时间分辨荧光免疫分析的原理
时间分辨技术的原理

时间分辨技术的原理目前最先进的免疫检测技术:1、时间分辨原理:用三价稀土离子及其鳌合剂作为示踪物,代替荧光物质、同位素或酶,标记蛋白质、多胎、激素、抗体、核酸探针或生物流行性细胞,当反应体系发生后,用时间分辨仪器测定最后产物中荧光强度。
根据荧光强度或相对荧光强度比值,来判断反应体系中分析物的浓度,达到定量分析之目的。
2、时间分辨原子标记物的特点:●发射光和激发光有较大的STOKES位移——高特异性●长寿命荧光,降低其他物质的荧光干扰——高灵敏度●半衰期长达几十万年,试剂受干扰小——高稳定性原子标记与大分子标记物的对比3、波长分辨:●标记离子的荧光激发光波长范围较宽,发射光光谱范围较窄,是类线光谱,有利于降低本底荧光强度,提高分辨率。
●激发与发射光之间有一个较大的STOKES位移,有利于排除非特异荧光的干扰,增强测量的特异性。
4、时间分辨:●标记离子螯合物产生的荧光强度高,寿命长,有利于消除样品及环境中荧光物质对检测结果的影响。
●每一秒名检测样品1000次,取其中不受干扰的400次的均值作为测定值,有利于提高检测的准确性。
时间分辨技术取代酶免、放免是免疫检测技术发展的必然趋势!RIA(放免)●放射性(125I),对环境和身体的危害,已经为重视环保的国家逐步取消,如整个欧洲仅尚存几个放免试验室。
●125I半衰期短,导致试剂的有效期短,需每次定标,造成很大的浪费。
●由于标记物(125I)的不断变化,带来药盒批间、批内较大的变异,标准曲线无法保存备用。
ELESA(酶免)●灵敏度、重复性不及放免,易造成漏检和假阳性。
●酶的纯度和反应过程容易受环境因素影响,导致稳定性、重复性不好。
与其它技术的相对优势:(1)、是现有的免疫检测方法中灵敏度最高的(2)、是现有的免疫检测方法中稳定性最好的(3)、多标记检测是目前所有免疫检测技术中独一无二的TRF技术与电化学发光的比较TRF与化学发光的比较时间分辨荧光免疫定量分析简介时间分辨荧光分析(Timeresolved Fluoroimmunoassay,TRFIA)是一种非同位素免疫分析技术,它用镧系元素标记抗原或抗体,根据镧系元素螯合物的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非异荧光的干扰,极大地提高了分析灵敏度。
时间分辨荧光免疫 镧系元素

时间分辨荧光免疫镧系元素
时间分辨荧光免疫分析是一种用于检测和测量样品中存在的特定物质的方法。
在这种分析中,使用镧系元素作为荧光标记物,其具有独特的荧光特性,能够在特定激发光的作用下发出特定的荧光信号。
以下是关于时间分辨荧光免疫和镧系元素的一些方面:
1. 方法原理,时间分辨荧光免疫分析是基于样品中目标物质与特定抗体结合形成复合物,然后加入标记有镧系元素的二抗,通过激发光激发镧系元素,测量其发出的荧光信号来定量分析目标物质的含量。
2. 镧系元素的选择,镧系元素由于其稀土特性,具有多种发射波长和长寿命的荧光特性,能够减少背景干扰,提高检测灵敏度和准确性,因此被广泛应用于时间分辨荧光免疫分析中。
3. 应用领域,时间分辨荧光免疫分析结合镧系元素标记物已被广泛应用于生物医学、环境监测、药物研发等领域,用于检测蛋白质、激素、细胞因子等生物分子的含量和活性。
4. 技术优势,与传统的荧光免疫分析方法相比,时间分辨荧光
免疫分析结合镧系元素标记物具有更高的检测灵敏度、更低的背景干扰和更广泛的应用范围,因此受到了广泛关注和应用。
总的来说,时间分辨荧光免疫分析结合镧系元素标记物是一种高效、灵敏度高的分析方法,在生命科学和医学领域有着广泛的应用前景。
