用SPSS作T检验聚类分析与回归分析共44页文档

合集下载

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

spss数据整理及t检验

spss数据整理及t检验

2019/1/30
研究生SPSS上机实习
18
2019/1/30
研究生SPSS上机实习
19
(二)增加变量(Add Variables)
• 从外部数据文件中增加变量(variable) 到当前数据文件中,称为横向合并。横向 合并不仅要求两个需要合并的数据文件必 须有一个共同的变量,如病人编号(变量 名和数据类型都相同),称为关键变量, 还要求两个文件中关键变量的部分变量值 是相等的,如病人编号是相同的。
研究生SPSS上机实习
38
结果解释
S t a ti s t i c s X N 108 0 Median 10.44a Percentiles 95 18.53b a. Calculated from grouped data. b. Percentiles are calculated from grouped data. Valid Missing
2019/1/30
研究生SPSS上机实习
10
• 练习2:根据已建数据文件中的“身高”和 “体重”,计算体重指数,然后赋值给新 变量“ bmi” 。体重指数的计算公式如下 (注意公式中身高的单位为m): 体重指数(BMI)=体重(kg) / 身高(m)2
2019/1/30
研究生SPSS上机实习
11
(二)对变量值重新划分 (Recode)
2019/1/30
研究生SPSS上机实习
2
(二)选择观察单位(Select Cases)
• 练习:将已建数据文件中“男性”及 “年龄”在 65 岁以下的观察单位选择出 来。观察到什么?
2019/1/30
研究生SPSS上机实习
3
• 方法:从菜单选择Data Select Cases, 打开Select对话框,选择if condition is satisfied,单击 if 按钮,在条件栏中输入 sex = 1 & age < 65 ,单击Continue按钮, 单击OK按钮。

SPSS聚类分析具体操作步骤spss如何聚类

SPSS聚类分析具体操作步骤spss如何聚类

算法步骤:初始 化聚类中心、分 配数据点到最近 的聚类中心、重 新计算聚类中心、 迭代直到聚类中 心不再变化
适用场景:探索 性数据分析、市 场细分、异常值 检测等
注意事项:选择 合适的聚类数目、 处理空值和异常 值、考虑数据的 尺度问题
定义:根据数据点间的距离或相似性,将数据点分为多个类别的过程 常用方法:层次聚类、K-均值聚类、DBSCAN聚类等 适用场景:适用于探索性数据分析,发现数据中的模式和结构 注意事项:选择合适的距离度量方法、确定合适的类别数目等
常见的聚类分析方法包括层次聚类、Kmeans聚类、DBSCAN聚类等。
聚类分析基于数据的相似性或距离度量, 将相似的数据点归为一类,使得同一类 中的数据点尽可能相似,不同类之间的 数据点尽可能不同。
聚类分析广泛应用于数据挖掘、市场细分、 模式识别等领域。
K-means聚类:将数据划分为K个簇,使得每个数据点到所在簇中心的距离之和最小
聚类结果的可视化:通过图表展示聚类结果 聚类质量的评估:使用适当的指标评估聚类效果的好坏 聚类结果的解释:根据实际需求和背景知识,对聚类结果进行合理的解释和解读 聚类结果的应用:探讨聚类结果在各个领域的应用场景和价值
SPSS聚类分析常 用方法
定义:将数据集 划分为K个聚类, 使得每个数据点 属于最近的聚类 中心
聚类结果展示:通过图表或表格展示聚类结果,包括各类别的样本数和占比
聚类质量评估:采用适当的指标评估聚类效果,如轮廓系数、Davies-Bouldin指数等
聚类结果解读:根据业务背景和数据特征,解释各类别的含义和特征 聚类结果应用:说明聚类分析在具体场景中的应用,如市场细分、客户分类等
SPSS聚类分析注 意事项
确定聚类变量:选 择与聚类目标相关 的变量,确保变量 间无高度相关性。

用SPSS进行聚类分析(中文版)

用SPSS进行聚类分析(中文版)

