教师资格证数学学科知识与教学能力高中数学考试备考知识点
中学教师资格(数学学科知识与教学能力)考试题库(简答题汇总)

中学教师资格(数学学科知识与教学能力)考试题库(简答题汇总)简答题1.某投资人本金为A元。
投资策略为:(1)一年连续投资n次,每个投资周期为(2)在每个投资周期中,利率均为(3)总是连本带息滚动投资。
回答下列问题:(1)一年后的资金总额?答案:2.阐述用二分法求解方程近似解的适用范围及步骤,并说明高中数学新课程引入二分法的意义。
答案:由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解。
利用二分法求方程的近似解时,首先需要有初始搜索区间,即一个存在解的区间(要用到此区间的两端点),为此,有时需要初步了解函数的性质或形态;其次需要有迭代,即循环运算的过程,具体表现在不断‚二分‛搜索区间;最后需要有一个运算结束的标志,即当最终搜索区间的两端点的精确度均满足预设的要求时(两端点的近似值相同),运算终止。
3.函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。
(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。
(8分)答案:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。
4.‚两角差的余弦公式‛是高中数学必修4中的内容‚经历用向量的数量积推出两角差的余弦公式的过程,进一步体会向量方法的作用‛请完成‚两角差的余弦公式推导过程‛教学设计中的下列任务:(1)分析学生已有的知识基础;(2)确定学生学习的难点;(3)写出推导过程。
答案:本题主要以高中数学必修4中‚两角差的余弦公式‛为例,考查三角函数的基础知识、课程概述及教学设计工作等相关知识,比较综合性地考查学科知识、课程知识以及教学技能的基本知识和基本技能。
(1)学生已有的知识基础:高一学生已经学习了《平面向量》和《三角函数》的知识,从日常教学所反应的学生特点来看,学生对类比和分类讨论的思想有所体会,但是还是只停留在体会阶段,没有办法真正灵活的运用。
2024下半年教师资格证笔试预测知识点-高中数学

2024年下半年全国教师资格证考试重点知识高中数学知识点·极限1.洛必达法则(1)概念:在分子与分母导数都存在的情况下,分别对分子分母进行求导运算,直到该极限的类型为可以直接代入求解即可.(2)适用类型:通常情况下适用于00型或者是∞∞型极限.2.利用两个重要极限0sin lim 1x x x →=,1lim 1e x x x →∞⎛⎫+= ⎪⎝⎭(或()10lim 1e x x x →+=).知识点·导数1.导数的几何意义函数()f x 在点0x 处的导数()'0f x 的几何意义是在曲线()y f x =上点()()00,x f x 处的切线的斜率.相应地,切线方程为()()()'000y f x f x x x -=-.2.导数的运算法则(1)()()()()'''f x g x f x g x ⎡±⎤=±⎣⎦.(2)()()()()()()'''f x g x f x g x f x g x ⎡⋅⎤=+⎣⎦.(3)()()()()()()()()()'''20f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎢⎥⎣⎦.3.导数与函数的单调性在某个区间(),a b 内,如果()'0f x >,那么函数()y f x =在这个区间内是增加的;如果()'0f x <,那么函数()y f x =在这个区间内是减少的.知识点·行列式的基本性质1.行列式的值等于其转置行列式的值,即T D D =.2.行列式中任意两行(列)位置互换,行列式的值反号.3.若行列式中两行(列)对应元素相同,行列式值为零.4.