希望以上信息能够帮助你更全面地了解这一技术。
时间分辨荧光免疫层析 技术原理

时间分辨荧光免疫层析技术原理
时间分辨荧光免疫层析技术(TRFIA)是一种非同位素免疫分析技术,利用
镧系元素标记抗原或抗体,通过时间分辨技术测量荧光。
具体来说,当含有待测抗原(抗体)的样品滴在加样区时,待测样品中的抗原(抗体)与结合垫中的荧光纳米微球标记的抗体(抗原)结合并通过毛细作用向前层析。
当达到检测区后,与检测线上固定的抗体(抗原)结合,形成微粒-抗体-抗原-抗体夹心复合物并被固定在检测线上,而多余的荧光微
球标记物继续向前层析,与固定在质控线上的二抗结合。
反应结束后,用紫外光源(340nm)对检测区扫描检测,检测线和质控线
上荧光纳米微球发出高强度的荧光(615nm),且衰变时间也较长。
通过
测量延缓时间,待样品基质中自然发生的短寿命荧光(1-10ns)全部衰变后,再测量稀土元素的特异性荧光,这样就可以排除非特异本底荧光的干扰。
通过检测线和质控线荧光强度的强弱及其比值,即可分析出样品中待测物的浓度。
这种技术具有高灵敏度、高特异性和可定量分析等特点。
以上内容仅供参考,如需更多信息,建议查阅时间分辨荧光免疫层析相关文献或咨询该领域专家。
时间分辨荧光技术原理及应用

免疫细胞
免疫器官
按其功能不同分为: 中枢免疫器官:
免疫细胞发生、分化和 成熟的场所。
包括:胸腺和骨髓(人和 哺乳动物);法式囊(禽类)。
外周免疫器官及组织 : 1.B细胞成熟的场所; 2.免疫应答的发生部位。 包括:淋巴结 脾脏 粘膜
电化学发光免疫分析(electrochemiluminescence immunoassay,ECLIA) 是以电化学发光剂三联吡啶钌标记抗体(抗原),以三丙胺(TPA)为电子供体,在电 场中因电子转移而发生特异性化学发光反应,它包括电化学和化学发光两个过程。
电化学发光免疫测定示意图
标记磁颗粒在电场中发光工作示意图
钐(Sm),铕(Eu),镝(Dy),锝(Te) 可实现多项目同时检测,
减少操作偶然误差。
原子标记技术
多个标记位点(多达20个)灵敏度更高。 原子标记,对抗体结构影响小,保证检测的高灵敏
性,高精确度。 惰性元素,无衰变保质期1年。 物理发光影响小,受环境影响小,可以多次检测。 解离增强技术可使其荧光性提高100万倍,线性范围
钩状效应在凝集曲线上表现为类似抛物线的形状。
医学免疫学化诊断技术
医学免疫学化诊断技术分为: 同位素放射免疫 非放射免疫分析
吸收光谱法
酶联ELSIA
发射光谱法
酶联化学发光 直接化学发光 电化学发光 荧光偏振 时间分辨
主流化学发光介绍
发光免疫分析:是将发光分析和免疫反应相结合而建立 起来的一种新的检测微量抗原或抗体的标记免疫分析技 术。
1876年 多种病原菌被发现——疫苗广泛应用
抗原抗体的基本概念
抗原(antigen,Ag)
是指能够刺激机体产生免疫应答,并能与免疫应答 产物抗体和致敏淋巴细胞在体外结合,发生免疫效 应的物质。
时间分辨荧光技术

时间分辨荧光技术时间分辨荧光免疫测定(TRFIA)是一种非同位素免疫分析技术,它用镧系元素标记抗原或抗体,根据镧系元素螯合物的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非特异荧光的干扰,极大地提高了分析灵敏度。
(一)TRFIA分析原理在生物流体和血清中的许多复合物和蛋白本身就可以发荧光,因此使用传统的发色团进而进行荧光检测的灵敏度就会严重下降。
大部分背景荧光信号是短时存在的,因此将长衰减寿命的标记物与时间分辨荧光技术相结合,就可以使瞬时荧光干扰减到最小化。
时间分辨荧光分析法(TRFIA)实际上是在荧光分析(FIA)的基础上发展起来的,它是一种特殊的荧光分析。
