定积分及其应用(精讲精练)
第五章定积分及其应用(精)

n
注意 当 f ( i ) xi 的极限存在时,其极限 I 仅与被积函数 f (x) 及积分区间 [ a, b] 有关,如果既不
i1
改变被积函数 f (x) 也不改变积分区间 [a, b] ,不论把积分变量 x 改成其它任何字母,如 t 或 u ,此和的极
限都不会改变,即定积分的值不变.就是
b
f ( x)dx
就越高,若把区间 [a, b] 无限细分下去,即使每个小区间的长度都趋于零,这时所有窄矩形面积之和的极
限就可定义为曲边梯形的面积,这就给出了计算曲边梯形面积的思路,现详述如下:
( 1)将区间 [ a, b] 划分为 n 个小区间,即在区间 [ a, b] 内任意插入 n 1 个分点:
a x0 x1 x2
记为 Ai (i 1,2, , n) ,在每个小区间 [ xi 1, xi ] 上任取一点 i ( xi 1 i xi ) ,用以 [ x i 1 , x i ] 为底、 f ( i )
为高的窄矩形近似代替第 i 个小曲边梯形 (i 1,2, , n) ,则 Ai f ( xi ) xi , (i 1,2, , n) .这样得到
b
方,按照定义, 这时定积分 f ( x)dx 的值应为负, 因此 a
表示上述曲边梯形面积的负值;
b
f ( x)dx
a
( 3)若在区间 [ a, b] 上, f ( x) 既取得正值又取得负值时,对
应的曲边梯形的某些部分在 x 轴的上方,某些部分在 x 轴的下方,
这时定积分
b
f ( x)dx 表示由直线 x a 、 x b 、 x 轴和曲线
b
a
( 1)当 a b 时, f ( x)dx 0 ;即 f ( x)dx 0 .
定积分及其应用练习带详细包括答案.docx

答案:4.
详解:
设A(x
0),则ωx+φ=2,∴x
=2ω-ω.
0,
0
π
0
Байду номын сангаасπ φ
2π
又y=ωcos(ωx+φ)的周期为ω,
ππφπ
∴|AC|=,C-+,0 .
ω2ωωω
依题意曲线段ABC与x轴围成的面积为
πφππφ
S=-∫2ω-ω+ω2ω-ωωcos(ωx+φ)dx=2.
ππ
∵|AC|= ,|yB|=ω,∴S△ABC=.
为().
1
1
1
1
A.4
B.5
C.6
D.7
变式训练一
题面:
函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P
为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.
欢迎下载2
—
若在曲线段ABC与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为________.
ω2
π
∴满足条件的概率为4.
变式训练二
题面:
(2012?福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自
阴影部分的概率为()
欢迎下载3
—
A.B.C.D.
答案:C.
详解:
根据题意,正方形OABC的面积为1×1=1,
而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,
则正方形OABC中任取一点P,点P取自阴影部分的概率为=;
故选C.
金题精讲
题一
题面:
(识图求积分,二星)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面
《定积分及其应用》讲义

第六章 定积分及其应用积分学的另一个基本概念是定积分.本章我们将阐明定积分的定义,它的基本性质以及它的应用.此外,我们要重点讲述沟通微分法与积分法之间关系的微积分学基本定理,它把过去一直分开研究的微分和积分彼此互逆地联系起来,成为一个有机的整体.最后,我们把定积分的概念加以推广,简要讨论两类广义积分.§ 6.1 定积分的概念与性质1. 定积分的定义我们先来研究两个实际问题. 例1 计算曲边梯形的面积设)(x f y =为闭区间],[b a 上的连续函数,且0)(≥x f .由曲线)(x f y =,直线b x a x == ,及x 轴所围成的平面图形(图6—1)称为)(x f 在],[b a 上的曲边梯形,试求这图6—1我们先来分析计算会遇到的困难.由于曲边梯形的高)(x f 是随x 而变化的,所以不能直接按矩形或直角梯形的面积公式去计算它的面积.但我们可以用平行于y 轴的直线将曲边梯形细分为许多小曲边梯形如图6—1所示.在每个小曲边梯形以其底边一点的函数值为高,得到相应的小矩形,把所有这些小矩形的面积加起来,就得到原曲边梯形面积的近似值.容易想象,把曲边梯形分得越细,所得到的近似值就愈接近原曲边梯形的面积,从而运用极限的思想就为曲边梯形面积的计算提供了一种方法.下面我们分三步进行具体讨论:(1) 分割 在],[b a 中任意插入1-n 个分点b x x x x x a n n =<<<<<=-1210把],[b a 分成n 个子区间],[10x x ,],[21x x ,…,],[1n n x x -,每个子区间的长度为1--=∆i i i x x x ),,2,1( n i =.(2) 近似求和 在每个子区间],[1i i x x -),,2,1( n i =上任取一点i ξ,作和式ini ixf ∆∑=1)(ξ(1.1)(3) 取极限 当上述分割越来越细(即分点越来越多,同时各个子区间的长度越来越小)时,和式(1.1)的值就越来越接近曲边梯形的面积(记作A ).因此当最长的子区间的长度趋于零时,就有A xf ini i→∆∑=1)(ξ.例2 求变速直线运动的路程设某物体作直线运动,其速度v 是时间t 的连续函数)(t v v =.试求该物体从时刻a t =到时刻b t =一段时间内所经过的路程s .因为)(t v v =是变量,我们不能直接用时间乘速度来计算路程.但我们仍可以用类似于计算曲边梯形面积的方法与步骤来解决所述问题.(1) 用分点b t t t t t a n n =<<<<<=-1210把时间区间],[b a 任意分成n 个子区间(图6—2): ],[10t t ,],[21t t ,…,],[1n n t t -. 每个子区间的长度为1--=∆i i i t t t (n i ,2,1=).图6—2(2) 在每个子区间],[1i i t t - (n i ,2,1=)上任取一点i τ,作和式i ni it v ∆∑=1)(τ.(3) 当分点的个数无限地增加,最长的子区间的长度趋于零时就有s t v i ni i→∆∑=1)(τ.以上两个问题分别来自于几何与物理中,两者的性质截然不同,但是确定它们的量所使用的数学方法是一样的,即归结为对某个量进行“分割、近似求和、取极限”,或者说都转化为具有特定结构的和式(1.1)的极限问题,在自然科学和工程技术中有很多问题,如变力沿直线作功,物质曲线的质量、平均值、弧长等,都需要用类似的方法去解决,从而促使人们对这种和式的极限问题加以抽象的研究,由此产生了定积分的概念.