若行列式中某一行(列)有公因子k ,则公因子k 可提取到行列式符号外,即nn n n sn s s n a a a ka ka ka a a a212111211nnn n sn s s n a a a a a a a a a k 212111211=.5.行列式中若一行(列)均为零元素,则此行列式值为零.6.行列式中若两行(列)元素对应成比例,则行列式值为零.知识点·齐次线性方程组1.解的情况(1)当()rA n =,齐次线性方程组只有零解.(2)当()r A n <,齐次线性方程组有非零解.2.解的性质(1)方程组(a )的两个解的和还是方程组(a )的解;(2)方程组(a )的一个解的倍数还是方程组(a )的解.3.基础解系(1)齐次线性方程组(a )的一组解12,,,t ηηηL 称为(a )的一个基础解系,如果①方程组(a )的任何一个解都能表成12,,,t ηηηL 的线性组合;②12,,,t ηηηL 线性无关.(2)在齐次线性方程组(a )有非零解的情况下,它有基础解系,并且基础解系所含解的个数等于n r -,这里r 表示系数矩阵的秩(n r -也就是自由未知量的个数).知识点·非齐次线性方程组1.线性方程组有解的判别定理线性方程组(b )有解的充分必要条件为()()rA r A =.方程组Axb =(A 为m n ⨯矩阵)解的情况:()(r A r A n ==⇔有唯一解()(r A r A n =<⇔有无穷多解()1()r A r A +=⇔无解,即b 不能由A 的列向量线性表出.2.解的性质(1)线性方程组(b )的两个解的差是它的导出组(a )的解.(2)线性方程组(b )的一个解与它的导出组(a )的一个解之和还是线性方程组(b )的解.(3)如果0γ是线性方程组(b )的一个特解,那么方程组(b )的任一个解γ都可表示成0γγη=+,其中η是导出组(a )的一个解.因此,对于方程组(b )的任一个特解0γ,当η取遍它的导出组的全部解时,0γγη=+就给(b )的全部解.(4)在方程组(b )有解的条件下,解是唯一的充分必要条件是它的导出组(a )只有零解.知识点·向量组的线性相关性1.基本概念线性相(无)关向量组12,,,s ααα 称为线性相关,如果有数域P 中不全为零的数12,,,s k k k ,使11220s s k k k ααα+++= ,否则称12,,,s ααα 是线性无关的.注:任意一个包含零向量的向量组一定是线性相关的.2.向量组线性关系的判定(1)向量组12,,,(2)s s ααα≥L 线性相关的充要条件是其中至少有某一向量(1)i i s α≤≤可由其余向量线性表示.(2)如果一向量组的一部分线性相关,那么这个向量组就线性相关;也就是说如果一向量组线性无关,那么它的任何一个非空的部分组也线性无关.3.极大线性无关组若向量组12,,,s ααα 的一部分向量12,,,i i ir ααα 满足:(1)12,,,i i ir ααα 线性无关;(2)12,,,s ααα 中的任一向量i α均可由其线性表示;则称此部分向量组12,,,i i ir ααα 为原向量组的一个极大线性无关组.4.性质(1)任意一个极大线性无关组都与向量组自身等价.(2)向量组的极大线性无关组不一定唯一,但任意两个极大线性无关组等价.5.向量组的秩向量组的极大线性无关组所含向量的个数称为这个向量组的秩.(1)秩为r 的n 维向量组中的任意r 个线性无关的向量都是向量组的一个极大线性无关组.(2)等价的向量组必有相同的秩.(秩相同的向量组未必等价);注:考虑到线性无关的向量组就是它自身的极大线性无关组,因此一向量组线性无关的充要条件是它的秩与它所含向量的个数相同.(3)设12,,,r αααL 与12,,,s βββL 两个向量组,如果向量组12,,,r αααL 可以由12,,,s βββL 线性表出,则()()1212,,,,,,r s r r αααβββ≤ .6.