荧光分析利用了荧光的波长与其激发波长的巨大差异克服了普通紫外-可见分光分析法中杂色光的影响,同时,荧光分析与普通分光不同,光电接受器与激发光不在同一直线上,激发光不能直接到达光电接受器,从而大幅度地提高了光学分析的灵敏度。
但是,当进行超微量分析的时候,激发光的杂散光的影响就显得严重了。
因此,解决激发光的杂散光的影响成了提高灵敏度的瓶颈。
解决杂散光影响的最好方法当然是测量时没有激发光的存在。
但普通的荧光标志物荧光寿命非常短,激发光消失,荧光也消失。
不过有非常少的稀土金属(Eu、Tb、Sm、Dy)的荧光寿命较长,可达1~2ms,能够满足测量要求,因此而产生了时间分辨荧光分析法,即使用长效荧光标记物,在关闭激发光后再测定荧光强度的分析方法医学教|育网搜集整理。
平时常用的稀土金属主要是Eu(铕)和Tb(铽),Eu荧光寿命1ms,在水中不稳定,但加入增强剂后可以克服;Tb荧光寿命1.6ms,水中稳定,但其荧光波长短、散射严重、能量大易使组分分解,因此从测量方法学上看Tb很好,但不适合用于生物分析,故Eu最为常用。
(二)时间分辨信号原理普通物质荧光光谱分为激发光谱和发射光谱,在选择荧光物质作为标记物时,必须考虑激发光谱和发射光谱之间的波长差,即Stakes位移的大小。
时间分辨免疫荧光微球

时间分辨免疫荧光微球1. 引言1.1 背景介绍时间分辨免疫荧光微球是一种新型的生物标记技术,可以对免疫学实验数据进行高效、准确的检测分析。
随着生物技术的发展和应用,对于细胞分析和药物筛选等领域的需求日益增加,传统的免疫荧光检测方法已经不能满足科研和临床的需求。
研究人员开始探索新的技术手段来提高实验的灵敏度和准确度。
时间分辨免疫荧光微球具有高灵敏度、高通量和高分辨率的特点,可以同时检测多种生物标记物,实现快速、准确地定量分析。
其原理基于微球上包裹有特定的免疫荧光标记物,当这些微球与待测样品中的靶分子结合时,通过流式细胞仪等仪器可以实时监测免疫反应的强度和时间,从而获得更精确的实验数据。
通过时间分辨免疫荧光微球技术,研究人员可以更加深入地了解细胞内的免疫反应过程,快速筛选药物的活性和副作用,为疾病诊断和治疗提供重要的参考依据。
随着该技术在生命科学领域的不断应用和发展,相信将会有更多的创新和突破出现,为人类健康和生命的发展带来积极的影响。
1.2 研究目的研究目的是通过研究时间分辨免疫荧光微球,深入探究其在生物医学领域中的应用潜力。
通过了解其原理和实验方法,我们的目的是揭示其在疾病诊断、药物递送和细胞标记等方面的优势和局限性,为其未来的应用前景做出预测。
通过这项研究,我们希望能够为生物医学领域的研究和临床实践提供新的技术手段和思路,为推动医疗健康行业的发展做出贡献。
2. 正文2.1 原理介绍时间分辨免疫荧光微球是一种新型的生物分析技术,利用微球作为载体,结合免疫荧光标记技术,实现对不同生物标记物的高灵敏、高特异性检测。
其原理基于时间分辨光谱技术,通过采集微球悬液中的荧光信号,在不同时间点进行检测和分析,从而实现对样品中不同荧光标记物的准确识别和定量测定。
在时间分辨光谱技术中,光谱仪器以一定的时间间隔对样品中的荧光信号进行连续检测,通过对这些时间点上的信号强度和波长进行分析,可以区分出不同的荧光标记物并消除背景信号的干扰。
时间分辨荧光免疫技术

定量
ELISA(定性)
意义
0~10mIU/ml 10~100mIU/ml
>100mIU/ml
阴性(-) 阳性(+)` 阳性(+)
机体对乙肝病毒无免疫力,易感染 乙肝病毒
机体对乙肝病毒的免疫力很弱,甚 至不能预防HBV感染,仍有感染 HBV的危险
