推荐学习K12(春季拔高课程)2017-2018年九年级数学第11讲几何问题探究—相似与比例相关
新人教版2017年春九年级数学下册全册教案(K12教育文档)

新人教版2017年春九年级数学下册全册教案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版2017年春九年级数学下册全册教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版2017年春九年级数学下册全册教案(word版可编辑修改)的全部内容。
义务教育课程标准人教版数学教案九年级下册 2017年春第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式难点:理解反比例函数的概念三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗?(2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xk y 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。
那么变量y 是变量x 的函数吗?为什么?2。
某村有耕地346。
2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?为什么?(三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数?(1)3x y = (2)x y 2-= (3)xy =21 (4)25+=x y (5)31+=x y 例2.(补充)当m 取什么值时,函数23)2(m xm y --=是反比例函数?(四)、随堂练习 1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获(六)、布置作业(七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。
立体几何第11课时

第11课时直线与平面垂直学习要求1.掌握直线与平面的位置关系.2.掌握直线和平面平行的判定与性质定理..3.应用直线和平面平行的判定和性质定理证明两条直线平行等有关问题.自学评价1. 直线和平面垂直的定义:符号表示:垂线:垂面:垂足:思考:在平面中,过一点有且仅有一条直线与已知直线垂直,那么在空间。
(1)过一点有几条直线与已知平面垂直?答:(2)过一点有几条平面与已知直线垂直?答:2.定理:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直3.点到平面的距离:4.直线与平面垂直的判定定理:符号表示5.直线和平面垂直的性质定理:已知:求证:证明:6.直线和平面的距离:【精典范例】例1:.求证: 如果两条平行直线中的一条垂直于一个平面, 那么另一条直线也垂直于这个平面.思维点拔:要证线面垂直,只要证明直线与平面内的两条相交直线垂直,或利用定义进行证明。
Rt△ABC所在平面外一点S,且SA=SB=SC(1)求证:点S在斜边中点D的连线SD⊥面ABC(2)若直角边BA=BC,求证:BD⊥面SAC追踪训练1听课随笔1、如图, 已知PA ⊥α, PB ⊥β, 垂足分别为A 、B, 且α∩β= l , 求证: AB ⊥l .例2.已知直线l // 平面α , 求证: 直线l 各点到平面α的距离相等.例3.已知正方体ABCD-A 1B 1C 1D 1 .(1)求证: A 1C ⊥B 1D 1 ;(2)若M 、N 分别为B 1D 1与C 1D 上的点, 且MN ⊥B 1D 1 , MN ⊥C 1D , 求证: MN//A 1C .点评:要证线线平行均可利用线面垂直的性质。
追踪训练2 1.已知直线l,m,n 与平面α,指出下列命题是否正确,并说明理由: (1)若l ⊥α,则l 与α相交; (2)若m Ìα,n Ìα,l ⊥m,l ⊥n ,则l ⊥α; (3)若l//m,m ⊥α,n ⊥α,则l//m 2.某空间图形的三视图如图所示,试画出它的直观图,并指出其中的线面垂直关系. 3.在△ABC 中,∠B=90°,SA ⊥面ABC ,AM ⊥SC ,AN ⊥SB 垂足分别为N 、M , 求证:AN ⊥BC ,MN ⊥SCABPαβ lD 111听课随笔 N M C B A S。
[配套k12学习]2017九年级数学上册4.3解直角三角形教案1新版湘教版
![[配套k12学习]2017九年级数学上册4.3解直角三角形教案1新版湘教版](https://img.taocdn.com/s3/m/89eb0f458e9951e79b8927ce.png)
配套K12学习(小初高)配套K12学习(小初高)4.3 解直角三角形1.了解并掌握解直角三角形的概念.2.掌握解直角三角形的依据并能熟练解题.(重点,难点)一、情境导入在直角三角形中,除了直角外,一共有五个元素,即三角形的三条边和两个锐角.尝试探究已知哪些元素能够求出其他元素.二、合作探究探究点一:解直角三角形在Rt△ABC 中,∠C =90°,AC =6,AB =22,解这个三角形.解析:本题已知斜边AB 和直角边AC ,求另一个直角边和两锐角∠A ,∠B .解:在Rt△ABC 中,BC =AB 2-AC 2=(22)2-(6)2=2.∵sin A =BC AB=222=12,且∠A 为锐角,∴∠A =30°,∠B =90°-∠A =60°.方法总结:在直角三角形中,除了直角外的5个元素,只要知道其中的2个元素(至少有一个是边),利用关系式,就可以求出其他3个未知元素.探究点二:利用解直角三角形求边、角 【类型一】利用解直角三角形求边如图所示,在Rt△ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为( )A.4B.2 5C.15313D.12313解析:∵cos B =BC AB =23,设BC =2x ,则AB =3x =6,∴x =2,∴BC =2x =4.故选A.方法总结:解此类题型时,首先利用三角函数求出边边关系,再根据已知条件或勾股定理求解.【类型二】利用解直角三角形求角在Rt△ABC 中,∠C =90°,AB =2,AC =1,那么∠B 为( )A.60°B.60°或120°C.30°或150°D.30° 解析:在Rt△ABC 中,∠C =90°,sin B =AC AB =12,∠B 为锐角,∴∠B =30°.故选D.方法总结:解此类问题时,首先利用已知边求出角的三角函数值,再求角的度数.三、板书设计 解直角三角形错误!教学过程中引导学生对所学理论知识进行系统的复习,归纳整合成为一个知识网络,能够清楚认识到各个知识点之间的联系,为接下来综合应用的学习打下基础.教学过程中还应当把握教学进度,确保学生能够牢牢把握基础知识.。
几何综合2017 2018北京初三上学期期末考试数学几何压轴有问题详解

实用文档几何综合?? ACAB海淀.在△ABC中,∠A.90°,1?QAQB2”是否正确:,请判断“,CE交于点Q(1)如图1,△ABC的角平分线BD ________(填“是”或“否”);?2PA.PB(2)点P是△ABC所在平面内的一点,连接PA,,且PB? PAB内,∠ABP的大小;30°,求∠在△①如图2,点PABC??β,用等式表示α,α,∠,设∠APCBPC外,连接②如图3,点P在△ABCPC β之间的数量关系,并证明你的结论.AAAPDEPBCB CB C3 图图1 图2AOOBOCBCOABAOBAOBC,上,=30°,点西城.如图21,在Rt△=2中,∠=90°,∠在线段ODOCDOCD°)得α绕点<180逆时针旋转α度(90边上的一点满足∠°=30°.将△<???????ACOCDCAC MCD BDD,到△的中点,,,,连接两点的对应点分别为点取,,OM连接.???DC OM AB BD之间的位置关系为°,∥时,α= 此时和;,如图1()2当?OM BD)画图探究线段之间的位置关系和数量关系,并加以证明.和2(实用文档323BABCACBAC,BC为半径=2 3东城.如图1,在△=中,∠为圆心,=90°,,以点??PCC?PP BCPBPC的上方,且满作圆.点落在直线为,作上的动点,连接,使点??3?1:PPCC:AP BP ,连接.足,?CAP BPCBAC∽△)求∠;的度数,并证明△(1ABP在(2)若点上时,CAP'①在图;2中画出△??BPBP②连接,求的长;A APC21 图图 BPBP P取得最大值3()点是否有最大值或最小值?若有,请直接写出在运动过程中,A PBC的度数;若没有,请说明理由.或最小值时∠BC用备图CAB=ADCB=CDCBAD=旋转,角的,°角绕点,一个以点为顶点的454丰台.如图,∠90°,ACFDABADAMNBAE. ,交于点的延长线交于点,两边与,连接,与,,AFECAFCEFCAAE)在∠;旋转的过程中,当∠==∠时,如图1,求证:(1CB=FCAECAB=FCE,用等时,如图2,如果∠230(2)在∠旋转的过程中,当∠°,≠∠AF AE.,式表示线段之间的数量关系,并证明EEF F AA MNMNCC DBDB2图1图实用文档BCDABCACBACBC.中,∠为=90°,,点=边上的一点5昌平.已知,△BCEACDC得到△请你画出旋转后的图形;以点为旋转中心,将△,逆时针旋转90°,(1)BEAF ADBEF交⊥)延长于点;,求证:(2CFBF ACCF. = ,,则=1,连接(3)若的长度为5CCDDABAB备用图A BDBACBAABCAB,,将线段=. 6怀柔在等腰△顺时针旋转到中,绕点PBCHADBDAC. ,连结的延长线于点使⊥并延长交于依题意补全图形;(1)ααBDABAC,求∠的式子表示)(2)若∠的大小(用含=2;CB DPDBCE,从而用等式表示线段(3)小明作了点关于直线的对称点点BCDPBC之间的数量关系与.请你用小明的思路补全图形并证明线段与. 之间的数量关系ABCBACAB=ACDADAD<,连结=90°,.在平面内任取一点平谷.如图,在7Rt△(中,∠ABADAAEDECEBD.,连结,),将线段,绕点°,得到线段逆时针旋转90(1)请根据题意补全图1;BDCE的数量关系并证明;)猜测和(2BDCEP ADEAEACABAD=1时,补全,°,交于点,把△=2绕点旋转,当∠,=90)作射线(3PB的长.图形,直接写出AADBCBC1图备用图实用文档ABCOCOAB O的直径,作是半圆的平行线交⊙8大兴.已知:如图,上一点,过点为半圆H.ABGAE,EBCGCEACBC于点于点.,交、过点作于点EB,连接⊥、BG E;(1)求证:∠BCG=∠5EC CAB?sin?.(2的值)若,求5GBCDAB°,、,它们相交的锐角中有一个角为9门头沟.如图27-1有两条长度相等的相交线段60ABADCDCB为了探究之间的关系,小亮进行了如下尝试:、与)(或ADADAB的沿27-2,如图,将线段方向平移(1)在其他条件不变的情况下使得BCAD∥ABDEBECDADCB之间的关或进而利用所学知识得到、)与长度,得到线段然后联结,(,)(直接写出结果系:____________________;CBAD不平行)进行尝试,与的情况((2)根据小亮的经验,请对图27-1ABCBADCD与(或之间的关系,并进行证明;)写出、27-2图27-1图: __________________________. 21)综合()、()的证明结果,请写出完整的结论3(实用文档10顺义.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.ABC ACBACBC△,同学们通过构造直,∠==90(1)如图1,已知等腰直角三角形纸片°,AB= ;角三角形的办法求出三角形三边的长,则DEF DFDEDEFEF△=90°,,求出2(2)如图,已知直角三角形纸片=2,∠的长;EGEDFG 2的横线与相交于点)的条件下,若橫格纸上过点的长.,直接写出)在((3实用文档BCHADFE GABCD为为中,点,为边中点;边中点,点11通州. 如图1,在矩形点CDABI J 边三等分点.,小瑞分别用不同的方式连接矩形对边上的点,为边三等分点,GKLHKPOL的面积相等3中四边形中四边形的面积与图2,图3所示.那么,图2如图吗?(1)小瑞的探究过程如下3 2 图图1 图S_______S?中,小瑞发现,;在图2ABCDGKLH KPOL在图3中,小瑞对四边形请你将小瑞的思路填写完整:面积的探究如下. b?SaS?设,AKG△DEP△AFEC∥∵aS?42:1DAKDEP∽△△∴,且相似比为,得到DAK△BIGD∥∵b9S?ABM∽△△AGK3:1∴,且相似比为,得到ABM△11Sa?SS?9?S4a?b?b?,又∵ABCD△ABCD△ABFDAG46a4?36b??S?24a6b∴ABCD ba?____bS?_____S?_____b∴,,KPOLABCD?S_____S?SS____??,则”(填写“,”“)”或“∴GKLHABCDKPOLKPOL_____S?SABCD.)小瑞又按照图(24.