mm ,b=3.63μs ,a=11μs , 33.0=a b 所以分辨力为mm mm mm a b d F 97.233.09=?=??=

声速的测量实验报告.doc

声速的测量实验报告 不会写声速的测量实验报告的朋友,下面请看我给大家整理收集的声速的测量实验报告,仅供参考。 声速的测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬——测量时间 张海涛——发声 贾兴藩——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称"比热[容]比",它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T 是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。)

标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下 (T0�8�8273.15 K,p�8�8101.3�8�8kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2) (T0=273.15K) c.然而实际空气总会有一些水蒸气。当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。经过对空气平均摩尔质量 M 和质量热容比8�0 的修正,在温度为t、相对湿度为r 的空气中,声速为 (在北京大气压可近似取p�8�4 101kPa;相对湿度r 可从干湿温度计上读出。温度t℃时的饱和水汽压ps可用 lgps�8�810.286�8�2 d.式(3)的计算结果与实际的超声声速真值可能有一定偏差。 引起偏差的原因有: ~状态参量的测量误差 ~理想气体理论公式的近似性 实验方法: A. 脉冲法:利用声波传播时间与传播距离计算声速 实验中用脉冲法测量,具体测量从脉冲声源(声发射器)到声探测器

相关文档
最新文档