定义6.1.1 设函数)(x f 在],[b a 上有定义,在),(b a 内任取1-n 个分点b x x x x x a n n =<<<<<=-1210把],[b a 分成n 个子区间],[10x x ,],[21x x ,…,],[1n n x x -,每个子区间的长度为1--=∆i i i x x x ),,2,1( n i =.在每个子区间],[1i i x x -),,2,1( n i =上任取一点i ξ(称为介点),作和式i ni i x f ∆∑=1)(ξ,并记{}i ni x ∆=≤≤1max λ.如果不论对],[b a 怎样划分成子区间,也不论在子区间],[1i i x x -上怎样取介点i ξ,只要当0→λ时,和式(1.1)总趋于确定的值I ,则称这极限值I 为函数)(x f 在区间],[b a 上的定积分,记作⎰ba dx x f )(,即i ni i bax f I dx x f ∆==∑⎰=→1)(lim )(ξλ (1.2)其中)(x f 称为被积函数,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为积分的下限和上限.关于定积分的定义,再强调说明几点:(1) 区间],[b a 划分的细密程度不能仅由分点个数的多少或n 的大小来确定.因为尽管n 很大,但每一个子区间的长度却不一定都很小.所以在求和式的极限时,必须要求最长的子区间的长度0→λ,这时必然有∞→n .(2) 定义中的两个“任取”意味着这是一种具有特定结构的极限,它不同于第二章讲述的函数极限.尽管和式(1.1)随着区间的不同划分及介点的不同选取而不断变化着,但当0→λ时却都以唯一确定的值为极限.只有这时,我们才说定积分存在.(3) 从定义可以推出定积分(1.2)存在的必要条件是被积函数)(x f 在],[b a 上有界.因为如果不然,当把],[b a 任意划分成n 个子区间后,)(x f 至少在其中某一个子区间上无界.于是适当选取介点i ξ,能使)(i f ξ的绝对值任意地大,也就是能使和式(1.1)的绝对值任意大,从而不可能趋于某个确定的值.(4) 由定义可知,当)(x f 在区间],[b a 上的定积分存在时,它的值只与被积函数)(x f 以及积分区间],[b a 有关,而与积分变量x 无关,所以定积分的值不会因积分变量的改变而改变,即有⎰⎰⎰===b aba badu u f dt t f dx x f )()()( .(5) 我们仅对b a <的情形定义了积分⎰b adx x f )(,为了今后使用方便,对b a =与b a >的情况作如下补充规定:当b a =时,规定0)(=⎰ba dx x f ;当b a >时,规定⎰⎰-=abb adx x f dx x f )()(.根据定积分的定义,我们说:例1中)(x f 在],[b a 上的曲边梯形的面积就是曲线的纵坐标)(x f 从a 到b 的定积分⎰=ba dx x f A )(.它就是定积分的几何意义.注意到若0)(≤x f ,则由0)(≤i f ξ及0>∆i x 可知⎰≤badx x f 0)(.这时曲边梯形位于x 轴的下方,我们就认为它的面积是负的.因此当)(x f 在区间],[b a 上的值有正有负时,定积分⎰b adx x f )(的值就是各个曲边梯形面积的代数和,如图6—3所示.例2中物体从时刻a 到时刻b 所经过的路程就是速度)(t v 在时间区间],[b a 上的定积分⎰=ba dt t v s )(.对应于导数的力学意义,我们也说它是定积分的力学意义.当)(x f 在区间],[b a 上的定积分存在时,就称)(x f 在],[b a 上可积,说明(3)表明:)(x f 在],[b a 上可积的必要条件是)(x f 在],[b a 上有界.下面是函数可积的两个充分条件,证明从略.定理6.1.1(1) 若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积.(2) 若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积.2. 定积分的基本性质定理6.1.2 (积分的线性性质)(1) 若)(x f 在],[b a 上可积,k 为常数,则)(x kf 在],[b a 上可积,且⎰⎰=babadx x f k dx x kf )()( (1.3)(2) 若)(x f ,)(x g 在],[b a 上可积,则)()(x g x f ±在],[b a 上也可积,且⎰⎰⎰±=±babab adx x g dx x f dx x g x f )()()]()([. (1.4)证 根据定义,有⎰∑∑⎰=∆=∆==→=→bani i i ni i i badx x f k x f k x kf dx x kf )()(lim )(lim )(11ξξλλ.所以(1.3)式成立.类似可证(1.4)式成立.定理6.1.2的更一般的结论是⎰∑⎰∑===baj j nj b a nj j jdx x f k dx x f k)( )(11.其中)(x f j ),,2,1( n j =在],[b a 上可积,)(x k j ),,2,1( n j =为常数.定理6.1.3 (积分对区间的可加性) 设)(x f 是可积函数,则⎰⎰⎰+=bcc abadx x f dx x f dx x f )()()( (1.5)对c b a , ,任何顺序都成立.证 先考虑b c a << 的情形.由于)(x f 在],[b a 上可积,所以不论将区间],[b a 如何划分,介点i ξ如何选取,和式的极限总是存在的.因此,我们把c 始终作为一个分点,并将和式分成两部分:i i i i iix f x f x f ∆+∆=∆∑∑∑21)()()(ξξξ,其中∑∑21,分别为区间],[c a 与],[b c 上的和式.令最长的小区间的长度0→λ,上式两边取极限,即得(1.5)式.对于其它顺序,例如c b a << ,有⎰⎰⎰+=cbb acadx x f dx x f dx x f )()()(,所以⎰⎰⎰-=cbc abadx x f dx x f dx x f )()()(⎰⎰+=bccadx x f dx x f )()(.(1.5)式仍成立.定理6.1.4 (积分的不等式性质) 若)(x f ,)(x g 在],[b a 上可积,且)()(x g x f ≤,则⎰⎰≤ba badx x g dx x f )()(. (1.6)证⎰⎰⎰-=-b ababadx x f x g dx x f dx x g )]()([)()(i ni i i x f g ∆-=∑=→1)]()([lim ξξλ.由假设知0)()(≥-i i f g ξξ,且0>∆i x ),,2,1( n i =,所以上式右边的极限值为非负,从而有⎰⎰≥babadx x f dx x g )()(.(1.6)式成立.从定理6.1.4立刻推出推论6.1.1 若)(x f 在],[b a 上可积,且0)(≥x f ,则0)(≥⎰badx x f .