则对边上的点的方式连接矩形ABCDANML实用文档4图ACABACBCA°得到线,=90°,以点60为中心,分别将线段朝阳12. △逆时针旋转中,∠FCBAEDEDEAD.,连接交,延长段于点,CFEB;,若∠的度数为=30°,∠1(1)如图B°时,<60,当30°<∠(2)如图2 ;①依题意补全图2ACCF.与②猜想的数量关系,并加以证明AABCBC1图?90?ACB??ABC密云13上的一点(不与D是线段ABRt7. 如图,已知,AC=BC中,,?90,得到线将线段CE绕点C顺时针旋转BE、B重合). 过点B作⊥CD,垂足为E.A?BCE?.设度数为EF.段CF,连结?CDA?.的代数式表示1()①补全图形. ②试用含3EF??. 的大小)若,求(22AB. 之间的数量关系BE、CF、(3)直接写出线段AB海淀.解:1 1. 1()否………………分实用文档PDABDPDBPDA=90°,⊥=于∠,则∠(2)①作A ABP∠°,=30 ∵D1BP?PD分∴…………2. 2P PA2PB?∵,BC2PAPD?. ∴22PD?PABsin?? . ∴2PA P ABP AB分……………3=45°由∠. 是锐角,得∠AB'PP则接,,直关于线连的对称另证:作点点'A,PPBP',P'. P?'AP?PAP,BB,A?P'AB??P,AB'P?P'BA??B ABP∵∠°,=30?60?P'BP?. ∴BPP'. ∴△是等边三角形BPP'P?. ∴PA2PB?∵,PA2P?P'分 (2)222AP?PA'P'P?. ∴??90?PAP'.∴??45?PAB 3 ∴分. …………??分……………②4,证明如下:???45D DP ADAPDCADAP. =,并取,作⊥,连接31DAP. =90 ∠°∴BAC°,∠=90 ∵CAPCAPDAPBAC, =∠+∠∠+ ∴∠AP'A CADBAP. ∠即∠=P2AP ACABAD,,= ∵=E P BC CADBAP.∴△≌△CB实用文档APPBCDAD ==. …,,∴∠1=∠2,PAPD?2APDADP. =45,∠∴°=∠PAPB?2∵,CDPDPB. ∴==DPCDCP.= ∴∠∠βαBPCAPC∠,∠,∵??????DPC?45??. ,∴????2?1?2???DPC?90?3?180??2. ∴??.∴???31???90??45?ADP????分. ……………∴7??45?ADCABCAB=ADBC=CDAC=AC分,. ,∴△…≌△14丰台.解:()证明:∵1,EACF ACBACDAC分. ……=∠2∴∠=135=∠°=45°,可证∠FCAECA,又∵∠∠=AF ACF ACEAE……. ∴3=∴△分≌△..其他方法相应给分2ACGABCCG分……(2)过点=作4⊥于点.,求得EF ACFF ACEAC. +∠∵∠∠=°=135°,∴∠=45FA ACEFACF ACE. +∠=45又∵∠°,∴∠∠=MN AEC. ACF……5∴△∽△分G AFAC2AF?AC?AE?……6分∴. ,即C ACAE DB2?AE?AF分……7. ∴分)补全图形……………………25昌平.(1 2)证明:(E CADCBE由Δ∵Δ旋转得到,C CADCBE3∴Δ分≌Δ,………………F BCECADCBE∠==∠∴∠,∠D ACD 4分=90°,……………AB CADCBEEE,=∠+∠∠∴∠+AFEBCE°,∴∠=∠=90实用文档BEAF分∴. (52)(3………………………………………………)7 (1)如图6怀柔解:1分……………………………………………AHBBACα=2=90(2) ∵∠,∠°αABH2∴∠=90°-2……………………………………………………………………………分BDBA∵=αBDA=45°+分………………………………………………………………………………∴∠A补全图形,如图(3)DH………………4B证明过程如下:E GBPBCEDED的对称点为交,且∵于关于BEBDDBPEBPDEBPDGGE =∠5,∴=⊥分,;…………………………………………=,∠αAB=AC∵BAC=2,∠α-∴∠ABC=90°αABH =90°由(2)知∠-2ααDBPα)°-2∠==90°--(90αDBPEBP =∠∴∠=αBDE∴∠=2BDAB =∵BDEABC 6∴△分≌△………………………………………………………………………………DEBC∴=αDBPDPBADBα°-=45∴∠=∠∠-+=45°DG1, =∴DP2DE2∴=, DPBC2∴=,DP2DP.BC∴分= (7)实用文档7平谷.解:(1)如图 (1)A DECBCE CEBDBD2················和;的数量是:=(2)BAEBAECAEDAB°,++∠∠=∠∵∠=90CAEDAB=3 .∴∠∠·······················AB=ACAD=AE,,∵ACEABD≌△.∴△CEBD4 ∴··························=.5562PB7 ···················(3)或的长是.55EDAAPPDEBBCC8大兴7. 证明:(1)AB∵是直径,ACB ..1分°.∴∠………………………………………………=90,GABCG于点∵⊥CGBACB=.∠°∴∠=90BCGCAB分………………………………………………∴∠∠=..2. .AB∥CE∵,ACECAB. =∴∠∠ACEBCG∴∠∠=EBGACE又∵∠∠=EBGBCG分. .………………………………………………∴∠=∠..35??CABsin 2)解:∵(51分,∴………………………………………………..4?tan?CAB2CABACE HBG EBG =∠1由()知,∠=∠=∠实用文档GH1HGB. 中,∴在Rt△??tan?HBG GB2CABBCG ∠由(1)知,∠=GB1BCG. 中,Rt △在???BCGtan CG2GH=aGB=aCG=4aCHCGHGa. ……………..62,=3.分=设,则-ECAB,∥∵ECH BGH,CEH GBH =∠∴∠∠=∠ECHBGH.……………………………………………..7分∽△∴△ECCH3a∴.…………………………………………8分3???GBGHa26AB;=)10顺义(1分.2 (2)E作横线的垂线,交l,l于点解:过点21MN,,分..….3……………………………EDFDME∴°,∠= 90=∠DEF∵°,=90∠∴°,∠3=90∠2+∵°,∠3=90∠1+∴2,∠1=∠ENFDME∴△△,∽分.4………….……DEDMME??∴,EFENNF DEEF∵=2,1DEDMME???∴,2ENNFEF ENME∵,=3=2,DMNF∴=1.5=4,,55DF?EFDE根据勾股定理得=5,=2.5,.分……………………….52EG=.2.5(3)分.7…………………………………………………………..………………………………………………………………………………°;120 (12朝阳. 解:1)1分.如图2()①实用文档……………………………………………3分3ACCF?. ②3AF证明:如图,连接,CAEBAD=∠∵∠,CABEAD=∠,∴∠ACAEADAB∵==,,ABCADE. ≌△∴△CAED. °∴∠==∠90AEF. 90=∴∠°ACF AEF.∴Rt△△≌Rt1CAFCAE=∠30=°. ∴∠21222AF?AC?CFAFCF?ACF.中,Rt△,且3ACCF?6. ∴…………………………………………………………………………3分.13密云. 1)①补全图形(CFDBAE……………………………..1分②???45..3……………………………分)(2??ACB90FCE???CAB?45???CFE??FCE?ACB在,和中,ACBFCE???∽实用文档CFEF??ACAB EF3?AB2?CF3?………………………………..5AC2分连结FA.?FCA?90???ACE,?ECB?90???ACE?ECB?FCA???=3??FCAcos?90?CFA?CFA?中,,Rt在2??3030???FCA??. 即………………………………6分(3)222BECF2?AB?2…………………………………………8分C FDBAE。
推荐K12春季拔高课程2017_2018年九年级数学第13讲动点问题探究_几何图形中的动点问题教案

会解决图形的平移、旋转、翻折等问题教学过程一、课堂导入动点所产生的函数及方程问题在初中数学中占有相当的比重,在全国各地的中考数学试卷中占到10%到20%的比重。
主要研究在几何图形运动中,伴随着一定的数量关系、图形位置关系的“变”和“不变性”,就运动对象而言,有点动、线动和面动,常常集代数与几何于一体,有较强的综合性,题目灵活多变,动中有静,静中有动,动静结合.二、复习预习1. 平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移不改变图形的形状和大小。
图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。
2. 轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。
3. 在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
三、知识讲解考点1 单点运动及双点运动问题关于点运动的问题,一般根据图形变化,探索动点运动的特点和规律,作出符合条件的草图。
解这类题的关键是抓住动点运动过程中不变的量,用含未知数的代数式去表示所需的线段,根据题意中隐含的条件借助相似等方式构造方程或函数表达式。
考点2 图形运动问题图形的运动包括图形的平移、旋转、翻折等,图形在运动过程中,对应线段、对应角不变,以三角形、四边形的运动是常见的一种题型。
这里需注意:平移、旋转、翻折都改变了图形的位置,不改变图形的形状和大小。
对于此类题目,关键在于抓住运动图形的特殊位置、临界位置及特殊性质,其基本方法是把握图形运动与变化的全过程,以不变应万变,解答过程中常需借用函数或方程来解答。
考点3 线运动问题解决此类题的关键是根据线运动的变化,研究图形的变化.由图形变化前后的关系及图形的性质综合解决问题,如本题利用平移性质及三角形面积建立方程解决问题.四、例题精析 考点一 双点运动问题例1 如图14,在△ABC 中,∠B = 90°,AB = 6cm ,BC = 12cm ,动点P 以1cm/s 的速度从A 出发沿边AB 向点B 移动,动点Q 以2cm/s 的速度同时从点B 出发沿BC 向点C 移动.⑴△PBQ 的面积S(cm 2)与点P 移动时间t (s)的函数关系式为______,其中t 的取值范围为________; ⑵判断△PBQ 能否与△ABC 相似,若能,求出此时点P 移动的时间,若不能,说明理由; ⑶设M 是AC 的中点,连接MP 、MQ ,试探究点P 移动的时间是多少时,△MPQ 的面积为△ABC 面积的41?例2如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.考点二图形运动问题例3如图,矩形纸片ABCD中,AB=6,BC=8;折叠纸片使点B落在AD上,落点为B′;点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′;设直线l与AB相交于点E,与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y;(1)求证∠BEF=∠AB′B;(2)求y与x的函数关系式,并直接写出x的取值范围;考点三线运动问题例4如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.课程小结本节课主要研究了几何图形中的动点问题,中考中,对运动变化问题的考查是常考的内容之一,考查的热点是点运动问题、图形运动问题(旋转、翻折、对称变换),解答动点问题时,点不同位置考虑的不全面是容易导致出错的原因之一。
[K12学习]2017_2018学年高中数学第二章参数方程2.3.1椭圆曲线的参数方程学案新人教B版选修4_4
![[K12学习]2017_2018学年高中数学第二章参数方程2.3.1椭圆曲线的参数方程学案新人教B版选修4_4](https://img.taocdn.com/s3/m/0af732ebd15abe23482f4dae.png)