矩阵的秩矩阵的行向量组的秩称为矩阵的行秩,矩阵的列向量组的秩称为矩阵的列秩,对任意矩阵,行秩=列秩=矩阵的秩.矩阵A 的秩是r 的充分必要条件为A 中有一个r 阶子式不为零,同时所有1r +阶子式全为零.n n ⨯矩阵的行列式为零的充要条件是它的秩小于n .知识点·线面位置关系1.两个平面间的关系1111122222:0,:0A x B y C z D A x B y C z D ∏+++=∏+++=,则1∏∥2∏11112222A B C D A B C D ⇔==≠;121212120A A B B C C ∏⊥∏⇔++=;1∏与2∏的夹角θ(法向量间的夹角,不大于90)满足:1212cos n n n n θ⋅== 2.两条直线间的关系设1111111:x x y y z z L l m n ---==,2222222:x x y y z z L l m n ---==,则1L ∥2L 111222l m n l m n ⇔==,且111(,,)x y z 不满足2L 的方程;121212120L L l l m m n n ⊥⇔++=;1L 与2L 的夹角θ(方向向量间的夹角,不大于90度)满足cos θ=.3直线和它在平面投影直线所夹锐角θ称为直线与平面的夹角.当直线与平面垂直时,规定夹角为2π.000:x x y y z z L l m n ---==,:0Ax By Cz D ∏+++=,{,,},{,,}s l m n n A B C == ,则L ∥∏s n ⇔⊥ ,即0Al Bm Cn ++=且0000Ax By Cz D +++≠;L ⊥∏s ⇔ ∥n ,即A B C l m n ==;L 与∏的夹角,2s n πθ=-〈〉 ,sin θ=.知识点·古典概型与几何概型1.古典概型(1)具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.②每一个试验结果出现的可能性相等.(2)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n =.2.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(1)要切实理解并掌握几何概型试验的两个基本特点①无限性:在一次试验中,可能出现的结果有无限多个.②等可能性:每个结果的发生具有等可能性.(2)几何概型中,事件A 的概率计算公式()A P A =构成事件的区域测度(长度、面积、体积等)试验全部结果构成的区域测度(长度、面积、体积等).。
高中数学教资知识点全总结

高中数学教资知识点全总结一、数学基本概念1.数与代数数是数学的基本概念,数可分为整数、有理数、无理数等。
整数包括正整数、负整数和零,有理数包括有限小数和循环小数,无理数是不能表示为有理数比的数。
代数是对数的一般性质的研究。
代数包括算式、方程、不等式等内容。
2.函数与方程函数是数学中的一个基本概念,它的主要特点是对应关系。
函数的概念、性质、表示法等是高中数学的重要内容。
方程是数学中的一个基本概念,它是等式的一种特殊形式。
方程的解、方程的应用等是高中数学的重要内容。
3.集合与概率集合是数学中的一个基本概念,它是一个包含元素的整体。
集合的基本概念、集合的运算、集合的应用等是高中数学的重要内容。
概率是数学中的一个基本概念,它是描述随机事件发生可能性的概念。
事件的概率、概率的性质、概率的应用等是高中数学的重要内容。
二、代数1.数学归纳法数学归纳法是对自然数性质的一种归纳证明方法,它的基本思想是证明n=k成立,然后证明n=k+1也成立。
2.函数的概念与性质函数是数学中的一个基本概念,它的主要特点是对应关系。
函数的定义、函数的性质、函数的图像等是高中数学的重要内容。
3.一元二次方程一元二次方程是数学中重要的一种方程,它的一般形式为ax²+bx+c=0。
求一元二次方程的解的方法有开平方法、配方法、公式法等。