推论 6.1.2 (积分估值) 若)(x f 在],[b a 上可积,且存在常数m 和M ,使对一切],[b a x ∈有M x f m ≤≤)(,则)()()(a b M dx x f a b m ba-≤≤-⎰.推论6.1.3 若)(x f 在],[b a 上可积,则 )( x f 在],[b a 上也可积,且dx x f f(x)dx bab a)( ⎰⎰≤.这里 )( x f 在],[b a 上的可积性可由)(x f 的可积性推出,其证明省略.推论 6.1.4 (严格不等式) 设)(x f 是],[b a 上的连续函数,若在],[b a 上0)(≥x f 且0)(≡x f ,则0)(>⎰badx x f .证 由假设知,存在),(0b a x ∈使0)(0>x f ,根据)(x f 的连续性,必存在0x 的邻域],[),(00b a x x ⊂+-δδ,使在其中2)()(0x f x f >,从而有⎰⎰⎰⎰++--++=b x x x x abadx x f dx x f dx x f dx x f δδδδ0000)()()()(0)( 22)()(0000>=⋅>≥⎰+-x f x f dx x f x x δδδδ, 所以结论成立.定理6.1.5 (积分中值定理) 若)(x f 在],[b a 上连续,则在],[b a 上至少存在一点ξ,使得))(()(a b f dx x f ba-=⎰ξ. (1.7)证 因为)(x f 在],[b a 上连续,所以)(x f 在],[b a 上可积,且有最小值m 和最大值M .于是在],[b a 上,)()()(a b M dx x f a b m ba -≤≤-⎰,或M ab dx x f m ba≤-≤⎰)(.根据连续函数的介值定理可知,在],[b a 上至少存在一点ξ,使)()(ξf ab dx x f ba=-⎰所以(1.7)式成立.若)(x f 在],[b a 上连续且非负,则)(x f 在],[b a 上的曲边梯形面积等于与该曲边梯形同底,以ab dx x f f ba-=⎰)()(ξ为高的矩形面积.通常把)(ξf ,即ab dx x f ba-⎰)(称为函数)(x f 在],[b a 上的积分均值,而这正是算术平均值概念的推广.定理6.1.6 (推广的积分中值定理) 若)(x f ,)(x g 在],[b a 上连续,且)(x g 在],[b a 上不变号,则在],[b a 上至少存在一点ξ,使得⎰⎰=ba badx x g f dx x g x f )()()()(ξ (1.8)证 不妨设在],[b a 上有0)(≥x g ,则0)(≥⎰b adx x g ,且在],[b a 上 )()()()(x Mg x g x f x mg ≤≤,其中M m ,分别为)(x f 在],[b a 上的最小值与最大值.由此推出⎰⎰⎰≤≤bababadx x g M dx x g x f dx x g m )()()()(.若⎰=badx x g 0)(,则由上式知0)()(=⎰badx x g x f .从而在],[b a 上任取一点作为ξ,(1.8)式都成立.若0)(>⎰b adx x g ,则得M dxx g dxx g x f m baba≤≤⎰⎰)()()(.按连续函数的介值定理推出,在],[b a 上至少存在一点ξ,使)()()()(ξf dxx g dxx g x f baba=⎰⎰所以(1.8)式也成立.§ 6.2 微积分学的基本定理与基本公式若已知)(x f 在] ,[b a 上的定积分存在,怎样计算这个积分值呢?如果利用定积分的定义,由于需要计算一个和式的极限,可以想象,即使是很简单的被积函数,那也是十分困难的.本节将通过揭示微分和积分的关系,引出一个简捷的定积分的计算公式.1. 微积分学基本定理设函数)(x f 在区间] ,[b a 上可积,则对] ,[b a 中的每个x ,)(x f 在] ,[x a 上的定积分dx t f xa)(⎰都存在,也就是说有唯一确定的积分值与x 对应,从而在] ,[b a 上定义了一个新的函数,它是上限x 的函数,记作)(x Φ,即dt t f x xa )()(⎰=Φ, ] ,[b a x ∈.这个积分通常称为变上限积分.定理6.2.1 设)(x f 在] ,[b a 上可积,则dt t f x xa )()(⎰=Φ是] ,[b a 上的连续函数.证 任取] ,[b a x ∈及0≠∆x ,使] ,[b a x x ∈∆+.根据积分对区间的可加性, dt t f dt t f dt t f x x x xx xx axx a)( )( )()()(⎰⎰⎰∆+∆+=-=Φ-∆+Φ=∆Φ.由于)(x f 在] ,[b a 上连续,从而有界,即存在0>M ,使对一切] ,[b a x ∈有M x f ≤ )( ,于是)( )( x M dt t f x xx x∆≤=Φ⎰∆+.故当0→∆x 时有0)(→∆Φx .所以)(x Φ在x 连续,由] ,[b a x ∈的任意性即知)(x Φ是] ,[b a 上的连续函数.定理6.2.2 (原函数存在定理) 设)(x f 在] ,[b a 上连续,则dt t f x xa)()(⎰=Φ在],[b a 上可导,且)()(x f x =Φ', ] ,[b a x ∈, 也就是说)(x Φ是)(x f 在] ,[b a 上的一个原函数.证 任取] ,[b a x ∈及0≠∆x ,使] ,[b a x x ∈∆+.应用积分对区间的可加性及积分中值定理,有 x x x f dt t f x x x x x x∆∆+==Φ-∆+Φ=∆Φ⎰∆+) ( )()()(θ,或) (x x f x∆+=∆∆Φθ, )10(≤≤θ. (2.1) 由于)(x f 在] ,[b a 上连续,)() (lim 0x f x x f x =∆+→∆θ.故在(2.1)中令0→∆x 取极限,得)(lim 0x f xx =∆∆Φ→∆.所以)(x Φ在] ,[b a 上可导,且)()(x f x =Φ'.由] ,[b a x ∈的任意性推知)(x Φ就是)(x f 在] ,[b a 上的一个原函数.本定理回答了我们自第五章以来一直关心的原函数的存在问题.它明确地告诉我们:连续函数必有原函数,并以变上限积分的形式具体地给出了连续函数)(x f 的一个原函数.回顾微分与不定积分先后作用的结果可能相差一个常数.这里若把)()(x f x =Φ'写成)( )(x f dt t f dx d xa=⎰, 或从 dx x f x d )()(=Φ推得)()( )(x dt t f t d xaxaΦ==Φ⎰⎰,就明显看出微分和变上限积分确为一对互逆的运算.从而使得微分和积分这两个看似互不相干的概念彼此互逆地联系起来,组成一个有机的整体.因此定理6.2.2也被称为微积分学基本定理.