2.3.1 椭圆的参数方程[对应学生用书P31][读教材·填要点]椭圆的参数方程中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a cos t ,y =b sin t ,0≤t ≤2π.中心在M 0(x 0,y 0)的椭圆x -x 02a +y -y 02b =1的参数方程是⎩⎪⎨⎪⎧x =x 0+a cos ty =y 0+b sin t 0≤t ≤2π.[小问题·大思维]1.中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b2=1的参数方程是什么?提示:由⎩⎪⎨⎪⎧y 2a2=sin 2φ,x2b 2=cos 2φ,得⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ.即参数方程为⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ(0≤φ≤2π).2.圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ中参数θ的意义与椭圆的参数方程中参数φ的意义相同吗?提示:圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(0≤θ≤2π)中的参数θ是动点M (x ,y )的旋转角,但在椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(0≤φ≤2π)中的φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA =a (或OB =b )的旋转角,称为离心角,不是OM 的旋转角.[对应学生用书P32]利用椭圆的参数方程求最值[例1] 已知椭圆x 2100+y 264=1有一内接矩形ABCD ,求矩形ABCD 的最大面积.[思路点拨] 本题考查椭圆的参数方程的求法及应用.解答此题需要设出A 点的坐标,然后借助椭圆的对称性即可知B ,C ,D 的坐标,从而求出矩形的面积的表达式.[精解详析] ∵椭圆方程为x 2100+y 264=1, ∴可设A 点的坐标为(10cos α,8sin α), 则|AD |=20|cos α|,|AB |=16|sin α|.∴S 矩形=|AB |·|AD |=20×16|sin α·cos α|=160|sin 2α|. ∵|sin 2α|≤1,∴矩形ABCD 的最大面积为160.利用椭圆的参数方程求函数(或代数式)最值的一般步骤为: (1)求出椭圆的参数方程;(2)利用椭圆中的参数表示已知函数(或代数式); (3)借助三角函数的知识求最值.1.已知实数x ,y 满足x 225+y 216=1,求目标函数z =x -2φ的最大值与最小值.解:椭圆x 225+y 216=1的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =4sin φ,0≤φ≤2π.代入目标函数得z =5cos φ-8sin φ=52+82cos(φ+φ0)=89cos(φ+φ0)⎝ ⎛⎭⎪⎫tan φ0=85. 所以z min =-89,z max =89.[例2] 由椭圆x 24+y 29=1上的点M 向x 轴作垂线,交x 轴于点N ,设P 是MN 的中点,求点P 的轨迹方程.[思路点拨] 本题考查椭圆的参数方程及轨迹方程的求法.解答此题需要先求出椭圆的参数方程,即M 点的坐标,然后利用中点坐标公式表示出P 的坐标即可求得轨迹.[精解详析] 椭圆x 24+y 29=1的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(0≤θ≤2π),∴设M (2cos θ,3sin θ),P (x ,y ),∴⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ2,消去θ,得x 24+4y 29=1,表示中心在原点,焦点在x 轴上的椭圆.利用椭圆的参数方程求轨迹,其实质是用θ表示点的坐标,再利用sin 2θ+cos 2θ=1进行消参.本题的解决方法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便.2.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A ⎝ ⎛⎭⎪⎫1,32到F 1,F 2的距离之和等于4,写出椭圆C 的方程和焦点坐标; (2)设点P 是(1)中所得椭圆上的动点,求线段F 1P 的中点的轨迹方程.解:(1)由椭圆上点A 到F 1,F 2的距离之和是4,得2a =4,即a =2.又点A ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14+⎝ ⎛⎭⎪⎫322b 2=1,得b 2=3,于是c 2=a 2-b 2=1,所以椭圆C 的方程为x 24+y 23=1,焦点坐标为F 1(-1,0),F 2(1,0).(2)设椭圆C 上的动点P 的坐标为(2cos θ,3sin θ),线段F 1P 的中点坐标为(x ,y ),则x =2cos θ-12,y =3sin θ+02, 所以x +12=cos θ,2y3=sin θ.消去θ,得(x +12)2+4y23=1.[例3] 已知椭圆x 24+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P ,Q 两点,求证:|OP |·|OQ |为定值.[思路点拨] 本题考查椭圆的参数方程的求法及应用.解答本题需要先确定B 1,B 2两点的坐标,并用椭圆的参数方程表示出M 点的坐标,然后用参数表示出|OP |·|OQ |即可.[精解详析] 设M (2cos φ,sin φ)(0≤φ≤2π),B 1(0,-1),B 2(0,1), 则MB 1的方程:y +1=sin φ+12cos φ·x .令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程:y -1=sin φ-12cos φx ,∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ×⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.即|OP |·|OQ |=4为定值.(1)利用椭圆的参数方程可把几何问题转化为三角问题,便于计算或证明.(2)利用参数方程解决此类问题时,要注意参数的取值范围.3.求证:椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >b >0,0≤θ≤2π)上一点M 与其左焦点F 的距离的最大值为a +c (其中c 2=a 2-b 2).证明:M ,F 的坐标分别为(a cos θ,b sin θ),(-c,0). |MF |2=(a cos θ+c )2+(b sin θ)2=a 2cos 2θ+2ac cos θ+c 2+b 2-b 2cos 2θ =c 2cos 2θ+2ac cos θ+a 2=(a +c cos θ)2.∴当cos θ=1时,|MF |2最大,|MF |最大,最大值为a +c .[对应学生用书P33]一、选择题1.椭圆⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ(0≤θ≤2π)的离心率为( )A.25 B.425 C.215D.2125解析:选C 由椭圆的参数方程可知a =5,b =2. 所以c =52-22=21, 故椭圆的离心率e =c a =215,故选C. 2.曲线⎩⎨⎧x =23cos θ,y =32sin θ(0≤θ≤2π)中两焦点间的距离是( )A. 6B. 3 C .2 6D .2 3解析:选C 曲线化为普通方程为x 212+y 218=1,∴c =6,故焦距为2 6.3.若P (x ,y )是椭圆2x 2+3y 2=12上的一个动点,则x +22y 的最大值为( ) A .2 6 B .4 C.2+ 6D .2 2解析:选D 椭圆为x 26+y 24=1,设P (6cos θ,2sin θ),x +22y =6cos θ+2sin θ=22sin ⎝⎛⎭⎪⎫θ+π3≤2 2. 4.已知曲线⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ0≤θ≤π上一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点坐标是( )A .(3,4) B.⎝ ⎛⎭⎪⎫322,22 C .(-3,-4) D.⎝⎛⎭⎪⎫125,125解析:选D 因为y -0x -0=43tan θ=tan π4=1,所以tan θ=34.所以cos θ=45,sin θ=35,代入得P 点坐标为⎝ ⎛⎭⎪⎫125,125.二、填空题5.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(0≤θ≤2π)经过点⎝ ⎛⎭⎪⎫m ,12,则m =________. 解析:将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )化为普通方程为x 2+y 24=1,将点⎝ ⎛⎭⎪⎫m ,12代入该椭圆方程,得m 2+144=1,即m 2=1516,所以m =±154.答案:±1546.曲线⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(0≤θ≤2π)的左焦点的坐标是________.解析:题中曲线的普通方程为x 225+y 29=1,左焦点为(-4,0).答案:(-4,0)7.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ0≤θ≤2π,恒有公共点,则b 的取值范围是________.解析:将(2cos θ,4sin θ)代入y =x +b 得: 4sin θ=2cos θ+b .∵恒有公共点,∴以上方程有解. 令f (θ)=4sin θ-2cos θ =25sin (θ+φ)(tan φ=12).∴-25≤f (θ)≤2 5. ∴-25≤b ≤2 5. 答案:[-25,25] 8.直线x +y =23被椭圆⎩⎨⎧x =23cos φ,y =2sin φ0≤φ≤2π截得的弦长为________.解析:把⎩⎨⎧x =23cos φ,y =2sin φ代入x +y =23得3cos φ+sin φ= 3.即sin(φ+π3)=32,于是φ=0或φ=π3,得两交点M (23,0),N (3,3),|MN |=3+3= 6.答案: 6 三、解答题9.在平面直角坐标系xOy 中,点P (x ,y )是椭圆x 23+y 2=1上的一个动点,求S =x +y的最大值.解:椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φ,y =sin φ,0≤φ≤2π.故可设动点P 的坐标为(3cos φ,sin φ),其中0≤φ≤2π.因此S =x +y =3cos φ+sin φ=2(32cos φ+12sin φ)=2sin(φ+π3). 所以当φ=π6时,S 取最大值2.10.P 为椭圆x 216+y 29=1上的点,求P 到直线l :3x -4y -24=0的距离的取值范围.解:设P 的坐标为(4cos θ,3sin θ),则P 到l 的距离为 d =|12cos θ-12sin θ-24|5=|122cos ⎝⎛⎭⎪⎫θ+π4-24|5=24-122cos ⎝⎛⎭⎪⎫θ+π45.当cos ⎝ ⎛⎭⎪⎫θ+π4=-1时,d 取最大值24+1225; 当cos ⎝ ⎛⎭⎪⎫θ+π4=1时,d 取最小值24-1225. 综上,所求的取值范围为⎝⎛⎭⎪⎫24-1225,24+1225. 11.椭圆x 2a 2+y 2b 2=1(a >b >0)与x 轴正半轴交于点A ,若这个椭圆上总存在点P ,使OP ⊥AP (O 为坐标原点),求离心率e 的取值范围.解:由题意,知A (a,0),若存在点P ,使OP ⊥AP ,则点P 必落在第一或第四象限,故根据椭圆的参数方程可设P (a cos φ,b sin φ),φ∈⎝ ⎛⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π2,2π. 因为OP ⊥AP , 所以k OP ·k AP =-1,即b sin φa cos φ·b sin φa cos φ-a=-1.所以b 2sin 2φ+a 2cos 2φ-a 2cos φ=0, 即(a 2-b 2)cos 2φ-a 2cos φ+b 2=0. 解得cos φ=b 2a 2-b 2或cos φ=1(舍去).由φ∈⎝ ⎛⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π2,2π,得0<cos φ<1, 所以0<b 2a 2-b2<1,把b 2=a 2-c 2代入,得0<a 2-c 2c <1,即0<1e-1<1,解得22<e <1.。
【K12学习】中考数学知识点归纳:几何定理