机体对乙肝病毒有较强的免疫力, 使机体有抵抗HBV入侵的作用,较 大程度上减少感染HBV的风险
而且半寿期也长,介于10-1000us之间,比普通荧光标记物高5-6 个数量级(1000ns=1us)。 含有铕或钐的螯合物的荧光衰变时间分别为730000ns和50000 ns。 因此利用延缓测量时间,待测样品中短寿命的自然荧光完全衰变 后,再检测稀土离子螯合物的荧光信号(见图1)。消除了来自样 品、试剂及其他非特异荧光,从而达到降低自然本底荧光和消除 样品荧光的干扰,大大提高了检测灵敏读。这既是我们长提到的 时间分辨。
放射性(125I),对环境的污染及对 身体的危害,已经为重视环保的国家
命性的贡献,是一项 逐步取消。(如整个欧洲仅尚存几个
较为成熟的诊断技术。 放免试验室)
125I的半衰期短而导致其试剂有效期
夹心法、竞争法的标 记原理为以后的检测
短。 标记物125I的稳定性差,导致试剂盒
技术的发展奠定了基 础。
WALLAC和新波公司使用疝灯,主要用于临床
标记物为具有独特荧光特性的稀土金属---镧系元素
镧系元素共有15种,属三价元素,应用在时间分辨荧光免疫技术中 有四种:
铕(Eu)、钐Sm)、镝(Dy)、铽(Te)
Eu3 +的应用最为广泛, Sm3+ 可作为第二种选择以进行双标记或多标记技术
时间分辨荧光免疫测定原理

时间分辨荧光免疫测定原理时间分辨荧光免疫测定(TRFIA,Time Resolved Fluorescence Immunoassay)是一种非同位素免疫分析技术。
它利用镧系元素(如铕、铽等)标记抗原或抗体,通过测量荧光强度和时间两个参数来检测待测物。
与传统的荧光免疫分析相比,TRFIA具有更高的灵敏度和特异性,能有效排除非特异性荧光的干扰。
TRFIA的分析原理主要包括以下几个方面:1.镧系元素标记:将镧系元素与抗原或抗体结合,形成具有荧光性质的标记物。
镧系元素的荧光具有较长的寿命,且发光强度与抗原或抗体的结合程度密切相关。
2.时间分辨技术:通过时间分辨技术对荧光信号进行测量,即在一定时间内对荧光信号进行积分和分析。
这种技术能够有效地区分特异性荧光信号和背景荧光信号,提高分析灵敏度。
3.信号分辨:通过检测波长和时间两个参数来分辨特异性荧光信号和非特异性荧光信号。
由于生物流体和血清中的许多复合物和蛋白本身就可以发荧光,因此使用传统的发色团进而进行荧光检测的灵敏度会严重下降。
而TRFIA方法通过时间分辨技术使瞬时荧光干扰减到最小化。
4.激发光控制:TRFIA方法在测量时采用延迟测量时间的方法,有效地消除背景荧光的干扰。
同时,解决激发光的杂散光影响也是提高灵敏度的关键。
5.数据分析:通过对测量得到的荧光信号进行数据分析,得到待测物的浓度。
TRFIA方法能够实现对超微量样品的高灵敏度检测,具有很高的分析精度。
总之,时间分辨荧光免疫测定(TRFIA)是一种基于镧系元素标记、时间分辨技术、信号分辨、激发光控制和数据分析等原理的一种高灵敏度、高特异性的免疫分析方法。
在生物医学、环境监测、食品安全等领域具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、前言
近百年来,“特效试剂”一直是分析化学家追求的目标。
所谓“特效试剂”,就是指的是只与一种待测物质反应的试剂。
事实上,目前使用的所谓的“铜试剂”、“铁试剂”、“硝酸试剂”等等,都是“盛名之下,其实难副”的。
20世纪40-50年代追求合成特效试剂的狂热,早已降温。
正在分析化学家心灰意冷之际,人们从免疫学与生物化学的成就看到了这一理想的曙光:免疫系统简直就是天然存在的一部特异性试剂的合成机器。