推论6.2.1 设)(x f 为连续函数,且存在复合)]([x f ϕ与)]([x f ψ,其中)(x ϕ,)(x ψ皆为可导函数,则)()]([)()]([ )()()(x x f x x f dt t f dxd x x ψψϕϕϕψ'-'=⎰ (2.2) 证 令⎰=Φxadt t f x )()(,a 为)(x f 的连续区间内取定的点.根据积分对区间的可加性,有dt t f dt t f dt t f x ax ax x )( )( )()()()()(⎰⎰⎰-=ψϕϕψ)]([)]([x x ψϕΦ-Φ=.由于)(x f 连续,所以)(x Φ为可导函数,而)(x ϕ和)(x ψ皆可导,故按复合函数导数的链式法则,就有)()]([)()]([ )()()(x x x x dt t f dxd x x ψψϕϕϕψ'Φ'-'Φ'=⎰ )()]([)()]([x x f x x f ψψϕϕ'-'=.所以(2.2)式成立.例1. 证明:若)(x f 在),(+∞-∞内连续,且满足dt t f x f x)()(0⎰=,则0)(≡x f .证 由假设知dt t f x f x)()(0⎰=在),(+∞-∞内可导,且)()(x f x f ='.令x e x f x F -=)()(, ),(+∞-∞∈x ,则0)()()(=-'='--x x e x f e x f x F .所以c x F ≡)(,),(+∞-∞∈x .由于0)0()0(==f F ,可得0)(≡x F .从而有0)()(≡=x e x F x f ,),(+∞-∞∈x .例2. 求21cos 02limxdt e xt x ⎰-→.解 应用洛比达法则,原式1cos 0cos 02121sin lim 2)(cos lim22--→-→=⋅='-=e e x x xx e x x x x . 2. 牛顿——莱布尼兹公式定理6.2.3 设)(x f 在] ,[b a 上连续,若)(x F 是)(x f 在] ,[b a 上的一个原函数,则)()( )(a F b F dx x f ba-=⎰(2.3)证 根据微积分学基本定理,dt t f x a)(⎰是)(x f 在] ,[b a 上的一个原函数.因为两个原函数之差是一个常数,所以C x F dt t f xa+=⎰)( )(, ] ,[b a x ∈.上式中令a x =,得)(a F C -=,于是)()( )(a F x F dt t f xa-=⎰.再令b x =,即得(2.3)式.在使用上,公式(2.3)也常写作 b a bax F dx x f )]([ )(=⎰,或b a bax F dx x f )( )(=⎰.公式(2.3)就是著名的牛顿——莱布尼兹公式,简称N —L 公式.它进一步揭示了定积分与原函数之间的联系:)(x f 在] ,[b a 上的定积分等于它的任一原函数)(x F 在] ,[b a 上的增量,从而为我们计算定积分开辟了一条新的途径.它把定积分的计算转化为求它的被积函数)(x f 的任意一个原函数,或者说转化为求)(x f 的不定积分.在这之前,我们只会从定积分的定义去求定积分的值,那是十分困难的,甚至是不可能的.因此 N —L 公式也被称为微积分学基本公式.例3 计算下列定积分 (1) dx x x 422-⎰; (2))0( 3022≠+⎰a x a dxa;(3)dx x 112⎰-; (4)⎰π20sin dx x .解 (1) 原式38)4(3120223=--=x . (2) 原式aa axa a33arctan 1arctan130π===. (3) 原式1022)]1ln(2112[x x x x ++++= )]21ln(2[21++=. (4) 原式⎰⎰-+=πππ20)sin ( sin dx x dx x4cos cos 20=+-=πππxx.例4 设⎩⎨⎧≤<-≤≤+=31,310 ,1)(2x x x x x f ,求⎰30)(dx x f .解 ⎰⎰⎰-++=311023)3( )1( )(dx x dx x dx x f313)23()3(312103=+++=x x x x .§ 6.3 定积分的换元积分法与部分积分法有了牛顿——莱布尼兹公式,使人感到有关定积分的计算问题已经完全解决.但是能计算与计算是否简便相比,后者则提出更高的要求.在定积分的计算中,除了应用N —L 公式,我们还可以利用它的一些特有性质,如定积分的值与积分变量无关,积分对区间的可加性等,所以与不定积分相比,使用定积分的换元积分法与分布积分法会更加方便.1. 定积分的换元积分法定理6.3.1 设函数)(x f 在] ,[b a 上连续,函数)(t x ϕ=在I (] ,[βα=I 或] ,[αβ)上有连续的导数,并且a =)(αϕ,b =)(βϕ,)( )(I t b t a ∈≤≤ϕ,则⎰⎰'=badt t t f dx x f βαϕϕ)()]([)( (3.1)证 由于)(x f 与)()]([t t f ϕϕ'皆为连续函数,所以它们存在原函数,设)(x F 是)(x f 在[]b a ,上的一个原函数,由复合函数导数的链式法则有)()]([)()()()())]([(t t f t x f t x F t F ϕϕϕϕϕ'='=''=',可见)]([t F ϕ是)()]([t t f ϕϕ'的一个原函数.利用N —L 公式,即得⎰⎰=-=-=='badx x f a F b F F F t F t t f )()()()]([)]([)]([ )()]([αϕβϕϕϕϕβαβα.所以(3.1)式成立.公式(3.1)称为定积分的换元公式.若从左到右使用公式(代入换元),换元时应注意同时换积分限.还要求换元)(t x ϕ=应在单调区间上进行.当找到新变量的原函数后不必代回原变量而直接用N —L 公式,这正是定积分换元法的简便之处.若从右到左使用公式(凑微分换元),则如同不定积分第一换元法,可以不必换元,当然也就不必换积分限.例1 计算下列定积分 (1) ⎰--14311x dx ; (2)dx xx 121022⎰-;(3)dx x x sin cos 25⎰π; (4) dx x x sin sin 053⎰-π.解 (1) 令t x =-1,则21t x -=,dt t dx 2-=,且当t 从0变到21时,x 从1减到43.于是 原式⎰⎰-+=--=021021)111(212dt t t dt t []2ln 21 1 ln 2210-=-+=t t .(2) 令t x sin =,则dt t dx cos =,且当t 从0变到21时,x 从0增到6π.于是 原式⎰⎰==660202 sin cos cos sin ππdt t dt t tt831242sin 260-=⎥⎦⎤⎢⎣⎡-=ππt t .(3) 原式616cos cos cos 2265=-=-=⎰ππx x d x . (4) 原式⎰⎰⎰-+==ππππ22322323 )cos (sin cos sin cos sin 0dx x x dx x x dx x x⎰⎰-=πππ223223sin sin sin sin 0x d x x d x54sin 52sin 522252250==πππx x .