选择聚类方法
根据数据类型和聚类目的选择 合适的聚类方法。常见的聚类 方法有层次聚类、K均值聚类 、DBSCAN聚类等。
层次聚类按照数据点之间的距 离进行层次式的聚类,可以生 成聚类树状图。
K均值聚类将数据点划分为K 个簇,使得每个数据点与其所 在簇的中心点之间的距离之和 最小。
DBSCAN聚类基于密度的聚类 方法,可以发现任意形状的簇 ,并去除噪声点。
03
根据实际需求和应用背景,对聚类结果进行解释和 应用。
03
CATALOGUE
K-means聚类分析
K-means聚类分析的原理
K-means聚类分析是一种无监督学 习方法,通过将数据划分为K个集群 ,使得同一集群内的数据点尽可能相 似,不同集群的数据点尽可能不同。
原理基于距离度量,将数据点分配给 最近的均值(即聚类中心),并不断 迭代更新聚类中心,直到聚类中心收 敛或达到预设的迭代次数。
K-means聚类分析的步骤
选择初始聚类中心
随机选择K个数据点作为初始聚类中心。
分配数据点到最近的聚类中心
根据距离度量,将每个数据点分配给最近的聚类中心。
更新聚类中心
重新计算每个集群的均值,将新的均值作为新的聚类中心。
迭代执行
重复步骤2和3,直到聚类中心收敛或达到预设的迭代次数。
K-means聚类分析的应用实例
系统聚类分析
系统聚类分析的原理
系统聚类分析是一种无监督的统计方法,通过将个体或群体按照其相似性或差异性进行分类,从而揭示数据内在的结构和模 式。
它基于个体间的距离或相似度进行分类,通过不断迭代和合并,最终形成若干个聚类,使得同一聚类内的个体尽可能相似, 不同聚类间的个体尽可能不同。
系统聚类分析的步骤

SPSS操作—T检验-文档资料

SPSS操作—T检验-文档资料

2021/4/21
18
④ 实例分析
以“熊猫数据. sav”为例,可比较男 女游客对于购物接待质量满意度(V12) 是否有显著性差异?
2021/4/21
19
⑤ 操作界面
从候选变量框中选择要进行T检验 的变量移入此框中。
选择分组变量,在选择变量进入 Grouping Variable框后,Define Groups…按钮将被激活 ,单击该 按钮定义分组信息。
① 单样本T检验是处理样本均值与某一指 定的检验值之间是否具有显著差异的 假设检验。加强理论、图表及其应用 的条解件释:力样本度来。自的总体要服从正态分布。
2021/4/21
10
② 在进行单样本T检验时,首先进行假设,
提出原假设H0:假设两样本均值相等;
备择假设H1:假设两样本均值不相等。
③ 单样本T检验适用问题:工厂产品规格的
是否存在显著性差异? 为什么为4?研究的
结果有何用?
2021/4/21
12
⑤ 操作界面
选择要进行T检验的 变量移入此框中,可 同时选择多个变量。
在此框中输入检验 值,即检验与什么 值有无显著性差异。
该对话框用于指 定置信水平和缺 失值的处理方法 。
图1—1—1
2021/4/21
13
⑥ 结果分析
表1—1—1 单样本统计量(这一编号 为何不为2-1?)
2021/4/21
16
2.2 独立两样本T检验 根据上面提示进行修改
① 独立两样本T检验是用于进行两个独立样本均 数的比较。所谓独立样本是指两个样本之间没有 任何关联,即:抽取其中一个样本对抽取另一个 样本没有任何影响,两个独立样本各自接受相同 的测量。样本数可以相等也可以不相等。