中考数学知识点归纳:几何定理几何必背定理总结1、同角的余角相等、2、对顶角相等、3、三角形的一个外角等于和它不相邻的两个内角之和、4、在同一平面内垂直于同一条直线的两条直线是平行线、5、同位角相等,两直线平行、6、等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合、7、直角三角形中,斜边上的中线等于斜边的一半、8、在角平分线上的点到这个角的两边距离相等、及其逆定理、9、夹在两条平行线间的平行线段相等、夹在两条平行线间的垂线段相等、10、一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形、11、有三个角是直角的四边形、对角线相等的平行四边形是矩形、12、菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角、13、正方形的四个角都是直角,四条边相等、两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角、14、在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等、15、垂直于弦的直径平分这条弦,并且平分弦所对弧、平分弦的直径垂直于弦,并且平分弦所对的弧、16、直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似、17、相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比、相似三角形面积的比等于相似比的平方、18.圆内接四边形的对角互补,并且任何一个外角等于它的内对角、19、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线、20、切线的性质定理①经过圆心垂直于切线的直线必经过切点、②圆的切线垂直于经过切点的半径、③经过切点垂直于切线的直线必经过圆心、21、切线长定理从圆外一点引圆的两条切线,它们的切线长相等、连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角、22、弦切角定理弦切角的度数等于它所夹的弧的度数的一半、弦切角等于它所夹的弧所对的圆周角、23、相交弦定理;切割线定理;割线定理;中考复习简单几何练习题及答案点击下载附件:中考复习简单几何练习题及答案.doc一、选择题1.已知∠AoB=30°,自∠AoB的顶点o引射线oc,若∠Aoc:∠AoB=4:3,则∠Boc等于。
趣味数学高中数学第11课时立体几何趣题球在平面上的投影教学案新人教版必修1
第11课时立体几何趣题——球在平面上的投影教学要求:明白球在不同光照下的投影教学过程:,一束光线投射到球上,那放在水平面上的球与水平面切于点A与轮廓曲线的关系又是什切点A么球的影子的轮廓是什么曲线??么一、平行光线下球的投影的球与水平面切于点止,与水平面R 放在水平面上的半径为? ?90?的太阳光投射到球上,则球在水平面上的()所成角为一个焦点的椭圆.A为投影是以 ?90?时,球在分析:显然,当太阳光垂直于水平面,即00?90?0?时,圆心,水平面上的投影是以为AR为半径的圆;当球在水平面上的投影是以A为一个焦点的椭圆,如图1.则光线在水平面上的与球面相切的光线构成一个圆柱面,与球切于圆O,如图l所示,?l与球相切设与水平面平行且与球相切的平面,投影,可以看成圆柱面与水平面的交线1ll'',为光线P为(P上的任意一点,经过点P的光线为PP于点D,与圆柱面的交线为,;21?',连B,过点DPP与平面作与光线平行的直线交水平面于点的交点),且与球相切于点C R2 =,P,结PB,易知,PB=P'D=PCPA=PC,即知PA+PB=PPPP为一定值,则知点?sin R2 '''在以又的椭圆上,为焦点,长轴长为A,B?sin二、点光源下的球的投影)S(S在球面外与水平面距离为h的点光源的球与水平面切于点放在水平面上的半径为RA,且其为圆心的圆,A为一个焦点的圆锥曲线或以A投射到球上,则球在水平面上的投影是以与水平面所成角有关.及SA 形状与大小与光源到水平面的距离h.球在水平面上的投影是以球与的直线与水平面垂时,此时必有h>2RS1.当过点,球心O图略(),水平面的切点为圆心的圆的直线与水平面不垂直时.O2.当过点S、球心为一h>2R,则球在水平面上的投影是以A①若2个焦点的椭圆,如图. 1OO O与圆所示,与球;球相切的光线构成一个圆锥面.设切点的集合为圆如图213O,与水平面的切点为B;P锥面及水平面都相切,与圆锥面的切点的集合为圆为球在水平2O的切点分别为D,C,则有PC=PB、PD=PA,过面的投影线上的任意一点,P的光线与球O、1易知CD为两圆锥母线之差(为一定值).即PA+PB=CD(定值),所以,球在水平面上的投影是以A、B为焦点的椭圆.则球在水平面上的h=2R, ②若.为焦点的抛物线,如图3投影是以A相切的光线O3所示,与球如图构成一个圆锥面.设切点的集合为圆 Ol;的平面与水平面交于,A过S、O?与水平面的交所在的平面AG;圆Ol为球在水平面的投影线上的;P线为L?平行的平面与圆与任意一点,过P O圆球在水平面上的锥面交于所以,2为准线的抛物L投影是以A为焦点,线.,则球在水平面上的投影是h<2R3若○.为一个焦点的双曲线的一支,如图4A以与圆Ol02;球O相切的光线构成一个圆锥面.设切点的集合为圆所示,与球如图4 锥面及与水平面的切点为月;户为球在水平,水平面都相切,与圆锥面的切点的集合为圆03、PB、打,则有PH二G面的投影线上的任意一点,过户的光线与球O、Ol的切点分别为,所以,球在水平定值)PB-PA=CH(为两圆锥母线之和(为一定值).即PAPG二,且易知GH A,B为焦点的双曲线的一支.面上的投影是以且球与水在光线的投射下的轮廓线是一个圆,球三、小结:当平行光线与水平面垂直时,面不垂直时,球在光线下的投影是以球与平面的切点为这个圆的圆心,当平行光线与水平2水平面的切点为一个焦点的椭圆.当点光源S与球心的连线与水平面垂直时,球在光线下的投影是以球与水平面的切点为圆心的圆,当点光源与球心的连线与水平面不垂直时,球在光线下的投影是以球与水平面的切点为一个焦点的圆锥曲线.320XX—019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。
高二理科数学秋季讲义 第11讲 定点定值问题 教师版
第11讲定点、定值问题满分晋级解析几何12级定点、定值问题解析几何11级直线与双曲线、抛物线的位置关系<教师备案>本讲是圆锥曲线的综合问题,难度较大,例题的重点和难点都在第二问,主要还是让学生了解碰到定点定值问题时一般的处理方法.虽然本质上还是直线与圆锥曲线、韦达定理的应用,但是在处理的技巧上需要细细琢磨.选择合适的参数,并利用参数得到有关的曲线方程或函数关系式是解决问题的关键,尽量让计算量在可控的范围内.常用的处理方法有两种:①从特殊入手,先求出定点或定值等,再证明这个点或值与参数无关;②直接推理,计算,并在计算过程中消去参数,从而得到定点或定值.11.1定点问题考点1:直线过定点的问题知识点睛如果满足一定条件的曲线系恒过某一点,就是定点问题.直线过定点问题的求解方法一般是先求出直线的方程(含参数),再由直线恒过定点的证明方法来求解.1⑵ 在双曲线 - = 1 的一支上有不同的两点 A( x ,y ) 、 B( x ,y ) ,且 y + y = 12 ,12 13【解析】⑴ 直线 l 的方程可化为 (x - 1)a + x + y + 2 = 0 (a ∈ R ),令 ⎨ ,得 ⎨2 = 6 , l 的方程为 y = k ( x - x ) + 6 ,①2 ⎪ ⎨ 1 ⎪ x + x = 2x ,⑤ ⎪ y - y 12 = - , ⑥ x - x k ∴1 0 .∴ k = - . ,即直线 l 过定点 0 , ⎪ .【解析】设线段 AB 的中点为 M ( x ,y ) ,则 x = 1 2 = 2 ,y x + x y + y =12 2 yy经典精讲【例1】 ⑴设直线 l 的方程为 (a + 1)x + y + (2 - a ) = 0 (a ∈ R ) ,证明直线 l 过定点y 2 x 2 1 1 2 2 1 2 ( y ≠ y ) ,证明线段 AB 的垂直平分线经过定点,并求出定点的坐标.12⎧ x - 1 = 0 ⎧ x = 1⎩ x + y + 2 = 0 ⎩ y = -3∴无论 a 为任何实数,直线 l 总经过定点 (1,- 3)⑵ 设 AB 的中点为 M ( x ,y ) , AB 的垂直平分线为 l ,由分析可知, l 的斜率 k 存在,则有0 0y + y y = 1 0 0 ⎧⎪13 y 2 - 12x 2 = 12 ⨯13 , ②⎪ 11 ⎪13 y2 - 12x 2 = 12 ⨯13 , ③2 2 y + y = 12 ,④ 2 ⎪ 1 2 0 ⎪ 1⎩ 1 2② - ③ ,得13( y 2 - y 2 ) - 12( x 2 - x 2 ) = 0 , 1212即 13( y - y )( y + y ) - 12( x - x )(x + x ) = 0 .1 2 1 2 1 2 1 2∴ 13 ⨯12( y - y ) - 12 ⨯ 2( x - x ) x = 0 . 1212y - y 2x 13 2 = x - x 13 2 x12∴ AB 的垂直平分线方程为 y = - 132xx + 252.若使上式对一切实数 k 恒成立,则 x = 0 , y =25⎛ 25 ⎫2 ⎝ 2 ⎭【备选】已知抛物线 y 2 = 6 x 上的两个动点 A (x , )和 B (x , ),其中 x ≠ x 且 x + x = 4 .证明线段=21y - y = -(x - 2) .①3y 01 12 2 1 2 1 2AB 的垂直平分线经过定点,并求出定点的坐标.2,0 0k y - y 1 = x - x 2 1y - y 6 32 = =y 2 y 2 y + y y2 - 1 2 1 0 6 6.线段 AB 的垂直平分线的方程是y易知 x = 5 , = 0 是①的一个解,所以线段 AB 的垂直平分线与 x 轴的交点 C 为定点,且点 C 坐 标为 (5 , ) .【例2】 已知椭圆 C 的中心在坐标原点,焦点在 x 轴上,椭圆 C 上的点到焦点距离的最大值为 3 ,最小值为 1.2所以椭圆 C 的标准方程为 + = 1 .由 ⎨ x 2 y 2 消去 y ,得 ⎪ + 所以 y ⋅ y = (kx + m ) ⋅ (kx + m ) = k 2x x + mk (x + x ) + m 2= . ③3 + 4k 2 所以1 ⋅ 2= -1 ,化简得 y y + x x - 2( x + x ) + 4 = 0 , x - 2 x - 2 将①②③代入上式,得 + + + 4 = 0 ,整理得 7m 2 + 16mk + 4k 2 = 0 ,解得 m = -2k , m = - ,且满足 3 + 4k 2 - m 2 > 0 .7时,直线 l : y = k x - ⎪ ,过定点 ,0 ⎪ .2 ⎫ 综上可知,直线 l 过定点,定点坐标为 ,0 ⎪⑴ 求椭圆 C 的标准方程;⑵ 若直线 l : y = kx + m 与椭圆 C 相交于 A , B 两点( A , B 不是左右顶点),且以 AB 为直 径的圆过椭圆 C 的右顶点,求证:直线 l 过定点,并求出该定点的坐标.【思路探究】这是一道关于椭圆的综合题,第⑴问主要考查待定系数法、椭圆的标准方程与椭圆的几何性质等知识.只要设出椭圆C 的标准方程,然后运用待定系数法即可解决;第⑵问是证 直线 l 过定点,这就暗示我们,直线l 的方程中斜率 k 是变化的,而参数 m 不能自由变化, 即它应与 k 有关,所以首先应由条件求出 m 与 k 的关系.只要将直线 l 的方程与椭圆 C 的 方程联立并消去 y 得到关于 x 的一元二次方程,然后利用判别式、根与系数的关系,再结 合 DA ⊥ DB 等即可使问题得到解决.【解析】⑴ 如图,由题意设椭圆的标准方程为 ⎧a + c = 3 ,由题设知,得 ⎨⎩a - c = 1,⎧a = 2 ,解得 ⎨ 则 b 2 = 3 .⎩ c = 1,x 2 y 2 + a 2 b 2= 1(a > b > 0) ,yADO xBx 2 y 24 3⑵ 方法 1:设 A( x ,y ) , B( x ,y ) ,1122⎧ y = kx + m , ⎪ = 1 ⎩ 4 3(3 + 4k 2 ) x 2 + 8mkx + 4(m 2 - 3) = 0 ,∆ = 64m 2k 2 - 16(3 + 4k 2 )(m 2 - 3) > 0 ,即 3 + 4k 2 - m 2 > 0 .由根与系数的关系,得x + x =-1 2 8mk 3 + 4k 2, ① x ⋅ x =1 2 4(m 2 - 3) 3 + 4k 2. ②3(m 2 - 4k 2 ) 1 2 1 2 1 2 1 2以 AB 为直径的圆过椭圆的右顶点 D(2 ,0) ,所以 DA ⊥ DB ,即 k y y 1 2 1 2 1 2 123(m 2 - 4k 2 ) 4(m 2 - 3) 16mk3 + 4k 2 3 + 4k 2 3 + 4k 2AD ⋅ k BD= -1 ,2k 1 2 当 m = -2k 时,直线 l : y = k (x - 2) ,过定点 (2 ,0) .