例 2 设)(x f 在],[a a -上连续,证明:⎰⎰=-aaadx x f dx x f 0)(2)(.特别当)(x f 为奇函数时,0)(=⎰-aadx x f ;当)(x f 为偶函数时,⎰⎰=-aaadx x f dx x f 0)(2)(.证: 因为⎰⎰⎰+=--aaaadx x f dx x f dx x f 00)()()(,在⎰-0)(adx x f 中,令t x -=,得⎰⎰⎰-=--=-aaadx x f dt t f dx x f 000)()()(.所以⎰⎰-+=-aaadx x f x f dx x f 0)]()([)(.当)(x f 为奇函数时,)()(x f x f -=-,故0)()(=-+x f x f ,从而有0)(=⎰-aadx x f .当)(x f 为偶函数时,)()(x f x f =-,故)(2)()(x f x f x f =-+,从而有⎰⎰=-aaadx x f dx x f 0)(2)(.例3 设)(x f 为]1 ,0[上的连续函数,证明: (1) dx x f dx x f ⎰⎰=22)(cos )(sin ππ;(2) dx x f dx x f ⎰⎰=20)(sin 2)(sin ππ(3)dx x f dx x xf ⎰⎰=20)(sin )(sin πππ.证: (1) 令t x -=2π,则dt dx -=,且当t 从0 变到2π时,x 从2π减到0.于是dt t f dt t f dx x f ⎰⎰⎰=--=2220020)(cos ])[(sin )(sin ππππdx x f ⎰=2)(cos π.(2)dx x f dx x f dx x f ⎰⎰⎰+=ππππ22)(sin )(sin )(sin 0,在dx x f ⎰ππ2)(sin 中,令t x -=π,得dt t f dt t f dx x f ⎰⎰⎰=--=222)(sin ])[(sin )(sin πππππdx x f ⎰=20)(sin π.所以dx x f dx x f ⎰⎰=20)(sin 2)(sin ππ.(3) 令t x -=π,则dt t f t dx x xf )][sin()()(sin 00---=⎰⎰ππππdt t f t )(sin )(0⎰-=ππdx x xf dx x f ⎰⎰-=πππ0)(sin )(sin .所以dx x f dx x xf ⎰⎰=πππ)(sin 2)(sindx x f ⎰=2)(sin ππ (利用(2)的结果).例2和例3的结果今后经常作为公式使用.例如我们可以直接写出 ⎰-=ππ0c o s 3x d x x,ππππ==⎰⎰dx x dx x x 20sin sin .2. 定积分的分部积分法定理6.3.2 若)(x u ,)(x v 在] ,[b a 上有连续的导数,则 ⎰⎰'-='babab a dx x u x v x v x u dx x v x u )()()()()()(. (3.2)证 因为)()()()(])()([x v x u x v x u x v x u '+'=', b x a ≤≤.所以)()(x v x u 是)()()()(x v x u x v x u '+'在],[b a 上的一个原函数,应用N —L 公式,得⎰='+'bab a x v x u dx x v x u x v x u )()()]()()()([,利用积分的线性性质并移项即得(3.2)式.公式(3.2)称为定积分的分部积分公式,且简单地写作⎰⎰-=babab av d u uv udv(3.3)例4 计算下列定积分:(1) ⎰210arcsin xdx ; (2)⎰eedx x 1 ln ;(3)⎰2sin πxdx e x; (4)⎰-1dx ex.解 (1) 原式dx xx x x ⎰--=21210201arcsin12312121arcsin 21212-+=-+=πx (2) 原式⎰⎰+-=ee xdx dx x e1ln )ln (1⎰⎰-++-=ee dx x dx x x ee1111ln ln 11)11(2e-=.(3)⎰⎰⎰-==2222000cos sin sin sin ππππxdx e x e xde xdx e x xx xx d x e x e e de x e x xxsin cos cos 2222200⎰⎰--=-=πππππxdx e e x sin 122⎰-+=ππ.所以)1(21s i n 22+=⎰ππe x d x e x.(4) 令t x =,则⎰⎰⎰----=⋅=11122t txt d e t d t e dx et d e te tt ⎰--+-=10102 2ee et422211-=--=--. 例5 (1) 证明⎰⎰=22cos sin ππxdx xdx n n(∈x N +);(2) 求)cos ( sin 220⎰⎰==ππxdx xdx I n nn 的值.解 由例3(1)即知(1)成立. (2) 当3≥n 时dx x x n x x x xd I n n n n ⎰⎰----+-=-=22222011cos sin )1(cos sincos sinπππdx x x n n ⎰--=-222)sin 1(sin )1(πn n I n I n )1()1(2---=-所以2)1(--=n n I nn I . 于是当3≥n 为奇数时有13254231I n n n n I n ⋅⋅--⋅-=; 当3≥n 为偶数时有243231I n n n n I n ⋅--⋅-= . 容易得出1sin 201==⎰πxdx I ,442sin 2sin 220022πππ=⎥⎦⎤⎢⎣⎡-==⎰x x xdx I . 所以⎪⎪⎩⎪⎪⎨⎧⋅--⋅-⋅--⋅-=为正偶数.为正奇数;n n n n n n n n n n I n ,443231 ,3254231π (3.4) 公式(3.4)称为沃利斯(Wallis)积分公式,它在定积分的计算中经常被应用.例 6 求⎰=π1010sin xdx x J 的值.解 4436587109sin 201010ππππ⋅⋅⋅⋅⋅==⎰xdx J 22560315π=.§ 6.4 广义积分我们在前面讨论定积分时,总假定积分区间是有限的,被积函数是有界的.但在理论上或实际问题中往往需要讨论积分区间无限或被积函数为无界函数的情形.因此我们有必要把积分概念就这两种情形加以推广,这种推广后的积分称为广义积分.1. 无穷限的广义积分定义6.4.1 设函数)(x f 在) ,[∞+a 上有定义,且对任何实数a b >,)(x f 在] ,[b a 上可积,则称形式⎰+∞adx x f )( (4.1)为函数)(x f 在) ,[∞+a 上的广义积分.若极限⎰+∞→bab dx x f )(lim)(a b > (4.2)存在,则称广义积分(4.1)收敛,并以这极限值为(4.1)的值,即⎰⎰+∞→+∞=bab adx x f dx x f )(lim)(.