4.多项式多项式是数学中的一个基本概念,它包含有限个单项式的和。
多项式的加法、减法、乘法、除法等是高中数学的重要内容。
5.不等式不等式是数学中的一个基本概念,它是比较两个数的大小的一种数学陈述。
不等式的解、不等式的性质、不等式的应用等是高中数学的重要内容。
三、几何1.向量向量是数学中的一个基本概念,它有大小和方向。
向量的基本概念、向量的运算、向量的几何应用等是高中数学的重要内容。
2.平面向量平面向量是数学中的一个基本概念,它在平面内的两个互相平行且等长的向量称为平面向量。
平面向量的定义、平面向量的性质、平面向量的应用等是高中数学的重要内容。
教师资格证高中数学科目一

教师资格证高中数学科目一
高中数学科目一的教师资格证考试主要涉及以下内容:
1.数与代数:包括数的性质、数的计算、数的应用、代数式、等式与方程、不等式等内容。
2.函数与图像:包括函数的概念与性质、特殊函数与函数的应用、函数图像与性质等内容。
3.三角学与解析几何:包括三角函数、三角恒等变换、三角方程与三角函数的应用、向量的概念与运算、平面几何与解析几何等内容。
4.数学运算与证明:包括数学思想方法、数学证明方法与基本证明、数学运算规律与推理方法等内容。
5.数学问题解决:包括数学问题解决思路与方法、数学模型建立与应用等内容。
在备考过程中,可以参考以下方法:
1.系统学习:针对每个考点,系统地学习相关的概念、理论、公式等知识点,确保掌握基础知识。
2.做题训练:通过大量的习题练习,强化对知识的理解和应用能力,同时熟悉考试题型和解题思路。
3.模拟考试:模拟考试可以帮助评估自己的备考情况,找出薄
弱环节并加以强化。
4.查缺补漏:在备考过程中,发现自己某些知识点掌握不牢固时,应及时查找相关资料进行学习,并多做相关习题进行弥补。
5.复习总结:复习时应总结、梳理知识点,建立知识体系,理
清思路,在融会贯通的基础上更好地应对考试。
希望以上内容对你的备考有所帮助,祝你取得优异的成绩!。
教师资格考试高级中学数学简答题论述题必背知识点

教师资格考试高级中学数学简答题论述题必背知识点国家教师资格考试高级中学数学学科必背知识点本质属性的思维过程。
抽象是在对事物的属性做分析、学生兴趣和未来的发展,为进一步获得较高问题的能力。
国家教师资格考试高级中学数学学XXX必背知识点一、高中数学必修内容与选修内容1.必修一(集合、函数概念与基本初等函数Ⅰ)2.必修二(立体几何初步、平面解析集合初步)3.必修三(算法初步、统计、概率)4.必修四(基本初等函数Ⅱ(三角函数)、平面向量、三角恒等变换)5.必修五(解三角形、数列、不等式)6.选修内容(常用逻辑用语、圆锥曲线与方程、空间向量与立体几何、导数及其应用、推理与证明、数系的扩充与复数的引入、计数原理、统计案例、概率、坐标系与参数方程、不等式选讲)二、高中数学的基础性含义:1.自己的基础基础性,因为高中数学面向的是局部学生,以是它包罗数学最基础的知识。
2.高中数学包罗必修与选修的内容均为基础的数学内容,必修内容满足学生的共同数学需求,选修内容满足学生的不同数学需求。
3.为其他学科(物理、化学)的研究提供知识基础,因为高中数学课程包罗最基本的“内容”和“头脑”贯串高中数学课程一直。
4.为当前高等教诲理工科的进修打下基础,为当前生活、研究、工作提供所必备的知识基础,为学生未来发展奠定基础。
三、数学的抽象性(一)抽象是在思想中抽取事物本质属性,舍弃非综合、比较、概括的基础上进行的,它是认识事物本质、掌握事物内在规律的思维方法。
抽象性是数学的基本特点之一,数学的抽象性提现在它所研究的对象是完全舍弃具体事物的一切具体内容而只考虑其量的关系与空间形式。
(二)数学的抽象性可以归纳为以下几类:(1)不仅数学概念是抽象的,数学方法也是抽象的,并且大量使用抽象的符号;(2)数学的抽象是逐级抽象的,下一次的抽象是以前一次的抽象材料为其具体背景;(3)高度的抽象必然有高度的概括。
(三)首先要着重培养学生的抽象思维能力。