抗原与抗体之间的免疫反应具有高度的特异性,这种识别的专一性超过酶对底物的识别水平,抗原-抗体复合物的稳定常数一般为109,有些高达1010-1015,具有很高的稳定性。
免疫反应的特点使得免疫分析已成为一个跨学科的新型分析技术,广泛应用于临床体液分析、药物分析、环境分析、食品分析和生物化学研究,尤其在毒品的鉴定、吸毒人员的认定和疾病的诊断方面,发挥了重要作用。
时间分辨荧光免疫分析技术(TRFIA)是自80年代以来新发展起来的一种新型分析技术,与其它免疫分析技术相比,有其独特的优点。
它克服了放射性免疫分析法(RIA)中放射性同位素带来的污染问题;克服了酶免疫分析法(EIA)中酶不稳定的缺点;而且,由于TRFIA法能够很好的消除背景荧光的干扰,使其灵敏度比普通荧光法(FIA)高出几个数量级。
正是由于TRFIA的独特优点,使得它成为免疫分析中最有发展潜力的一种分析方法。
二、时间分辨荧光免疫分析的原理
时间分辨荧光免疫分析的原理就是使用三价稀土离子(如Eu3+、Tb3+、Sm3+、Dy3+)作为示踪物,通过这些稀土离子与具有双功能结构的螯合剂以及抗原形成稀土离子-螯合剂-抗原螯合物。
当标记抗原、待测抗原共同竞争抗体,形成免疫复合物,由于免疫复合物中抗原抗体结合部分就含有稀土离子,当采取一些办法将结合部分与游离部分分开后,利用时间分辨荧光分析仪,即可测定复合物中的稀土离子发射的荧光强度,从而确定待测抗原的量。
正常情况下,免疫复合物中的稀土离子自身荧光信号很微弱,若加入一种酸性增强液,稀土离子从免疫复合物中解离出来,和增强液中的β-二酮体、三正辛基氧化膦、Triton X-100等成分形成一种微囊。
后者被激发光激发后,则稀土离子可以发出长寿命的极强的荧光信号,使原来微弱的荧光信号增强将近100万倍。
采用时间分辨技术测量荧光,采用了门控技术,它是使背景荧光信号降低到零以后,再测定长寿命标记物的荧光。
三、时间分辨荧光分析的测量方法
(1)解离增强测量法
解离增强测量法是解离增强稀土离子荧光方法,简称DELFIA法。
通过双功能基团把Eu3+或Sm3+螯合到抗原、抗体或SA上,免疫反应后,部分标记物结合到固相载体上,未结合的标记物被洗掉。
最后用低pH值的增强液,把Eu3+或Sm3+
从免疫复合物中解离下来,组成Eu3+-(NTA)3.(TOPO)3或Sm3+-(NTA)3.(TOPO)3新的螯合物,使荧光强度增强将近百万倍。
用Arcus型系列仪进行液相检测。
本法重复性好,特别适用于大、小分子活性物质的检测。
采用DELFIA测量,灵敏度可达10-16—10-18mol的DNA量(即10pgDNA)。
此法的不足之处是不能直接测量固相样品的荧光,需要外加增强液,容易受外源性Eu3+或Sm3+干扰,而影响结果,有待改进。
(2 )固相荧光测量法
固相荧光法又称为DSLFIA法。
它是通过具有特殊双功能基团的螯合剂BCPDA,把Eu3+或Sm3+与抗体或抗原螯合。
当抗原与抗体发生免疫反应后,固相免疫复合物中Eu3+-BCPDA荧光强度可直接测量。
整个过程不用外加增强液,可以直接测量固相样品的荧光,解决了液相测量带来易于污染和操作复杂的问题。
现已用于核酸探针检测,取得满意进展,国外已制成药盒供应。
(3)直接荧光测量法
直接荧光法是采用双功能螯合剂二乙三胺五乙酸-对氨基水杨酸(DTPA-PAS)与抗原或抗体偶联,免疫反应后,再加入适量的Tb3+,直接测量液相荧光强度。
不需要预先制备Tb3+标记物,简化了操作步骤,但灵敏度较低,仅为10-9mol/l。
为提高检测灵敏度,可以引入酶放大系统,以SA-碱性磷酸酶水解5-氟水杨酸磷酸酯,生成5-氟水杨酸,后者在高pH条件下,与Tb3+-EDTA-HCl形成高荧光强度的复合物,可直接测定。