若极限(4.2)不存在,则称广义积分(4.1)发散.由定义可知,我们讨论广义积分(4.1)的敛散性,其含义就是考察变上限积分⎰=ba dx x fb F )()( )(a b >当+∞→b 时的极限是否存在.例1 讨论广义积分⎰∞+π2 1sin 12dx x x 的敛散性.解 任取π2>b ,有⎰⎰-==b bx d x dx x x b F ππ2211sin 1sin 1)(22 b x b1cos 1cos 2=⎥⎦⎤⎢⎣⎡=π,因为11cos lim )(lim ==+∞→+∞→bb F b b , 所以这广义积分收敛,且1 1sin 122=⎰∞+πdx x x .若)(x f 在) ,[∞+a 上非负,且广义积分(4.1)收敛,则积分(4.1)的值从几何上解释为由曲线(f y =(图6—5中阴影部分).图6—5类似地利用极限⎰-∞→baa dx x f )(lim)(b a <定义广义积分⎰∞-b dx x f )(的敛散性.广义积分⎰+∞∞-dx x f )(定义为⎰⎰⎰+∞∞-+∞∞-+=aadx x f dx x f dx x f )( )( )( (4.3)其中a 为任一有限实数.它当且仅当右边的两个广义积分皆收敛时才收敛,否则是发散的.根据积分对区间的可加性,易知(4.3)左边的广义积分的敛散性及收敛时积分的值都与实数a 的选取无关.例2 计算广义积分⎰∞+∞-+21x dx的值.解 ⎰⎰⎰⎰⎰+++=+++=++∞→-∞→∞+∞-∞+∞-b b a a x dx x dx x dx x dx x dx 0202020221lim 1lim 111πππ=+--=+-=+∞→-∞→2)2()(arctan lim )arctan (lim b a b a为了书写的统一与简便,以后在广义积分的讨论中,我们也引用定积分(也称常义积分) N —L 公式的记法.如例2可写成πππ=--==+∞+∞-∞+∞-⎰)2(2arctan 12x x dx . 例3 计算广义积分dt te pt ⎰+∞-0)0(>p解dt e pe pt tde p dt te ptptpt pt ⎰⎰⎰∞+-∞+-∞+-∞+-+-=-=000011 2211p e p pt==∞+- 例4 证明广义积分⎰∞+1p xdx当1>p 时收敛,当1≤p 时发散. 证 当1=p 时,+∞===⎰⎰∞+∞+∞+111ln x x dx xdx p . 当1≠p 时,⎩⎨⎧<∞+>=-=-∞+-∞+⎰1 ,1 ,1111111p p x px dx p p p .所以此广义积分当1>p 时收敛,其值为p-11;当1≤p 时发散. 2. 无界函数的广义积分定理6.4.2 设)(x f 在] ,(b a 上有定义,而在a 的右邻域内无界.若对任何正数ε,)(x f 在] ,[b a ε+上可积,则称形式⎰badx x f )(. (4.4)为)(x f 在] ,(b a 上的广义积分.若极限 ⎰+→+b a dx x f εε )(lim 0, (4.5)存在,则称广义积分(4.4)收敛,并以这极限值为它的值,即⎰⎰+→+=ba badx x f dx x f εε )(lim )(0.若极限(4.5)不存在,则称广义积分(4.4)发散.与无穷限广义积分一样,记号(4.4)的含义是指考察变下限积分⎰+=b a dx x f F εε )()(, a b -<<ε0当+→0ε时的极限情形.这里a 称为函数)(x f 的瑕点,因此无界函数的广义积分也称为瑕积分.同样也利用极限⎰-→+εεb adx x f )(lim来定义b 为瑕点的广义积分的敛散性.若)(x f 的瑕点c 在闭区间] ,[b a 的内部,即b c a <<,则广义积分⎰ba dx x f )(定义为⎰⎰⎰+=bcc abadx x f dx x f dx x f )( )( )(,它当且仅当右边两个积分都收敛时才收敛,否则左边的广义积分发散.例5 计算广义积分⎰-axa dx 022)0(>a .解 a x =为函数221xa -的瑕点.εεεε-→-→++=-=-⎰⎰a a aa x xa dxx a dx 00022022][arcsin lim lim21arcsin arcsinlim 0πεε==-=+→a a .例6 讨论广义积分⎰-112x dx的敛散性.解 0=x 为函数21x的瑕点.由于+∞=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡-=+++→→→⎰εεεεεε11lim 1lim lim010120x x dx , 所以广义积分⎰102xdx发散,从而推出广义积分⎰-112x dx 发散.注意,如果我们疏忽了0=x 是瑕点,就会得出错误的结果:2111112-=⎥⎦⎤⎢⎣⎡-=--⎰x x dx . 例7 证明广义积分⎰1qx dx当1<q 时收敛,当1≥q 时发散. 证 当1=q 时,⎰⎰+∞===10101ln x x dx xdx q . 当1≠q 时,⎪⎩⎪⎨⎧>∞+<-=⎥⎦⎤⎢⎣⎡-=-⎰1 ,1 ,11111011q q q x q x dx q q. 所以这广义积分当1<q 时收敛,其值为q-11,当1≥q 时发散. 3. 两种广义积分的联系任何无界函数的广义积分都可以化为无穷限广义积分. 设)(x f 在],(b a 内任何闭区间上都可积,a x =是瑕点,则 ⎰⎰+→+=ba badx x f dx x f εε)(lim )(0.若令ax u -=1,就有 ⎰⎰⎰=+=-+εεϕε111)()1()(2k ba du u udu u a f dx x f ab ,其中)1(1)(2u a f u u +=ϕ,a b k -=1.于是⎰⎰⎰+∞→==+kk badu u du u dx x f )()(lim )(1ϕϕεε,这时上式右边是无穷限广义积分.同样,对于无穷限广义积分⎰⎰+∞→+∞=bab adx x f dx x f )(lim)(,只要令xau =,就有 ⎰⎰⎰=-=112)())(()(ba ba du u du u au a f dx x f baψ, 于是⎰⎰⎰==+∞→+∞11)()(lim)(du u du u dx x f bab aψψ.其中)()(2ua f u a u =ψ,0=u 是它的瑕点,即上式右边为无界函数的广义积分.§ 6.5 定积分的应用定积分是具有特定结构的和式的极限.如果从实际问题中产生的量(几何量或物理量)在某区间],[b a 上确定,当把],[b a 分成若干个子区间后,在],[b a 上的量Q 等于各个子区间上所对应的部分量Q ∆之和(称量Q 对区间具有可加性),我们就可以采用“分割、近似求和、取极限”的方法,通过定积分将量Q 求出.现在我们来简化这个过程:在区间],[b a 上任取一点x ,当x 有增量x ∆(等于它的微分dx )时,相应地量)(x Q Q =就有增量Q ∆,它是Q 分布在子区间],[dx x x +上的部分量.