∵ (2 ,0) 是椭圆的右顶点,且 l 不过椭圆的右顶点,∴定点 (2 ,0) 舍当 m =- 2k ⎛ ⎛ 2 ⎫ 7 ⎝ 7 ⎭ ⎝ 7 ⎭⎛ 2 ⎫ ⎝ 7 ⎭方法 2:设 A( x ,y ) , B( x ,y ) ,因为椭圆的右顶点为 D(2 ,0) ,1 12 2则可设直线 AD 方程为 y = k ( x - 2) .13,所以 y = k (x - 2) = 所以 x + 2 = ,即 x = 16k 2 8k 2 - 6 -12k3 + 4k 2 3 + 4k 2 3 + 4k 2因为 AD ⊥ BD ,且 BD 也过右顶点 D (2 ,0)所以,用 - 替换上式中的 k ,即得 x = , y = .k 4 + 3k 2 4 + 3k 2 ⎫ 12k ⎫⎪ , a - , 1 - a , = λ ⎪ 3 + 4k 2 ⎭ ⎝ 4 + 3k 2 ⎭ ⎧ 12k12k ⎪ 3 + 4k 2 4 + 3k 2所以 ⎨⎪ ⎝⎭⎪ 3 + 4k 24 + 3k 2 7 所以,直线 l 过定点,定点坐标为 ,0 ⎪ , 1 ⎪ 一点,且 PM ⊥ PN ,则直线 l 必过定点 y ⎪ .x ,- 特别地,当 P 点位于椭圆的顶点 (a ,0) 时,直线 l 必过定点 ,0 ⎪ .2将 y = k ( x - 2) 代入椭圆方程,并整理得 (3 + 4k 2 ) x 2 - 16k 2 x + 16k 2 - 12 = 0 ,④1 1 1 1显然 2 与 x 是方程④的两个根,11 1 1 ,1 1 1 1 1 1 1 11 8 - 6k2 12k 1 1 1 2 2 111设直线 AB 与 x 轴交于点 M (a ,0) ,并设 AM = λ MB ,即⎛ ⎝ 8k 2 - 6 12k ⎛ 8 - 6k 2 1 3 + 4k 2 4 + 3k 2 1 1 1 11 = λ , 1 1 ⎪a - 8k 12 - 6 = λ ⎛ 8 - 6k 12 - a ⎫.⎩ 消去 λ ,得 a(3 + 4k 2 ) - (8k 2 - 6) = 8 - 6k 2 - a ⋅ (4 + 3k 2 ) ,解得 a = 2 .1 1 1 1⎛ 2 ⎫ ⎝ 7 ⎭【反思与启迪】解答这类问题主要方法是联立直线方程与椭圆方程,消去一个字母(比如y ),得到关于另一个字母的一元二次方程,进而利用根与系数的关系得到 x + x 与 x x 用参数(这里121 2是 m , k )表示的关系式,再结合其他条件 (DA ⊥ DB) ,即可得到这些参数的关系式,使问 题得以顺利解决.本题除考查椭圆的几何性质、直线与椭圆的位置关系等基础知识外,还考 查分类讨论的思想、解析几何的基本思想方法和综合解题能力.问题⑵的本质是当椭圆的弦对其某一顶点张角为直角时必过定点.若设直线 AD 的斜率 k 为 1参数,则较容易地得到点 A 的坐标,利用对称性就能得到点 B 的坐标,再由对称性可猜想, 该定点应该在这个顶点所在的对称轴上.设直线 AB 与 x 轴交于点 M (a ,0) ,由 A 、M 、B 共 线可知 a 是与参数 k 无关的定值,从而证明直线 AB 过定点.换个角度后,解题思路就简捷、 1明了了.解决这类问题的核心就是“直角”的几种等价形式,如:AD ⊥ BD ⇔ AD ⋅ BD = 0 ⇔ DA + DB = DA - DB ⇔ 以 AB 为直径的圆过点 D 等.另外,如果能够恰当地利用圆锥曲线相关的性质,更能棋高一筹.通过解答本题第⑵问,我们发现了圆锥曲线的一个几何性质:命题 1 若直线 l 与曲线 C : x 2 y 2 + a 2 b 2= 1(a > 0 ,b > 0) 交于 M 、 N 两点, P( x ,y ) 为曲线 C 上0 0⎛ a 2 - b 2 a 2 - b 2 ⎫ ⎝ a 2 + b 2 0a 2 +b 2 0 ⎭ 其中当 a > b 时,曲线 C 为焦点在 x 轴上的椭圆;当 a < b 时,曲线 C 为焦点在 y 轴上的椭圆; 当 a = b 时,曲线 C 为圆心在原点的圆,直线 l 即直径必过圆心.此命题可以看作是圆的直径 的一个性质在椭圆上的拓展,这从一个侧面揭示了椭圆和圆的辩证统一关系.⎛ (a 2 - b 2 )a ⎫ ⎝ a 2 + b 2 ⎭命题 2 若直线 l 与双曲线 C : x 2 y 2 - a b 2= 1(a > 0 ,b > 0) 交于 M 、N 两点,P( x ,y ) 为双曲线 C0 04上一点,且 PM ⊥ PN ,则直线 l 必过定点 y ⎪ .x ,- 特别地,当 P 点位于双曲线实轴顶点 (a ,0) 时,直线 l 必过定点 ,0 ⎪ .B y y y y 在平面直角坐标系 xOy 中,如图,已知椭圆 + ⑵ 设 x = 2 , x = ,求点 T 的坐标;1 3分别代入椭圆方程,以及 y > 0, y < 0 得: M 2 , ⎪ 、 N,- ⎪ 3 ⎝ ⎝ 39 ⎭ 5 ⎫ 直线 MA 方程为: ,即 y = x + 1 ,- 0 2 + 3⎛ a 2 + b 2 a 2 + b 2 ⎫ ⎝ a 2 - b 2 0a 2 -b 2 0 ⎭ ⎛ (a 2 + b 2 )a ⎫ ⎝ a 2 - b 2 ⎭命题 3 若直线 l 与抛物线 C : y 2 = 2 px 交于 M 、 N 两点, P( x ,y ) 为抛物线 C 上一点,且0 0PM ⊥ PN ,则直线 l 必过定点 (2 p + x ,- y ) .0 0特别地,当 P 点位于抛物线顶点 (0 ,0) 时,直线 l 必过定点 (2 p ,0) .提高班学案 1【拓1】 在平面直角坐标系 xOy 中,直线 l 与抛物线 y 2 = 4 x 相交于不同的 A , 两点.⑴ 如果直线 l 过抛物线的焦点,求 OA ⋅ OB 的值; ⑵ 如果 OA ⋅ OB = -4 ,证明直线 l 必过一定点,并求出该定点.【解析】⑴ 由题意:抛物线焦点为 (1,0)设 l : x = ty + 1 代入抛物线 y 2 = 4 x ,消去 x 得 y 2 - 4ty - 4 = 0 ,设 A( x , ) , B( x , )1 12 2则 y + y = 4t , y y = -4 ,121 2OA ⋅ OB = x x + y y = (ty + 1)(ty + 1) + y y = t 2 y y + t ( y + y ) + 1 + y y1 21 2121 2 1 2 1 2 1 2= -4t 2 + 4t 2+ 1 - 4 = -3⑵ 设 l : x = ty + b 代入抛物线 y 2 = 4 x 消去 x ,得y 2 - 4ty - 4b = 0 ,设 A( x , ) , B( x , ) ,则 y + y = 4t , y y = -4b .11221 2 1 2∵ OA ⋅ OB = x x + y y = (ty + b )(ty + b ) + y y = t 2 y y + bt ( y + y ) + b 2 + y y 1 21 2121 21 2121 2= -4bt 2 + 4bt 2+ b 2 - 4b = b 2 - 4b .令 b 2 - 4b = -4 ,∴ b 2 - 4b + 4 = 0 ,∴ b = 2 ,∴直线 l 过定点 (2 ,0) .尖子班学案 1【拓2】 (2010 江苏 18)x 2 y 2 9 5= 1 的左、右顶点为 A 、B ,右焦点为 F .设过点 T (t ,m ) 的直线 T A 、TB 与椭圆分别交于点 M ( x ,y ) 、1 1N ( x ,y ) ,其中 m > 0 , y > 0 , y < 0 .y 2212⑴ 设动点 P 满足 PF 2 - PB 2 = 4 ,求点 P 的轨迹;A O F B1 2 ⑶ 设 t = 9 ,求证:直线MN 必过 x 轴上的一定点(其坐标与 m 无关).【解析】⑴ 设点 P( x ,y) ,则: F (2 ,0) 、 B(3 ,0) 、 A(-3 ,0) .x由 PF 2 - PB 2 = 4 ,得 ( x - 2)2 + y 2 - [(x - 3)2 + y 2 ] = 4, 化简得 x = 92.故所求点 P 的轨迹为直线 x = 9 2.⑵ 将 x = 2, x = 1 2 1 ⎛ ⎛ 1 20 ⎫ 1 2y - 0 x + 3 1= 5 3 35=,即y=x-.20162联立方程组,解得:⎨10,⎪⎩所以点T的坐标为 7,⎪.,即y=(x+3),,即y=(x-3).分别与椭圆+=1联立方程组,同时考虑到x≠-3,x≠3,95解得:M80+m2⎪、N ⎪.40m⎫20m⎫20+m220+m240m20m3(80-m2)3(m2-20)-320+m2=,得k-=1(b为正常数)上任一点,F为双曲线的右焦点,过P作直线x=a2 c直线NB方程为:y-0x-355--0-393⎧x=7⎪y=3⎛10⎫⎝3⎭A OyDMB xT⑶点T的坐标为(9,m)N直线MA方程为:直线NB方程为:y-0x+3m=m-09+312 y-0x-3m=m-09-36x2y212⎛3(80-m2)⎝,,-80+m2⎭⎝20+m220+m2⎭方法一:当x≠x时,直线MN方程为:1220m3(m2-20) y+x-=+-80+m220+m280+m220+m2令y=0,解得:x=1.此时必过点D(1,0);当x=x时,直线MN方程为:x=1,与x轴交点为D(1,0).12所以直线MN必过x轴上的一定点D(1,0).方法二:若x=x,则由12240-3m23m2-60=80+m220+m2及m>0,得m=210,此时直线MN的方程为x=1,过点D(1,0).40m若x≠x,则m≠210,直线MD的斜率k 12MD=24080+m280+m2-1=10m40-m2,-20m 直线ND的斜率k10m =3m2-6040-m2-120+m2MD=kND,所以直线MN过D点.因此,直线MN必过x轴上的点(1,0).目标班学案1【拓3】(2009江西理21)x2y2已知点P(x,y)为双曲线8b2b2100的垂线,21垂足为A,连接F A并延长交y轴于P.22⑴求线段P P的中点P的轨迹E的方程;12⑵设轨迹E与x轴交于B、D两点,在E上任取一点P1F1PyP2AO F2x6坐标来表示 P 的坐标,点 P (x ,y ) 用 P 、 P 来表示,再归结为用 P 来表示,然后,反过来用 Q ( 【解析】⑴ 设 P (x,y ) ,由已知得 F (3b ,0) ,A b ,y ⎪ ,则直线 F A 的方程为:y = - ⎝ 3 0 ⎭ 0 ( x - 3b ) , ⎪⎪ 2 x = 0 ⎧ x = 2x 设 P (x ,y ),则 ⎨ ,即 ⎨ y 代入 0 - 0 = 1 ,得⎪⎩ 0 ⎪ y = 0 ⎪⎩ 2- = 1 .( ) ( )于是直线 QB 的方程为: y = ( x + 2b ) ,( )直线 QD 的方程为: y = x - 2b , ⎪⎪ , N 0 , 1 ⎪ , x - 2b ⎪⎭ x + 2b ⎭ ⎝ ⎛ 则以 MN 为直径的圆的方程为: x 2 + y - ⎪⎪ y + ⎪ = 0 , x - 2b ⎭ ⎝ x + 2b ⎭⎝令 y = 0 得 x 2= ,而 Q (x ,y )在 - = 1 上,则 x 2 - 2b 2 = y 2,x 2 - 2b 2 2b 25b 25 11) B 【解析】设 M 0 ,y ⎪ , M 1 ,y ⎪ , M 2 ,y ⎪ ,因为 A ,M ,M 三点共线, k 2 2 2 ⎝ ⎭ ⎝ ⎭⎝ ⎭ y - y y - 1 1(x ,y )y ≠ 0) ,直线 QB , QD 分别交 y 轴于 M ,N 两点.求证:以 MN 为直径的圆过两1 1 1 定点.【思路探究】从动点 P 的成因来看,点 P 是主动点,通过点 A ,传递到 P , P 为从动点,首先用 P 的12212121P 的坐标来表示 P 的坐标,代入双曲线方程,进而得到 P 的轨迹 E 的方程.1第⑵问,欲证以 MN 为直径的圆过两定点,需要先将以 MN 为直径的圆的方程写出来,于是 需要先求出点 B 、D 的坐标,然后是 QB ,QD 的方程,接着求 M , N 的坐标,最后是以 MN 为直径的圆的方程,当圆的方程出来之后,通过观察方程的特点,求出定点坐标. 1 0 0 2 2令 x = 0 得 y = 9 y ,即 P (0 ,9 y ) ,2⎛ 8 ⎫ 3 y b ⎧ x y + 9 y y = 8b 2 b 2 8b 2 25b 2 0 = 5 y5 0⎪ 0 x 2 y 2 4x 2 y 2 - = 1 , 即 P 的轨迹 E 的方程为 x 2 y 22b 2 25b 2⑵ 在 x 2 y 2 -2b 2 25b 2= 1 中令 y = 0 得 x 2 = 2b 2 ,则不妨设 B - 2b ,0 , D 2b ,0 ,y1 x + 2b 1 y 1 x - 2b1⎛ 可得 M 0 ,⎝ 1 1⎛ 2by ⎫⎛ 2by ⎫ 1 1 1 12b 2 y 2 x 2 y 2 2 1 1 1 2 2 1 1于是 x = ±5b ,即以 MN 为直径的圆过两定点 (-5b ,0) , (5b ,0) .【反思与启迪】求动点的轨迹方程,是高考考查的重点内容之一.其中,由某一曲线上的动点,利用直线与直线,直线与曲线的位置关系,构造另一动点,求后者的轨迹问题,是近几年高考 的热点,需要引起足够的重视.