(4)均相荧光测量法
均相荧光测量法是利用特殊的双功能螯合剂W1174,将Eu3+标记小分子活性物质,当与抗体结合后,免疫复合物对Eu3+荧光信号有显著增强或淬灭作用,故在测量前不必进行分离,就可直接测量液相中的荧光强度。
该法省去了洗涤、分离和加增强液等烦琐的步骤,具有快速、方便等优点,但不足之处是需要特殊螯合剂。
(5)协同荧光测量法
协同荧光测量法是利用一些不发荧光的稀土离子,如Cd3+、Y3+、La3+、Lu3+等,能使发荧光的稀土离子的荧光信号大大增强。
在免疫分析体系中,pH值为6.0-8.0时,它们的荧光强度最大,有利于提高检测的灵敏度。
此外,此法可以对一分样品中不同组分含量进行同时测量。
但需要特殊的增强液,同时Cd3+、Y3+、La3+、Lu3等稀土离子的纯度对测量结果有明显影响。
四、时间分辨荧光免疫分析的应用
时间分辨荧光免疫分析可用来检测生物活性物质,特别是在生物样品免疫分析中,显示出它愈来愈多的独特优点。
在内分泌激素的检测,肿瘤标志物的检测,抗体检测,病毒抗原分析,药物代谢分析以及各种体内或外源性超微量物质的分
析中,应用TRFIA法越来越普遍。
近年来,已将这项技术应用于核酸探针分析和细胞活性分析、生物大分子分析,发展十分迅速。
(1)TRFIA法在内分泌学中的应用
内分泌激素是一些活性小分子,它们能与适当的抗体反应,具有免疫反应性,但不能产生抗体,不具有免疫原性,它们属于半抗原。
对这些半抗原的测定,一般多用竞争性时间分辨荧光免疫法测定。
这方面的测定主要有血清中孕酮[3]、雌二醇[4]、睾酮[5]、甲状腺激素[6]、前列腺素[7]的测定等等。
(2)TRFIA在肿瘤学中的应用
对一些完全抗原,它们大多是既有免疫反应性又有免疫原性的蛋白质类,主要包括促甲状腺激素[8]、血清胰岛素[9]、血清癌胚抗原[10-11]、血清甲胎蛋白[12]、乙型肝炎表面抗原[13]等,主要采用非竞争性TRFIA法进行测定。
(3)TRFIA法在免疫学中的应用
某些免疫细胞(如NK、LAK、T杀伤细胞等)的活性,可以用TRFIA法来检测。
如Blomberg[14]等用该方法测定了NK细胞的活性;Granberg[15]等用TRFIA法测定杀伤性T淋巴细胞活性;Volgmann[16]等测定了LAK细胞的活性;Maley[17]用TRFIA法测定细胞介导的、补体介导以及抗体依赖的细胞活性;Lovgren和Blomberg[18]用此法同时测定两种靶细胞的活性;陈泮藻[19]等也用此法测定了T 淋巴细胞的活性。
这些测定均取得了良好的结果。
(4)TRFIA法在微生物学中的应用
由于TRFIA技术具有灵敏度高和特异性强的特点,TRFIA法在微生物检测和分析中的应用日益广泛和深入。
目前TRFIA已广泛应用于乙型肝炎病毒、脑炎病毒、流感病毒、呼吸道合胞体病毒(RSV)、副粘病毒、风疹病毒、马铃薯病毒、轮状病毒、人类免疫缺陷病毒(HIV)、出血热病毒和梅毒螺旋体的抗原抗体以及某些细菌和寄生虫抗体的检测[2]。
最近,潘利华[20]等用TRFIA法进行了人血清中丙型肝炎病毒抗体(Anti-HCV)的检测,效果明显高于酶联免疫法。
五、展望
时间分辨荧光免疫分析具有灵敏度高、特异性强、所用试剂有良好的稳定性、检测限较宽、尤其是能消除常规荧光测定中的高背景等优点,是非放射免疫分析中很有发展潜力的分析方法。
有关研究论文约占免疫分析文献的10%-15%。
寻找、设计并合成出较理想的镧系元素螯合物探针;改进标记技术和简化分离技术;采用多重标记法进行放大,进一步提高灵敏度以及提高检测手段的程序化,进一步提高信噪比将成为时间分辨荧光免疫分析的发展方向。