所谓抽象思惟本领,是指脱离具体形象,运用概念、判断、推理等进行思维的能力。
高中教师资格证考试《数学学科知识与教学能力》专项复习

高中教师资格证考试《数学学科知识与教学能力》专项复习一、考试目标1.数学学科知识的掌握和运用。
掌握大学本科数学专业基础课程的知识和高中数学知识。
具有在高中数学教学实践中综合而有效地运用这些知识的能力。
2.高中数学课程知识的掌握和运用。
理解高中数学课程的性质、基本理念和目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。
理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求1.学科知识数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。
大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计的基础知识。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学知识是指《课标》中所规定的必修课全部内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)。
其内容要求是:理解高中数学中的重要概念,掌握高中数学中的重要公式、定理、法则等知识,掌握中学数学中常见的思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识了解高中数学课程的性质、基本理念和目标。
熟悉《课标》所规定教学内容的知识体系,掌握《课标》对教学内容的要求。
了解《课标》各模块知识编排的特点。
能运用《课标》指导自己的数学教学实践。
3.教学知识了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
数学学科知识与教学能力(高级中学)核心考点

模块一数学学科知识1. 数列极限的性质和证明◇收敛数列的极限是唯一的◇收敛数列是有界的◇收敛数列满足保号性2. 函数极限的性质和证明◇函数极限的唯一性◇函数极限的局部有界性◇函数极限的局部保号性◇函数极限与数列极限的关系3. 连续函数的性质和证明◇连续的定义◇函数的间断点的类型◇反函数和复合函数的连续性◇闭区间上连续函数的性质(有界性、最大值最小值定理、零点定理、介值定理)4. 一元函数微积分的性质和证明◇导数的概念◇导数的运算(基本导数公式)◇中值定理(罗尔中值定理、拉格朗日中值定理)◇洛必达法则◇函数的单调性和极值◇函数的凹凸性和拐点(詹森不等式)◇不定积分公式◇不定积分的积分法(公式法、凑微分法、换元积分法、分部积分法)◇定积分的性质和计算(积分中值定理、变上限积分、牛顿——莱布尼茨公式、换元法、分部积分法、公式法)◇定积分与旋转几何体5. 向量及其运算的性质和证明◇向量加法法则◇减法法则◇向量的乘法◇向量的数量积与向量积◇向量的混合积6. 矩阵与变换的性质和证明◇拉普拉斯定理◇克莱姆法则◇矩阵的加法、数乘、乘法、转置◇矩阵的运算性质◇矩阵的基本初等变换◇可逆矩阵的基本性质◇线性相关与线性无关◇齐次线性方程组的基础解系◇矩阵的对角化7. 概率与数理统计的性质和证明◇排列组合公式◇加法和乘法原理◇古典概型基本公式◇条件概率基本公式◇独立性◇离散型随机变量分布律◇连续型随机变量的分布密度◇分布函数◇六大分布◇期望及其性质◇方差及其性质8. 必修课程——数学1◇集合的运算◇函数单调性的证明◇函数奇偶性的判定◇指数函数的性质◇对数函数的性质◇幂函数的性质◇二分法◇函数应用题9. 必修课程——数学2◇空间几何体的表面积和体积◇线面平行、垂直的相关性质和定理◇三垂线定理及其逆定理◇二面角◇直线方程的求法◇点到直线的距离公式◇圆的标准方程和一般方程◇直线和圆的位置关系◇两圆的位置关系10. 