对于第⑵问,可以将其推广到一般的情形:设双曲线 x 2 y 2 - a 2 b 2= 1 的顶点为 A , A , P 为双曲线上的一个动点, P A 、 P A 分别与 y 轴1 2 1 2 相交于 M 、 N 两点,则以 MN 为直径的圆经过定点 (-b ,0)和 (b ,0),且圆的半径大于 b【备选】已知抛物线 y 2 = 2 x 及定点 A(1, , (-1,0) ,M 是抛物线上的点,设直线 AM ,BM 与抛物线的另一交点分别为 M ,M .求证:当点 M 在抛物线上变动时(只要 M ,M 存在且 M 与 M12121是不同两点),直线 M M 恒过一定点,并求出定点的坐标12 2⎛ y 2 ⎫ ⎛ y 2 ⎫ ⎛ y 2 ⎫ 0 1 1 2 2 1 MM 1 = kMA所以 1 0 = 0 ,即 1 -- 11 022 2y 2 y 2 y 2 y + y y - 1= 0y 2 - 2,即 ( y + y )( y - 1) = y 2 - 2 , 1 0 0 07求出 y = y - 2 ,同理可求出 y = , y - 1 yy 1 y - yy + y 2x - y 所以由 y = 0 , y =y - 1 y上式对任意 y 恒成立,所以得到 ⎨ x = 1 ,所以所求的直线 M M 恒过定点 (1,2) .⎪ y = 2已知,椭圆 C 过点 A 1, ⎪ ,两个焦点为 (-1,0), (1,0) . 【追问】反过来, E ,F 是椭圆 C 上的两个动点,如果 EF 的斜率为 ,那么 AE 与 AF 的斜“2 0 1 2 0设直线 M M 过定点 U ( x , ) ,则点 U ,M ,M 共线,∴ k 1 2 1 2M 1M2 = k UM 1,即y - y y - y1 2 = 1 y 2 y 2 y 21 -2 x - 12 2 2即 = 1 ,即 ( y + y )( y - y ) = 2x - y 2 ,即 y y - y( y + y ) + 2x = 0 ,21 2 1 1 1 2 1 2 1 2 1y - 2 21 2 0 0消去 y , y 得 (2 x - y) y 2 + 2(1- x) y + 2 y - 4 = 012⎧2 x = y ⎪ 0 1 2 ⎩11.2 定值问题考点 2:圆锥曲线中的定值问题知识点睛在几何问题中,有些几何量与参数无关,这就构成定值问题.求解这类问题的基本策略是 大处着 眼、小处着手”,从整体上把握问题给出的综合信息和处理问题的函数与方程思想、数形结合思想、 分类与整合思想、化归与转化思想等,并恰当地运用待定系数法、相关点法、定义法等基本数学 方法.若题设中未告知定值,可考虑用特殊化方法探求定值的可能值,再证明之.若已告知,可 设参数(有时甚至要设两个参数),运算推理到最后,参数必须消去.<教师备案>三种圆锥曲线对同一个定值问题经常有相似的结论,这部分内容不仅要求会根据法则、公式定理、定律正确地进行运算,而且要做到举一反三.经典精讲【例3】 (2009 辽宁理 20 文 22)⎛ 3 ⎫ ⎝ 2 ⎭⑴ 求椭圆 C 的方程;⑵ E ,F 是椭圆 C 上的两个动点,如果直线 AE 的斜率与 AF 的斜率互为相反数,证明直线 EF 的斜率为定值,并求出这个定值.12率互为相反数吗?【思路探究】欲证明 EF 的斜率为定值,实际上是证明随着 E , F 两点的运动,它们的坐标可以表示为某一参数,比如 A E 的斜率 k 的函数,而 E F 的斜率的取值与 k 无关.基于这个想法,不 妨从 AE 的斜率 k 入手,逐步推出 E , F 两点的坐标,进而得到 EF 的斜率表达式,化简8【解析】⑴ 由题意, c = 1 ,可设椭圆方程为 + = 1.+ = 1 ,解得 b 2 = 3 , b 2 = - (舍去).所以椭圆方程为 + = 1 . ⑵ 设直线 AE 方程:得 y = k (x - 1)+ ,代入 + = 1 得+ 4k (3 - 2k )x + 4 - k ⎪ )x ).因为点 A ⎛ 1,3 ⎫⎪ 在椭圆上,所以4 - k ⎪ - 12x = ⎝, y = kx + - k . 3 + 4k 2 24 + k ⎪ - 12x = ⎝, y = -kx + + k . 3 + 4k 2 2 y - y -k (x + x ) + 2k 1=F 即直线 EF 的斜率为定值,其值为 .设直线 EF 方程为 y = x + m ,代入椭圆 + = 1 中,化简得 x 2 + mx + m 2 - 3 = 0 . 2 , 2 . ①当 x ,x ≠ 1 时, k ==x - 1 x - 1x x + m - ⎪ (x - 1) + x + m - ⎪ (x - 1) 2 = ⎝ 2 E2 ⎭ F ⎝ 2 F 2 ⎭ 2 + F E 上式的分子为 x x + (m - 2)(x + x ) - 2 m - ⎪ = m 2 -3 + (m - 2)(-m ) - 2m + 3 = 0 , 2 ⎭ ⎝于是 y = x + 1 = ,从而 E 点与 A 点重合, AE 的斜率等于椭圆在 A 点的切线的斜率.2 E 2 x ⋅1 14 3 2 另外,由 m = 1 可以算出方程 x 2 + mx + m 2 - 3 = 0 的另一根 x = -2 ,则 y = x + 1 = 0 ,于是2 F后必与 k 无关.x 2 y 21 + b2 b 2因为 A 在椭圆上,所以 1 9 31 + b2 4b 2 4x 2 y 2 4 33 x 2 y 2 24 3(3 + 4k 22⎛ 3 ⎫ ⎝ 2 ⎭2- 12 = 0设 E (x ,y EE), F (xF,yF⎝ 2 ⎭⎛ 3 ⎫22 ⎭3 E E E 又直线 AF 的斜率与 AE 的斜率互为相反数,在上式中以 -k 代 k ,可得⎛ 3 ⎫22 ⎭3 F F F所以直线 EF 的斜率 k E = F E = .x - x x - x 2 F E F E1 2【追问】 k AE+ k AF= 0是成立的. 1 x 2 y 2 2 4 3由 ∆ = m 2 - 4 (m 2 - 3)> 0 ,可得 -2 < m < 2 .于是, x + x = -m , x = m 2 - 3 ,E F E F3 3 y - y - E F E F E F则 k AE+ k AF= y - y -E F E F⎛3 ⎫E FEF所以 k AE+ k AF= 0 . ②当 x 或 x 为1 时,不妨设 x = 1,代入 x 2 + mx + m 2 - 3 = 0 ,结合 -2 < m < 2 ,可得 m = 1 ,E F E 1 3E而椭圆在 A 点的切线为 3 y ⋅+ 2 = 1 ,即 x + 2 y - 4 = 0 ,斜率 k =- .AE1F F9点,则 k .椭圆在 A 点的切线方程为 =y 0 = 1,斜率为 - 0 ,所以 EF 与 A 点处的切线 0 + a 2 y a 2 b 2 的切线斜率为0 ,因此 EF 与 B 点处的切线平行. Fp 2 ⑵ 当 P A 与 PB 的斜率存在且倾斜角互补时,求 1 2 的值,并证明直 y + y 线 AB 的斜率是非零常数. ⑴ 当 y = 时, x = .又抛物线 y 2 = 2 px 的准线方程为 x = - .由抛物线定义得,所求距离为 -- ⎪ = .相减得 ( y)(y ) = 2 p (x ) , 2 p ( x ≠ x ) . 故 k=x - x y + y 同理可得 k2 p ( x ≠ x ) . 即 ,所以 y + y = -2 y ,故 12 = -2 . y易算出 k AF = 1 2,因此 k AE + k AF= 0 .综上, AE 与 AF 的斜率互为相反数.【反思与启迪】对于第二问,可以有一般性结论:x 2 y 2= 1 , A (x ,) 是椭圆上一点,过 ⑴对于椭圆方程+ a 2 b 20 0A 的两条斜率相反的直线与椭圆交于除 A 外的 E 、 F 两b 2 x0 a 2 yByOAxxx yy b 2 xFE0 斜率互为相反数.设 A 关于 x 或 y 轴的对称点为 B ,显然 B 在椭圆上,且椭圆在 B 点b 2 x a 2 y反过来,如果椭圆上的点 A , E , ,且 EF 的斜率等于椭圆在 A 点的切线斜率的相 反数,则 AE 和 AF 的斜率互为相反数. ⑵对于抛物线和双曲线,也有类似结论.提高班学案 2【拓1】 如图,过抛物线 y 2 = 2 px( p > 0) 上一定点 P (x ,y 0线分别交抛物线于 A (x ,y ) , B (x ,y ) .1 12 20 )(y 0 > 0),作两条直yP⑴ 求该抛物线上纵坐标为 的点到其焦点 F 的距离;【解析】方法一:p p 2 8p 2p ⎛ p ⎫ 5 p8 ⎝ 2 ⎭ 8 OAy 0 B 图1x⑵ 设直线 P A 的斜率为 k ,直线 PB 的斜率为 k PA - y + y - x 1 0 1 01 0 y - y 1 0 = 11 01PB =y + y 2 0 2 0 由 P A , PB 倾斜角互补知 k = -k ,PA PB2 p 2 p=- y + y y + y 1 0 2 0y + y12PB ,由 y 2 = 2 px , y 2 = 2 px , 1 1 0 010相减得 ( y - y )(y + y ) = 2 p (x - x ) ,2 p( x ≠ x ) , 所以 k =x - x y + y 将 y + y = -2 y (y > 0) 代入得=- ,=⑴ 显然该点的坐标为 , ⎪ ,又 F ,0 ⎪ ,由两点间距离公式得所求距离为 ⎪ + ⎪ = ⎧⎪ y 2 = 2 p x , ⎪⎩ y - y 0 = k (x - x ),消去 x 整理得 ky - 2 py + 2 py 0 - 2 pkx 0 = 0 ,由 ⎨ 显然, y , y 是方程①的两个根,由根与系数的关系得 y + y = , ②k用 -k 替换②式中的 k 得 y + y = - , ③k又 y > 0 ,所以 12= -2 . y,而 x = 1, x = 2 , 2 p 2 p2 p 2 p 2 p故直线 AB 的斜率为 1 2 =- ≠ 0 .即直线 AB 的斜率是非零常数.设直线 AB 的斜率为 kAB,由 y 2 = 2 px , y 2 = 2 px ,2 2 1 1 2 1 2 1 2 1y - y2 1 =1 2 2 1 1 2 122 p pk y + y y 1 2 0 所以 k 是非零常数.AB方法二:⎛ p p ⎫ ⎛ p ⎫ ⎝ 8 2 ⎭ ⎝ 2 ⎭⎛ p p ⎫2⎛ p ⎫2⎝ 2 8 ⎭ ⎝ 2 ⎭5 p 8.⑵ 设直线 P A 的斜率为 k ,则直线 PB 的斜率为 -k ,且 k ≠ 0 .所以直线 P A 的方程为y - y = k (x - x ) .0 00 2 ①2 p 1 0 1 0 2 p2 0 ② + ③ 得 y + y + y + y = 0 .1 02 0y + y 0 0② - ③ 得 y - y =1 2 4 p k 1 2 y 2 y 2所以 x - x = 1 - 2 = 1 2 1 2 1 2 y 2 y 2 ( y - y )(y + y ).y - y px - x y1 2 0【反思与启迪】本题以抛物线为载体全面考查解决解析几何问题的思想方法.第⑴问的基本解法应用抛物线定义灵活简洁,而解法 2 是运用两点间距离公式求解,给人返朴归真、回归基 础之感;第⑵问的基本解法 1 和解法 2 都是解决直线与圆锥曲线位置关系问题的通法, 体现了方程思想、设而不求、对称思想的灵活运用.直线与圆锥曲线位置关系问题是多年来高考重点考查的热点内容.本题推理与计算有 机结合,分步设问,层次清晰,且分层递进.基本思路是:“代点作差”或“联立方程组 → 消元 → 韦达定理”,其中设计合理的推理运算途径尤为重要.尖子班学案 2【拓2】 如图,过圆锥曲线 mx 2 + ny 2 = 1(mn ≠ 0) 上一点 P (x ,y ) ( y ≠ 0),作两条直线分别交圆锥曲 0线于 A (x ,y ) 、 B (x ,y ) .直线 P A 与 PB 的斜率存在且倾斜角互为补角,证明直线 AB 的1 12 2斜率是非零常数. y【解析】设直线 P A 的斜率为 k ,则直线 P A 的方程为P y - y = k (x - x ) . 0OxBA11图2⎧⎪mx 2 + ny 2 = 1, y - y = k (x - x ) ⎩ )x= 1 2 = .② + ③ 得 2x + x + x = 4nk 2 xm + nk 2 m + nk -4mx-4nky所以 k= 0 ,即直线 AB的斜率是非零常数.