若Q ∆的近似表达式为dQ dx x f Q =≈∆)(, 则以dx x f )(为被积表达式求从a 到b 的定积分.即得所求量 ⎰=ba dx x f Q )(.这里的dx x f dQ )(=称为量Q 的微元,或元素,这种方法称为微元法.它虽然不够严密,但具有直观、简单、方便等特点,且结论正确.因此在实际问题的讨论中常常被采用.本节我们将讲述微元法在几何与物理两方面的应用.1. 平面图形的面积 1) 直角坐标的面积公式根据定积分的几何意义,若)(x f 是区间],[b a 上的非负连续函数,则)(x f 在],[b a 上的曲边梯形(图6—1)的面积为⎰=badx x f A )(. (5.1)若)(x f 在],[b a 上不都是非负的(图6—3),则所围面积为⎰=ba dx x f A )( . (5.2)一般地,若函数)(1x f 和)(2x f 在],[b a 上连续且总有)()(21x f x f ≤,则由两条连续曲线)(1x f y =,)(2x f y =与两条直线a x =,b x =所围的平面图形(图6—6)的面积元素为dx x f x f dA )]()([12-=. 所以⎰-=ba dx x f x f A )]()([12. (5.3)图6—6如果连续曲线的方程为)0( )(≥=y x ϕ,则由它与直线c y =,d y =(d c <)及y 轴所围成的平面图形(图6—7)的面积元素为dy y dA )(ϕ=. 所以=ddy y A )(ϕ. (5.4)其它情形也容易写出与公式(5.2)、(5.3)相仿的公式.例1 求由两条抛物线x y =2,2x y =所围图形(图6—8)的面积. 解 联立⎪⎩⎪⎨⎧==22xy xy 解得0=x 及1=x .所围的面积为313132)(10310223=⎥⎦⎤⎢⎣⎡-=-=⎰x x dx x x A . 图6—8例2 求由抛物线x y 22=与直线4-=x y 所围图形(图6—9)的面积. 解 联立⎩⎨⎧-==422x y xy 解得曲线与直线的交点)2,2(-和)4,8(.以x 为积分变量,则所求面积为[][]dx x x dx x x A )4(2 )2(28220⎰⎰--+--= 图6—91842322322282222323=⎥⎦⎤⎢⎣⎡+-+⋅=x x x x .若以y 为积分变量,则18642)24(4232422=⎥⎦⎤⎢⎣⎡-+=-+=--⎰y y y dy y y A .从例2看出,适当选取积分变量,会给计算带来方便.例3 求椭圆12222=+by a x 的面积 (图6—10).解 由于椭圆关于x 轴与y 轴都是对称的,故它的面积是位于第一象限内的面积的4倍.⎰⎰-==a adx x a abydx A 022044ab a x a x a x a b aπ=⎥⎤⎢⎣⎡+-=222arcsin 224.在例3中,若写出椭圆的参数方程⎩⎨⎧==t b y t a x s i nc o s )20(π≤≤t ,应用换元公式得 ⎰⎰=-=2220sin 4)sin (sin 4ππtdt ab dt t a t b Aab ab ππ=⋅=44. 图6—10一般地,若曲线由参数方程)( ),(t y t x ψϕ== )(βα≤≤t给出,其中)(),(t t ψϕ及)(t ϕ'在],[βα上连续,记b a ==)(,)(βϕαϕ,则由此曲线与两直线b x a x ==,及x 轴所围图形的面积为dt t t A )( )( ψψβα'=⎰. (5.5)例4 求由摆线)cos 1( ),sin (t a y t t a x -=-=的一拱)20(π≤≤t 与横轴所围图形(图6—11)的面积.解 dt t a t a A )cos 1()cos 1(20⎰-⋅-=π220222s i n 2(⎰=πt a(令θ=2t)⎰⎰==24242s i n 16 sin 8πθθθθπd ad a22344316a a ππ=⋅⋅=. 图6—112) 极坐标的面积公式设围成平面图形的一条曲边由极坐标方程 )(θr r = )(βθα≤≤给出,其中)(θr 在],[βα上连续,παβ2≤-.由曲线)(θr r =与两条射线βθαθ==,所围成的图形称为曲边扇形(图6—12).试求这曲边扇形的面积.图6—12应用微元法.取极角θ为积分变量,其变化区间为],[βα.相应于任一子区间],[θθθd +的小曲边扇形面积近似于半径为)(θr ,中心角为θd 的圆扇形面积.从而得曲边扇形的面积元素θθd r dA )(212=. 所求面积为⎰=βαθθd r A )(212. (5.6) 例5 求心形线)cos 1(θ-=a r 所围图形(图6—13)的面积. 解 利用对称性,所求面积为 θθπd a A 22)cos 1(⎰-=θθπd a⎰=0422s i n 4 (令t =2θ) 22042234438s i n 82a a dt t a πππ=⋅⋅==⎰.例6 求由两曲线θsin 2=r ,θ2cos 2=r 图 6—13 所围图形(图6—14)的面积. 解 联立⎪⎩⎪⎨⎧==θθ2c o ss i n22r r )0(πθ≤≤解得 61πθ=,652πθ=. 利用对称性,所求面积为图 6—14⎥⎦⎤⎢⎣⎡+=⎰⎰466 2cos 21)sin 2(21202πππθθθθd d A4662s i n 2142s i n 220πππθθθ+⎥⎦⎤⎢⎣⎡-=2316-+=π.2. 立体体积1) 已知平行截面面积的立体体积设空间某立体夹在垂直于x 轴的两平面a x =,b x = )(b a <之间(图6—15)图 6—15以)(x A 表示过)(b x a x <<,且垂直于x 轴的截面面积.若)(x A 为已知的连续函数,则相应于] ,[b a 的任一子区间],[dx x x +上的薄片的体积近似于底面积为)(x A ,高为dx 的柱体体积.从而得这立体的体积元素 dx x A dV )(= 所求体积为⎰=ba dx x A V )(. (5.7)例7 设有一截锥体,其高为h ,上下底均为椭圆,椭圆的轴长分别为a 2,b 2和A 2,B 2,求这截锥体的体积.解 取截锥体的中心线为t 轴 (图6—16),即取t 为积分变量,其 变化区间为] ,0[h .在] ,0[h 上任取 一点t ,过t 且垂直于t 轴的截面面积记为xy π.容易算出 图6—16t h a A a x -+=, t hbB b y -+=. 所以这截锥体的体积为⎰-+-+=hdt t hbB b t h a A a V 0))((π )](2[6AB ab Ab aB h+++=π.2) 旋转体的体积旋转体是一类特殊的已知平行截面面积的立体,容易导出它的计算公式.例如 由连续曲线)(x f y =,] ,[b a x ∈绕x 轴旋转一周所得的旋转体(图6—17).由于过)( b x a x ≤≤,且垂直于x 轴的截面是半径等于)(x f 的圆,截面面积为)()(2x f x A π=. 所以这旋转体的体积为. (5.8)类似地,由连续曲线绕轴旋转一周所得旋转体的体积为 . (5.9)例8 求底面半径为,高为的正圆锥体的体积.