必修课程——数学3◇用样本估计总体◇古典概型◇几何概型11. 必修课程——数学4◇三角函数的诱导公式◇正弦、余弦、正切函数的图像和性质◇三角恒等变换12. 必修课程——数学5◇余弦定理、正弦定理◇等差、等比数列◇数学归纳法◇基本不等式◇一元二次不等式◇线性规划问题13. 选修课程基础◇椭圆方程及其几何性质◇双曲线及其几何性质◇抛物线及其几何性质◇复数及其几何意义◇复数的四则运算14. 选修课程大纲要求◇常用逻辑用语◇导数及其几何意义◇框图◇数学史◇几何证明◇矩阵与变换◇坐标系与参数方程模块二高中数学课程知识1. 高中数学课程性质◇高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。
2023年教师资格之中学数学学科知识与教学能力通关题库(附带答案)

2023年教师资格之中学数学学科知识与教学能力通关题库(附带答案)单选题(共30题)1、在集合、三角函数、导数及其应用、平面向量和空间向量五个内容中,属于高中数学必修课程内容的有()A.1 个B.2 个C.3 个D.4 个【答案】 C2、ELISA是利用酶催化反应的特性来检测和定量分析免疫反应。
ELISA中常用的供氢体底物A.叠氮钠B.邻苯二胺C.联苯胺D.硫酸胺E.过碘酸钠【答案】 B3、弥散性血管内凝血常发生于下列疾病,其中哪项不正确A.败血症B.肌肉血肿C.大面积烧伤D.重症肝炎E.羊水栓塞【答案】 B4、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条a,转动木条b,让学生观察,从而导入新课。
这种导入方式属于()。
A.实例导入B.直观导入C.悬念导入D.故事导入【答案】 B5、下列对向量学习意义的描述:A.1 条B.2 条C.3 条D.4 条【答案】 D6、男性,29岁,发热半个月。
体检:两侧颈部淋巴结肿大(约3cm×4cm),肝肋下2cm,脾肋下2.5cm,胸骨压痛,CT显示后腹膜淋巴结肿大。
检验:血红蛋白量85g/L,白细胞数3.5×10A.多发性骨髓瘤B.急性白血病C.恶性淋巴瘤D.传染性单核细胞增多症E.骨髓增生异常综合征【答案】 C7、女,19岁,反复发热、关节痛半月余,掌指、指及指间关节肿胀。
免疫学检查IgG略有升高,RF880U/ml,抗环状瓜氨酸肽(抗CCP抗体)阳性,此患者可诊断为A.多发性骨髓瘤B.系统性红斑狼疮C.干燥综合征D.类风湿关节炎E.皮肌炎【答案】 D8、“以学生发展为本”中“发展”的含义包括全体学生的发展、全面和谐的发展、终身持续的发展、个人特长的发展以及()的发展。
A.科学B.可持续性C.活泼主动D.身心健康【答案】 C9、下列命题不正确的是()A.有理数集对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集不是复数集的子集【答案】 D10、函数f(x)在[a,b]上黎曼可积的必要条件是f(x)在[a,b]上()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
′
′
sin
= cos ; cos
arc sin
′
arc tan
′
ln
′
′
′
′
= ;
= − sin ;
= − arc cos
′
= − arc cot
′
=
1
1−2
;
1
= 1+2;
1
1
= ; log ′ =
;
ln
5) 导数的运算法则
′
±
② 适应学生的学习心理和年龄特征
③ 重视课程资源的开发和利用
④ 注重预设与生成的辩证统一
⑤ 辩证认识和处理教学中的多种关系
⑥ 整体把握教学活动的结构
⑸ 数学教学设计的准备:
① 认真学习新课标,了解当前我国数学课程的目标要求
② 全面关注学生需求
③ 认真研读数学教材和参考书,领悟编写意图
④ 广泛涉猎数学教育的其他优秀资源,吸取他人精华,丰富自己的教学设计
如“有一个角是直角的平行四边形是矩形”)
、解释外延定义法(不易揭示其内涵,