如图,椭圆 C : x 2 + = 1 短轴的左右两个端点分别为 A , B ,直线【解析】⑴ 设 C (x , y ) , D (x , y ) , 由 ⎨ 得 (4 + k 2 ) x 2 + 2kx - 3 = 0 , , xx = 4 + k 2 4 + k 2由已知 E - , 0 ⎪ , F (0 , 1), 又 CE = FD ,所以 - - x , - y ⎪ = (x , y - 1)⎝ k 1 ⎭ 所以 - - x = x ,即 x + x = - ,k k由 ⎨ ,消去 y 整理得⎪ 0 0(m + nk 2 2+ 2nk (y - kx )x + nk 2 x 2 - 2nkx y + ny 2 - 1 = 0 , ①0 0 0 0 0 0显然, x , x 是方程①的两个根,由根与系数的关系得 x + x =0 0 0 1 0 1 m + nk 22nk (kx - y ), ② 因为直线 P A 与 PB 的倾斜角互为补角,所以直线 PB 的斜率为 -k ,用 -k 替换②中的 k ,得x + x =0 2 2nk (kx + y ) 0 0 m + nk 2, ③ y - y k (x - x )+ k (x - x ) k (x + x - 2x )因为 k 1 0 2 0 = 1 2 0 x - x x - x x - x 1 2 1 2 1 2 0 ,0 1 2 所以 x + x - 2x = 1 2 0 ② - ③ 得 x - x =1 2 4nk 2 x 0 - 4x =2 00 . m + nk 20 . m + nk 2mxny 0 显然,当 m = n > 0 时, m x 2 + ny 2 = 1 表示圆;当 m > 0 , n > 0 且 m ≠ n 时, m x 2 + ny 2 = 1 表示椭 圆;当 mn < 0 时, mx 2 + ny 2 = 1 表示双曲线.这就是说,上述性质是圆锥曲线的一条统一性质.它不仅揭示了问题的条件和结论之间的必 然联系,还体现了三种圆锥曲线的和谐统一,给人以美的感受.目标班学案 2【拓3】 (2010 西城二模 19)y2 4l : y = kx + 1 与 x 轴、 y 轴分别交于两点 E , F ,与椭圆交于两点yl D C , D . F⑴ 若 CE = FD ,求直线 l 的方程;⑵ 设直线 AD , CB 的斜率分别为 k , k ,若 k : k = 2 :1 ,求 k 的值.1 2 1 211 22ACEOBx⎧4x 2+ y 2= 4, ⎩ y = kx + 1∆ = 4k 2 + 12(4 + k 2 ) = 16k 2 + 48 ,x + x =1 2 -2k -31 2,⎛ 1 ⎫ ⎝ k ⎭⎛ 1 ⎫ 1 2 21 11 2 2 1所以 -2k 1 =- 4 + k 2 k,解得 k = ±2 ,12⑵ k = , k = x + 1 x - 1所以 2 1 = , 1= 1 ,所以 y 2 = 4(1- x 2 ) ,同理 y 2 = 4(1- x 2 ) ,代入上式,4计算得 = 4 ,即 3x x + 5(x + x ) + 3 = 0, (1+ x )(1+ x )所以 3k 2 - 10k + 3 = 0 ,解得 k = 3 或 k = ,因为 2 1 = , x , x ∈ (-1 , 1) ,所以 y , y 异号,故舍去 k = ,y ( x + 1) 1 3x = my + 1( m ≠ 0),则 M -1,- ⎪ .设 A( x 1 ,y 1 ) , B( x 2 ,y 2 ) , x = my + 1,符合题意,所以,所求直线 l 的方程为 2x - y + 1 = 0 或 2x + y - 1 = 0 . 1 2 y y 2 1 2 1y ( x - 1) 2 y ( x + 1) 11 2, k : k = 2 :1 ,1 2平方得 y 2 ( x - 1)2 2 1 y 2 ( x + 1)21 2= 4 ,y 2 又 x 2 + 1 1 2 2 1 (1- x )(1- x )2 1 1 2 1 2 1 21 3y ( x - 1) 2 1 1 2 1 2 1 2所以 k = 3 .<教师备案>圆锥曲线与向量结合也是很重要的题型,向量在处理长度、角度、 平行、垂直时有其独到之处,注意向量共线的充要条件的应用.【例4】 如图,已知点 F (1,0) ,直线 l : x = -1,P 为平面上的动点,过点 P 作 l的垂线,垂足为点 Q ,且 QP ⋅ QF = FP ⋅ FQ .l-1 yFO 1 x⑴ 求动点 P 的轨迹 C 的方程;⑵ 过点 F 的直线交轨迹 C 于 A 、 B 两点,交直线 l 于点 M ,且 MA = λ AF , MB = λ BF ,求 λ + λ 的值.1212【思路探究】欲求点 P 的轨迹 C 的方程,只需将向量条件 Q P ⋅ QF = FP ⋅ FQ 转化为关于点 P 的坐标( x ,y) 的代数关系式即可.对于第⑵问,由于 A 、B 、M 点的坐标都由过点 F 的直线 AB 确定.所以引入刻画直线 AB 的参数,即写出直线 AB 的方程,再与抛物线方程联立,用 这个参数表示 A 、 B 、 M 三点的坐标,结合向量条件MA = λ AF 和 MB = λ BF ,得到用 12该参数表示的 λ , λ ,进而即可求出 λ + λ 的值.1 21 2 【解析】⑴ 方法一:设点 P( x ,y) ,则 Q(-1,y) ,由 QP ⋅ QF = FP ⋅ FQ ,得 ( x + 1,0) ⋅ (2 ,- y) = ( x - 1,y) ⋅ (-2 ,y) ,化简得曲线 C 的方程为 y 2 = 4 x . 方法二:由 QP ⋅ QF = FP ⋅ FQ ,得 FQ ⋅ (PQ + PF ) = 0 , (PQ - PF ) ⋅ (PQ + PF ) = 0 ,即 PQ 2 - PF 2 = 0 ,所以 | PQ |=| PF | .所以点 P 的轨迹 C 是抛物线,由题意,轨迹 C 的方程为 y 2 = 4 x . ⑵ 方法一:由 于 直 线 AB 不 能 垂 直 于 y 轴 , 且 又 过 x 轴 上 的 定 点 , 故 可 设 直 线 AB 的 方 程 为⎛ ⎝2 ⎫ m ⎭⎧ y 2 = 4 x ,联立方程组 ⎨ 消去 x 得⎩ y 2 - 4my - 4 = 0 , ∆ = (-4m )2 + 16 > 0 ,13故 ⎨ 1x + 1,y + ⎪ = λ1 (1- x 1 ,- y 1 ) , 1 m ⎭ ⎝x 2 + 1,y 2 + ⎪ = λ2 (1- x 2 ,- y 2 ) ,利用对应的纵坐标相等,得 y + = -λ y , y + = -λ y ,整理得m m , λ = -1 - ,my m ⎝ y y ⎭ m y y 2 = -2 - ⋅ = 0 . + 由已知 MA = λ AF , MB = λ BF ,得 λ ⋅ λ < 0 .则MAMB=-过点 A 、 B 分别作准线 l 的垂线,垂足分别为 A 、 B ,则有 =. ② MB = BB BF由①、②得 - λ AF λ BF = 点,若 MA = λ AE , MB = λ BE ,则 λ + λ = - .m 2⎧ y + y = 4m , 2 ⎩ y 1 y 2 = -4.由 MA = λ AF , MB = λ BF ,得12⎛ 2 ⎫ 1⎛ ⎝2 ⎫ m ⎭2 2 1 1 1 2 2 2 λ = -1 -1 2 my 1 2 22所以 λ + λ = -2 -12方法二:2 ⎛ 1 1 ⎫ 2 y + y ⎪ = -2 - ⋅ 1 1 2 1 22 4mm -41212λ AF1λ BF2. ①MA AAAF1 1 1 11 2AFBF ,即 λ1 + λ2 = 0 .【反思与启迪】本小题主要考查直线、抛物线、向量等基础知识,轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力. 对于第⑵问,可推广出系列命题:命题 1 过定点 E(m ,0) 的直线 l 与抛物线 y 2 = 2 px 交于 A , B 两点,与直线 x = n 交于 Mm + n1 2 1 2命题 2 过定点 E(m ,0) 的直线 l 与椭圆 x 2 a 2 + y 2 b 2= 1(a > b > 0 ,a ≠ m ) 交于 A , B 两点,与直线 x = n 交于 M 点,若 MA = λ AE , MB = λ BE ,则 λ + λ 的值恒等于 1 2 1 2 2(mn - a 2 ) a 2 - m 2.推论 2.1 直线 l 过椭圆 x 2 y 2 + a 2 b 2= 1(a > b > 0) 的焦点 F ,交 y 轴于 M 点,交椭圆于 A ,B 两点,若 MA = λ AF , MB = λ BF ,则 λ + λ 的值恒等于 -1 2 1 2 2a 2 b 2. 命题 3 过定点 E(m ,0) 的直线 l 与双曲线 x 2 y 2 - a b 2= 1(a > 0 ,b > 0 ,a ≠ m ) 交于 A , B 两点,与线 x = n 交于 M 点,若 M A = λ AE , MB = λ BE ,则 λ + λ =1 2 1 2 2(mn - a 2 ) a 2 - m 2. 推论 3.1 直线 l 过双曲线 x 2 y 2 - a 2 b 2= 1(a > 0 ,b > 0) 的一个焦点 F ,交 y 轴于 M 点,交双曲线于 A , B 两点,若 MA = λ AE , MB = λ BE ,则 λ + λ =1 2 1 2尖子班学案 3142a 2 b 2.- μ F ,x x = a 2 + b 2 a 2 + b 2y y ∴ 3(x + x - 2c) + ( x + x ) = 0 ,∴ x + x = c ,2 y a y 故离心率 e = = . ∴ ⎨ 2 .y = λ y + μ y⎩ y y y y y 由⑴知 x + x = ,a 2 = c 2 ,b 2 = c 2 , x x = 2 2 2= c 2 ,x x + 3 y y = x x + 3(x - c)(x - c) = 4x x - 3(x + x )c + 3c 2 =c 2 - c 2 + 3c 2 = 0 ,2 2 x= 1(a > b > 0) 的离心率为 .【解析】⑴ ∵ d = = 2 ,∴ b = 2 .【拓2】 已知椭圆的中心为坐标原点 O ,焦点在 x 轴上,斜率为1 且过椭圆右焦点 F 的直线交椭圆于A 、B 两点, OA + OB 与 a = (3 , 1) 共线. ⑴ 求椭圆的离心率;⑵ 设 M 为椭圆上任意一点,且 O M = λOA + μOB ( λ , ∈ R) ,证明 λ2 + μ2 为定值.【解析】⑴ 设椭圆方程为 x 2 y 2 + a 2 b 2= 1(a > b > 0) , (c ,0) ,则直线 AB 的方程为 y = x - c ,代入 x 2 y 2 + a 2 b 2= 1 ,化简得(a 2 + b 2 ) x 2 - 2a 2cx + a 2c 2 - a 2b 2 = 0 .设 A( x , ) , B( x , ) ,则 x + x =1 12 2 1 22a 2c a 2c 2 - a 2b 21 2.由 OA + OB = ( x + x , + y ) , = (3, -1) , OA + OB 与 a 共线,1 2 1 2得 3( y + y ) + ( x + x ) = 0 1212又 y = x - c ,= x - c , 11223 1 2 1 2 1 2 即 2a 2c 3c = a 2 + b 2 2,所以 a 2 = 3b 2 ,∴ c = a 2 - b 2 =6a 3 ,c 6a 3⑵ 由⑴知 a 2 = 3b 2 ,所以椭圆x 2 y 2+ a 2 b 2= 1(a > b > 0), F (c,0) 可化为 x 2 + 3 y 2 = 3b 2 .设 OM = ( x , ) ,由已知得 ( x , ) = λ( x , ) + μ( x ,) , 1122⎧ x = λ x + μ x 1 1 2 ∵ M ( x , ) 在椭圆上,∴ (λ x + μ x )2 + 3(λ y + μ y )2 = 3b 2 .1 2 1 2即 λ 2 ( x 2 + 3 y 2 ) + μ 2 ( x 2 + 3 y 2 ) + 2λμ( x x + 3 y y ) = 3b 2 ①11221 21 23c 31 1 2 1 2 a 2c 2 - a 2b 2 3 a 2 + b 2 8391 21 21 2121 212又 x 2 +3 y 2 = 3b 2 , 2 + 3 y 2 = 3b 2 ,代入①得 λ2 + μ 2 = 1 . 1 1 22故 λ2+ μ2为定值,定值为1 .目标班学案 3【拓3】 (2010 宣武一模 19)已知椭圆 x 2 y 2 +a 2b 263⑴ 若原点到直线 x + y - b = 0 的距离为 2 ,求椭圆的方程;⑵ 设过椭圆的右焦点且倾斜角为 45︒ 的直线 l 和椭圆交于 A , B 两点.i )当 | AB |= 3 ,求 b 的值;ii )对于椭圆上任一点 M ,若 OM = λOA + μOB ,求实数 λ , μ 满足的关系式.b 215∵ e = = ,∴ = .∵ a 2 - b 2 = c 2 ,∴ a 2 - 4 = a 2 ,解得 a 2 = 12, b 2 = 4 .椭圆的方程为 + = 1 .