SPSS的相关分析和回归分析

SPSS的相关分析和回归分析
(如:身高和体重)
n
( Xi X )(Yi Y )
r
11
n
n
( Xi X )2 (Yi Y )2i 1i 1源自2021/3/611
计算相关系数
(一)相关系数 (3)种类:
n
n
Di2 (Ui Vi )2
i 1
i 1
R
1
6 n(n2
Di2 1)
• Spearman相关系数:用来度量定序或定类变量间的线性相
第八章 SPSS的相关分析和回归分 析
2021/3/6
1
概述
(一)相关关系
(1)函数关系:(如:销售额与销售量;圆面积和圆半径.)
是事物间的一种一一对应的确定性关系.即:当一 个变量x取一定值时,另一变量y可以依确定的关 系取一个确定的值
(2)统计关系:(如:收入和消费;身高的遗传.)
事物间的关系不是确定性的.即:当一个变量x取 一定值时,另一变量y的取值可能有几个.一个变 量的值不能由另一个变量唯一确定
300
•散点图在进行相
200
关分析时较为粗略
100
领导(管理)人数
2021/3/6
0
Rsq = 0.7762
8 200 400 600 800 1000 1200 1400 1600 1800
普通职工数
计算相关系数
(一)相关系数 (1)作用:
– 以精确的相关系数(r)体现两个变量间的线性 关系程度.
2021/3/6
17
计算相关系数
(五)应用举例
• 通过27家企业普通员工人数和管理人员数,利用 相关系数分析人数之间的关系
– *表示t检验值发生的概率小于等于0.05,即总体无相 关的可能性小于0.05;

用SPSS作聚类分析40页PPT

用SPSS作聚类分析40页PPT

q
8.customized
1
dx,yi xiyiqr
毛本清 2019.08.27
毛本清 2019.08.27
Statistics
聚类进度表
相似矩阵
样品或变量的 分类情况
毛本清 2019.08.27
Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K-Means Cluster 系统聚类:Hierarchical Cluster
毛本清 2019.08.27
一、Hierarchical Cluster聚类
系统聚类由两种方法:分解法和凝聚法。 系统聚类的功能:即可进行样品的聚类,也可 进行变量的聚类。 系统聚类的原理:即我们前面介绍过的系统聚 类方法的原理和过程。
毛本清 2019.08.27
谢谢!
凝聚状态表的第一列表示聚类分析的第几步;第二 列、第三列表示本步聚类中哪两个样本或小类聚成一类; 第四列是相应的样本距离或小类距离;第五列、第六列表 明本步聚类中,参与聚类的是样本还是小类。0表示样本, 数字n(非0)表示由第n步聚类产生的小类参与本步聚类; 第七列表示本步聚类的结果将在下面聚类的第几步中用到。
a. Convergence achieved due to no or small change in cluster centers. The maximum absolute coordinate change for any center is .000. The current iteration is 4. The minimum distance between initial centers is 50.998.
Final Cluster Centers

聚类分析与回归分析SPSS

聚类分析与回归分析SPSS
将原始数据录入SPSS,并依次点击“Analyze”→ “Correlate” →“Bivariate”,打开Bivariate Correlations对话框,把八个变量选入Variables 栏中,单击“OK”,得到这八个指标对应的相关系 数,列于表3.16。
2018/11/13
中国人民大学六西格玛质量管理研究中心
2018/11/13
中国人民大学六西格玛质量管理研究中心
目录 上页 下页 返回 结束
1
(2)在菜单中的选项中选择Analyze→Classify命令, Classify命令下有两个聚类分析命令,一是K-means cluster(K-均值聚类),二是Hierarchical cluster (系统聚类法)。这里我们选择系统聚类法。 (3) 在系统聚类法中,我们看到Cluster下有两个 选项,Cases(样品聚类或Q型聚类)和Variables (变量聚类或R型聚类)。这里我们选择对样品进行 聚类。 (4) Display下面有两个选项,分别是Statistics (统计量)、Plots(输出图形),我们可以选择所 需要输出的统计量和图形。
2018/11/13
中国人民大学六西格玛质量管理研究中心
目录 上页 下页 返回 结束
6
上面介绍的几种系统聚类方法,并类的原则和步 骤基本一致,所不同的是类与类的距离有不同的 定义。其实可以把这几种方法统一起来,有利于 在计算机上灵活地选择更有意义的谱系图。
2018/11/13
中国人民大学六西格玛质量管理研究中心
目录 上页 下页 返回 结束
4
2018/11/13
中国人民大学六西格玛质量管理研究中心
目录 上页 下页 返回 结束
ቤተ መጻሕፍቲ ባይዱ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档