如“有理数和无理数统称实数”)、描述性定义法(用简明清晰的语言描述,如
“ = ”)
⑷ 数学概念获得的主要方式:概念形成(由学生发现)
、概念同化(教师直接展示定义)
5. 命题教学:整体性策略(旨在加强命题知识的横、纵向联系)
⑹ 结束技能实施时应注意的问题:自然贴切,水到渠成;语言精练,紧扣中心;内外
沟通,立疑开拓
3. 教学评价
⑴ 数学教育评价的要素:教学目标、教学内容、教学方法、教学心理环境、教师行为、
学生行为、教学效果
⑵ 数学教育评价的功能:管理功能、导向功能、调控功能、激发功能、诊断功能
四、 常用数学公式
1. 函数、导数
、准备性策略(教学实施
之
前)
、问题性策略(激发学的积极性)
、情境化教学、过程性策略(暴露命题产
生于证明的“所以然”过程)
、产生式策略(变式练习)
6. 推理教学
⑴ 推理的结构:任何推理都是由前提和结论两部分组成的
⑵ 推理的形式:演绎推理(由一般到特殊;前提真,结论真;三段论:大前提、小前
提,得推理)、归纳推理(由特殊到一般)
到更好的教学效果是教学设计的核心目的;教案的核心目的就是教师怎样讲好
教学内容。
③ 范围不同:
从研究范围上讲,教案只是教学设计的一个重要内容。
⑶ 数学课堂教学设计的意义:
① 使课堂教学更规范、操作性更强
② 使课堂教学更科学
③ 使课堂教学过程更优化
⑷ 数学课堂教学设计的基本要求:
① 充分体现数学课程标准的基本理念,努力体现以学生发展为本
函数 = 在点0 处的导数 ′ 0 是曲线 = 在P 0 , 0 处的切线的斜率,相
应的切线方程是 − 0 = ′ 0 − 0 。
4) 几种常见函数的导数
C ′ = 0(C 为常数)
;
= ln ;
= −1 (n ∈ Q)
、成绩的考核与评
价(口头考察、书面考察)、教学评价(导向作用、鉴定作用、诊断作用、信息反馈与
决策调控作用)
3. 教学方法
⑴ 讲授法:科学性、系统性(循序渐进)、启发性、量力性(因材施教)、艺术性(教
学语言)
⑵ 讨论法:体现“学生是学习的主体”的特点。
⑶ 自学辅导法:卢仲衡教授提出,要求学生肯自学、能自学、会自学、爱自学
⑷ 提高学生数学应用意识:是数学科学发展的要求;是培养创新能力的需要;是培养学习
兴趣的需要;是培养自信心的需要;数学应用的广泛性需要学生具有应用意识。
⑸ 强调培养学生的创新意识:强调发现和提出问题;强调归纳、演绎并重;强调数学探究、
数学建模。
⑹ 重视“双基”的发展(数学基础知识和基本能力)
:理解基本的数学概念和结论的本质;
⑦ 教学过程
⑧ 教学反思
2. 教学实施
⑴ 课堂导入:直接导入法、复习导入法、事例导入法(情境导入法)
、趣味导入法、悬
念导入法
⑵ 课堂提问的原则:目的性原则、启发性原则、适度性原则、兴趣性原则、循序渐进
性原则、全面性原则、充分思考性原则、及时评价性原则
⑶ 课堂提问的类型:复习回忆提问、理解提问、应用提问、归纳提问、比较提问、分
② 选修系列 2(理科系列,3 模块)
:2-1(“或且非”、圆锥曲线、向量与立体几何)
、
2-2(导数、推理与证明、复数)
、2-3(技术原理、统计案例、概率)
③ 选修系列 3(6 个专题)
④ 选修系列 4(10 个专题)
5. 高中数学课程的主线:
函数主线、运算主线、几何主线、算法主线、统计概率主线、应用主线。
⑵ 概念间的逻辑关系:相容关系(同一关系如“等边三角形”和“正三角形”、交叉
关系如“等腰三角形”和“直角三角形”、包含关系如“菱形”和“四边形”)
、不
相容关系(对立关系如“正数”和“负数”、矛盾关系如“负数”和“非负数”)
⑶ 概念下定义的常见方式:属加种差定义法(被定义的概念=最邻近的属概念+种差,
强调概念、结论产生的背景;强调体会其中所蕴含的数学思想方法。
⑺ 强调数学的文化价值:数学是人类文化的重要组成部分;
《新课标》强调了数学文化的
重要作用。