⑵ i )∵ = ,∴ a 2 = 3b 2 , c 2 = a 2 = 2b 2 ,椭圆的方程可化为42 42由③有: x + x = , x x =2 42c 6 c 2 2a 3 a 2 32 3x 2 y 212 4c 6 2a 3 3x 2 + 3 y 2 = 3b 2 …………①易知右焦点 F (2b ,0 ),据题意有 AB : y = x -2b ………②由①,②有: 4x 2 - 6 2bx + 3b 2 = 0 …………③设 A( x , y ), B( x , y ) ,112272b 2 - 48b 2 24b 2| AB |= ( x - x )2 + ( y - y )2 = (1+ 12 ) = 2 ⋅2 1 2 1= 3b = 3∴ b = 1ii )显然 O A 与 OB 可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量 OM ,有且只有一对实数 λ , μ ,使得等式 OM = λOA + μOB 成立. 设 M ( x , y) ,∵ ( x , y) = λ( x , y ) + μ( x , y ) ,∴ x = λ x + μ x , y = λ y + μ y 11221212又点 M 在椭圆上,∴ (λ x + μ x )2 + 3(λ y + μ y )2 = 3b 12122 ……………④3 2b 3b 21 2 1 2 则x x + 3 y y = x x + 3(x - 2b )( x - 2b ) = 4x x - 3 2b ( x + x ) + 6b 2 = 3b 2 - 9b 2 + 6b 2 = 0 1 2 1 2 1 2 1 2 1 2 1 2……………⑤又 A , B 在椭圆上,故有 x 2 + 3 y 2 = 3b 2 , x 2 + 3 y 2 = 3b 2 1 1 2 2…………⑥将⑥,⑤代入④可得: λ2+ μ 2 = 1 .<教师备案>圆锥曲线中包含直线与圆的内容时,仍然遵循尽量结合平面几何的知识,而不是盲目的用 直线与圆锥曲线来解.例 5 主要是碰到要求长度相关问题时的一种处理方法,圆的切线的应用和切点 弦方程是解决此类问题的关键. 【例5】 (2010 崇文二模理 19)已知椭圆 x 2 y 2+ a b 2= 1 (a > b > 0) 和圆 O :x 2 + y 2 = b 2 ,过椭圆上一点 P 引圆 O 的两条切线,切点分别为 A , B . y ⑴ (i )若圆 O 过椭圆的两个焦点,求椭圆的离心率e ;(ii )若椭圆上存在点 P ,使得 ∠APB = 90︒ ,求椭圆离 心率 e 的取值范围.A ⑵ 设直线 AB 与 x 轴、 y 轴分别交于点 M , N ,O M x求证: a 2ON 2 + b 2 OM 2 为定值. BP【解析】⑴ (ⅰ)∵圆 O 过椭圆的焦点,圆 O : x 2 + y 2 = b 2 ,∴ b = c , b 2 = a 2 - c 2 = c 2 , ∴ a 2 = 2c 2 ,N16∴ e 2≥ , ≤ e < 1 .∴ 21 = - 0 , 直线 AB 方程为 y - y = - 0 (x - x ) ,即 x x + y y = b2 . y令 x = 0 ,得 ON = y = ,令 y = 0 ,得 OM = x = ,y y ( x 2 + p 2 )( x 2 + p 2 ) x 2 x 2 + p 2 (x 2 + x 2 )+ p 4 p 2 (x 2 + x 2 )+ 2 p 4 ∴ e = 2 2.(ii )由 ∠APB = 90︒ 及圆的性质,可得 OP = 2b ,∴ OP 2 = 2b 2 ≤ a 2,∴2 (a 2 - c 2 )≤ a 2 ,即 a 2 ≤ 2c 21 222⑵ 设 P (x , y ), A (x , y ), B (x , y ),由 P A ⊥ OA ,则1122y - y x 0 1 = - 1 x - x y0 1 1整理得 x x + y y = x 2 + y 2 0 10 1 1 1∵ x 2 + y 2 = b 2 ,1 1∴ x x + y y = b 2 ,1 01 0同理 x x + y y = b 2 .2 0 2 0∴ x x + y y = x x + y y , 1 01 02 02 0y - y xx - x y21x1 1 0 0 0b 2 b 2y x∴ a 2 ON 2+ b 2OM 2=a 2 y 2 +b 2 x 2 a 2b 2 a 2 0 0 = = b 4 b 4 b 2,∴ a 2 ON2+ b 2OM 2为定值,定值是 a 2 b 2.提高班学案 3【拓1】 已知抛物线 y 2 = 2 px( p > 0) ,过定点 M ( p ,0) 作一弦 PQ ,则1+ 1= _______.【解析】1 p 2MP 2 MQ 2设 P( x , ) , Q( x , ) ,1122直线 PQ 的斜率不存在时,方程为 x = p ,解得 MP = MQ = 2 p ,从而 1 MP 2+ 1 MQ 2 = 12 p 2 1 1+ = 2 p 2 p 2.直线 PQ 的斜率存在时,设 PQ 的方程为 y = k ( x - p ) ,代入 y 2 = 2 px 中,消去 y 得: k 2 x 2 - 2 p (k 2 + 1)x + k 2 p 2 = 0 ,1 1+ MP 2 MQ 2 1 1= +( x - p )2 + y 2 ( x - p )2 + y 2 11 2 2= 1 1 + x 2 + p 2 x 2 + p 2 1 2 = x 2 + x 2 + 2 p 2 1 2 ( x 2 + p 2 )( x 2 + p 2 ) 1 2又 x x = p 2 ,故 1 2 x2 + x 2 + 2 p 2 x 2 + x 2 + 2 p 2 x 2 + x 2 + 2 p 2 1 1 2 = 1 2 = 1 2 = p 2 1 2 1 2 1 2 1 2,17求证: + = 1 .得 M 0 , ⎪ ,∴ PM = - x , - y ⎪ ,T t yt ⎫ t 1 ⎝ 2 t t∴ 2x + t - y ⎪ = 0 ① y y + = + = = 1 .设椭圆 C ∶ ( ) ( )1 1综上知,1MP 2+ 1 MQ 2 = 1. p 2【备选】已知:O 为坐标原点,点 F 、 、M 、P 满足 OF = (1,0) ,OT = (-1,) ,FM = MT ,PM ⊥ FT ,11PT ∥ O F .1⑴ 当 t 变化时,求点 P 的轨迹方程;1⑵ 若 P 是轨迹上不同于 P 的另一点,且存在非零实数 λ ,使得 FP = λ F P ,2 1 1 2 1 1FP FP12【解析】⑴ 法一:代入消参法 设 P ( x , ) ,则由 FM = MT 得 M 是线段 FT 的中点, 1⎛ ⎛ ⎫ ⎝ 2 ⎭ ⎭又∵ FT = OT - OF = (-2 ,) , PT = (-1 - x , - y) , 1∵ PM ⊥ FT1⎛ t ⎫ ⎝ 2 ⎭∵ PT ∥ O F∴ (-1 - x) ⋅ 0 - (t - y) ⋅1 = 0 化简得: t = y ②1y 由①、②得: y 2 = 4 x ; 法二:定义法如图,可分析得,点 P 到 F 的距离等于到直线 x = -1 的距离,1即 P 点轨迹为以 F (1,0) 为焦点,直线 x = -1 为准线的抛物线,由定义可知: y 2 = 4 x .⑵ 易知 F (1,0) 是抛物线 y 2 = 4 x 的焦点,由 FP = λ FP ,1 2得 F 、 P 、 P 三点共线,即直线 P P 为过焦点 F 的弦,121 2设 P ( x , ) 、 P ( x , ) ,直线 P P 的方程为: y = k ( x - 1) 1112 2 21 2代入 y 2= 4 x 得: k 2 x 2- 2(k 2 + 2) x + k 2 = 0 ,则 x x = 1 ,1 2TM-1 O P 1F 1 xx + x =1 2 2k 2 + 4k 2,由抛物线的定义知:1 1 1 1 x + x + 21 2 FP FPx + 1 x + 1 x x + ( x + x ) + 1 12121 212经检验:当斜率 k 不存在时,结论也成立.(2008 安徽理 22)x 2 y 2 + a 2 b 2= 1(a > b > 0) 过点 M2 , ,且左焦点为 F - 2 ,01 ⑴ 求椭圆 C 的方程; ⑵ 当过点 P (4 , )的动直线 l 与椭圆 C 相交于两不同点 A ,B 时,在线段 AB 上取点 Q ,满足AP ⋅ QB = AQ ⋅ PB ,证明:点 Q 总在某定直线上.【思路探究】因为椭圆方程中有两个未知量,所以欲求其方程只需建立关于它们的两个独立方程即可, 这由已知不难做到:曲线上的点必适合曲线的方程,即已得到一个方程,另外,由椭圆中18。
2020版高考数学大一轮复习第九章平面解析几何第11讲定点、定值、探索性问题课件理新人教A版
所以1λ+μ1=1-1yM+1-1yN =(kx-1-1)1 x1+(kx-2-1)1 x2 =k-1 1·2x1x2-x(1xx21+x2) =k-1 1·k22+21kk-2 4=2.
k2
所以1λ+μ1为定值.
圆锥曲线中的定值问题的常见类型及解题策略 (1)求代数式为定值:依题意设条件,得出与代数式参数有关的 等式,代入代数式、化简即可得出定值; (2)求点到直线的距离为定值:利用点到直线的距离公式得出距 离的解析式,再利用题设条件化简、变形求得; (3)求某线段长度为定值:利用长度公式求得解析式,再依据条 件对解析式进行化简、变形即可求得.
设
MN
的中点为
E,则点
E
的坐标为0,-
k2,则以
MN
为直
径的圆的方程为
x2+y+
k22=2(1+k22k2),即
x2+y2+2
k
2 y
=4.
令 y=0 得 x=2 或 x=-2,即以 MN 为直径的圆经过两定点
P1(-2,0),P2(2,0).
圆锥曲线中的探索性问题 [典例引领]
【解】 (1)由于 P3,P4 两点关于 y 轴对称,故由题设知 C 经过 P3,P4 两点. 又由a12+b12>a12+43b2知,C 不经过点 P1,所以点 P2 在 C 上. 因此ba1122= +413b,2=1,解得ab22= =41, . 故 C 的方程为x42+y2=1. (2)证明:设直线 P2A 与直线 P2B 的斜率分别为 k1,k2. 如果 l 与 x 轴垂直,设 l:x=t,由题设知 t≠0,且|t|<2,可得 A,B 的坐标分别为t, 42-t2,t,- 42-t2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何问题探究——相似与比例相关问题
知识点相似三角形的性质与判定;相似三角形的综合;
教学目标熟练掌握图形相似的证明方法;
教学重点能够灵活的运用图形的性质去证明图形中线段的关系;
教学难点灵活运用相似、旋转、全等证明方法探究图形的线段问题;
知识讲解
考点1 两条线段之间的数量关系
在数量关系的猜想中,证明两条线段相等的情况较多,有时也出现证明两条线段的倍数关系,如AB=2CD 或AB=2CD等。
在证明两条线短相等的过程中,可以根据特殊四边形的性质证明两条线段相等,也可
以证明两个三角形全等,根据全等三角形的性质证明两条线段相等。
证明两条线段的倍分关系时,利用构造基本图形模型证明,具体情况如下:
1.利用三角形的中位线或直角三角形证明a=1
2
b;
2.利用等腰三角形证明a=2b;
3.利用含30°角的直角三角形证明a=3b等;
考点2 两条线段之间的位置关系
在位置关系猜想中,两条线段是垂直关系还是平行关系一目了然,关键是如何证明,方法如下:
1.在证明垂直关系时,由垂直定义,即两条线段相交,所夹的角是90°,一般利用直角三角形的两个锐角互余的角度进行证明;
2.在证明两条线段平行时,大多是根据平行线的判定方法进行证明即可;
总之证明位置关系,需要根据图形的性质,利用三角形全等进行证明,有时利用相似。
在解答时,根据
具体的题目条件,分解出基本图形,灵活掌握并选择方法证明。
考点3 相似三角形的判定
①定义法:三个对应角相等,三条对应边成比例的两个三角形相似.
②平行法:平行于三角形一边的直线和其它两边
(或两边的延长线)相交,所构成的三角形与原三角形相似.
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,
那么这两个三角形相似.简述为:两角对应相等,两三角形相似.
④判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.
考点4 证明题常用方法归纳
(1)总体思路:“等积”变“比例”,“比例”找“相似”
(2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论
. (3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个
字母在同一条直线上),则需要进行“转移”
(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换
.即:找相似找不到,找中间比。
方法:将等式左右两边的比表示出来。
①
)(,为中间比n m n m d c n m b a ②'',,n n n m d c n m b
a
③)
,(,''''''n m n m
n n m m n m d c n m b a
或。