⑻ 全面地认识评价:学习结果和学习过程;学习的水平和情感态度的变化;终结性评价和
过程性评价。
3. 高中数学课程的目标:
⑴ 总目标:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的
6. 教学建议:
⑴ 以学生发展为本,指导学生合理选择课程、制定学习计划
⑵ 帮助学生打好基础,发展能力:
① 强调对基本概念和基本思想的理解和掌握
② 重视基本技能的训练
③ 与时俱进地审视基础知识与基本能力
⑶ 注重联系,提高对数学整体的认知
⑷ 注重数学知识与实际的联系,发展学生的应用意识和能力
⑸ 关注数学的文化价值,促进学生科学观的形成
析综合提问、评价提问
⑷ 学生活动:
① 学生活动体现了学生在学习中的主体地位
② 作为教学环节之一的“学生活动”是意义建构的组成部分
③ 学生活动的目的是促进学生的理解
④ 从总体上说,学生活动必须是思维活动
⑸ 课堂结束技能的实施方法:练习法、比较法与归纳法、提问法和答疑法、呈上法和
启下法、发散法和拓展法
图像
7) 求函数 = 的极值的方法:解方程 ′ = 0。当 ′ 0 = 0时:
⑹ 改善教与学的方式,使学生主动地学习
⑺ 恰当运用现代信息技术,提高教学质量
7. 评价建议:
⑴ 重视对学生数学学习过程的评价
⑵ 正确评价学生的数学基础知识和基本能力
⑶ 重视对学生能力的评价(问题意识、独立思考、交流与合作、自评与互评)
⑷ 实施促进学生发展的多元化评价(尊重被评价对象)
⑸ 根据学生的不同选择进行评价
⑷ 高中数学是学习高中物理、化学等其他课程的基础。
2. 高中数学课程的基本理念:
⑴ 高中数学课程的定位:面向全体学生;不是培养数学专门人才的基础课。
⑵ 高中数学增加了选择性(整个高中课程的基本理念)
:为学生发展、培养自己的兴趣、
特长提供空间。
⑶ 让学生成为学习的主人:倡导自主学习、合作学习;帮助学生养成良好的学习习惯。
1) 函数的单调性
⑴ 设1 、2 ∈ , 且1 < 2 。那么
1 − 2 < 0 在 , 上是增函数;
1 − 2 > 0 在 , 上是减函数。
⑵ 设函数y = 在某个区间内可导,若 ′ > 0,则在该区间内 为增函数;若
三、 教学技能
1. 教学设计
⑴ 课堂教学设计就是在课堂教学工作进行之前,以现代教育理论为基础,应用系统科
学方法分析研究课堂教学的问题,确定解决问题的方法和步骤,并对课堂教学活动
进行系统安排的过程。
⑵ 教学设计与教案的关系:
① 内容不同:
教学设计的基本组成既包括教学过程,也包括指导思想与理论依据、教学背景
数学素养,以满足个人发展与社会进步的需要。
⑵ 三维目标:知识与技能、过程与方法、情感态度与价值观
⑶ 把“过程与方法”作为课程目标是本次课程改革最大的变化之一。
⑷ 五大基本能力:计算能力、逻辑推理能力、空间想象能力、抽象概括能力、数据处理能
力
4. 高中数学课程的内容结构:
⑴ 必修课程(每模块 2 学分,36 学时):数学 1(集合、函数)
⑷ 发现法:又称问题教学法(布鲁纳)
,步骤是创设问题情境;寻找问题答案,探讨问
题解法;完善问题解答,总结思路方法;知识综合,充实改善学生的知识结构。
4. 概念教学
⑴ 概念的内涵与外延:当概念的内涵扩大时,则概念的外延就缩小;当概念的内涵缩
小时,则概念的外延就扩大。内涵和外延之间的这种关系,称为反变关系。
分析、对学生需要的分析、学习内容分析、教学方法与策略的选定、教学资源
的设计与使用以及学习效果评价等。侧重运用现代教学理论进行分析,不仅说
明教什么、如何教,而且说明为什么这样教;教案的基本组成是教学过程,侧
重教什么、如何教。
② 核心目的不同:
教学设计不仅重视教师的教,更重视学生的学,以及怎样使学生学得更好。达
个人撰写反思材料;集体讨论;个人再反思,并撰写反思论文
⑽ 教学设计的撰写:
① 教学目标:知识与技能(了解、掌握、应用);过程与方法(提高能力);情感
态度与价值观(体验规律、培养看问题的方法)