解 这圆锥体可看作由直线x hry =,] ,0[h x ∈绕x 轴旋转一周而成(图6—18),所以体积⎰=ba dx x f V )(2π],[ ),(d c y y x ∈=ϕy ⎰=dc dy y V )(2ϕπr h例9 求由椭圆12222=+by a x 绕x 轴旋转而产生的旋转体的体积.解 这个旋转椭球体可看作由半个椭圆22x a aby -=绕x 轴旋转一周而成.所以它的体积20222222234 )(2)(ab dx x a a b dx x a a b V a aa πππ=-=-=⎰⎰-.特别当r b a ==时得半径为r 的球体体积 334r V π=球.3. 平面曲线的弧长设有一曲线弧段AB ,它的方程是 )(x f y =, ] ,[b a x ∈.如果)(x f 在] ,[b a 上有连续的导数,则称弧段AB 是光滑的,试求这段光滑曲线的长度.应用定积分,即采用“分割、近似求和、取极限”的方法,可以证明:光滑曲线弧段是可求长的.从而保证我们能用简化的方法,即微元法,来导出计算弧长的公式.如图6—19所示,取x 为积分变量,其变化区间为] ,[b a .相应于] ,[b a 上任一子区间],[dx x x +的一段弧的长度,可以用曲线在点))(,(x f x 处切线上相应的一直线段的长度来近似代替,这直线段的长度为dx y dy dx 2221)()('+=+,于是得弧长元素(也称弧微分)dx y ds 21'+=, 因此所求的弧长为(5.10)若弧段由参数方程⎩⎨⎧==)()(t y y t x x ],[βα∈t给出,其中)(),(t y t x 在],[βα上有连续的导数,且0)]([)]([22≠'+'t y t x .则弧长元素,即微弧分为dt t y t x ds 22)]([)](['+'=,所以dt t y t x s ⎰'+'=βα22)]([)]([. (5.11)若弧段由极坐标方程)(θr r =, ],[21θθθ∈给出,其中)(θr 在],[21θθ上有连续的导数,则应用极坐标θθsin ,cos r y r x ==,可得θθsin cos r r x -'=', ,利用公式(5.11)推出θβαd r r s ⎰'+=22. (5.12)例10 求悬链线2xx e e y -+=从0=x 到a x =那一段的弧长(图6—20).解 2xx e e y --='代入公式(5.10),得dx y s a ⎰'+=021⎰---=+=aaaxx e e dx e e 022. 图6—20例11 在摆线)sin (t t a x -=,)cos 1(t a y -=上求分摆线第一拱(图6—11)成1:3的点的坐标.解 设τ=t 时,点的坐标))(),((ττy x 分摆线第一拱成1:3.由于弧微分dt ta dt t a t a ds 2sin 2sin )cos 1(2222=+-=,由公式(5.11)可得⎰⎰=πττ202sin 22sin 23dt ta dt t a .θθcos sin r r y +'='。
定积分应用方法总结(经典题型归纳)

定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。
3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。
(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。
第5章 定积分及其应用(共132页)

10:31:46
23
课后作业
课前预习
5.2 定积分的计算
书面作业
P128: 2;3;计算
5.2.1 变上限积分 5.2.2 牛顿-莱布尼兹公式 知识回顾与小结
10:31:46
25
5.2.1 变上限积分
设函数 f ( x ) 在闭区间
变上限积分动态演示
上述和式的极限,即得曲边梯形的面积
A lim f ( i ) x i
0
i 1 n
7
变速直线运动的路程
设某物体的运动速度 v v ( t )是时间 t 的连续函数,
T2 ]内所走过的路程 s . 求物体在时间间隔 [ T1 ,
第一步 分割
T2 ]中任意插入 n 1 个分点, 在时间间隔 [ T1 ,
微积分学基本定理
b]上连续, F ( x )是 f ( x ) 设函数 f ( x ) 在闭区间 [a , b] 上的一个原函数, 则 在 [a ,
b a
f ( x )d x F (b) F (a )
称为牛顿-莱布尼兹公式,或称为 N-L 公式.
32
N-L 公式表明:
b ]上的定积分等于它的 一个连续函数在区间 [ a ,
第三步
求和,即
求和
把 n 个子时间段内物体所走过的路程
s v ( i ) t i
i 1 n
第四步
取极限
记 max { t 1 , t2 , , t n } ,取
上述和式的极限,即得变速直线运动的路程
s lim v ( i ) t i
0
与 u x 2 复合
而成的,所以
精编定积分应用1(6-1--6-5)资料

第六章定积分的应用内容概要课后习题全解习题6-2★ 1.求由曲线xy =与直线x y =所围图形的面积。
知识点:平面图形的面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1∵所围区域D 表达为X-型:⎩⎨⎧<<<<x y x x 10, (或D 表达为Y-型:⎩⎨⎧<<<<y x y y 210)∴⎰-=10)(dx x x S D61)2132(1223=-=x x (⎰=-=1261)(dy y y S D) ★ 2.求在区间[0,π/2]上,曲线x y sin =与直线0=x 、1=y 所围图形的面积知识点:平面图形面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解:见图6-2-2∵所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<1sin 20y x x π, (或D 表达为Y-型:⎩⎨⎧<<<<y x y arcsin 010) ∴12)cos ()sin 1(202-=+=-=⎰πππx x dx x S D( 12arcsin 1-==⎰πydy S D)★★3.求由曲线x y =2与42+-=x y 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为Y-型时解法较简单,所以用Y-型做 解:见图6-2-3∵两条曲线的交点:⎩⎨⎧±==⇒⎩⎨⎧+-==22422y x x y x y , ∴所围区域D 表达为Y-型:⎩⎨⎧-<<<<-22422yx y y ,∴2316)324()4(2232222=-=--=--⎰y y dy y y S D(由于图形关于X 轴对称,所以也可以解为:2316)324(2)4(223222=-=--=⎰y y dy y y S D )★★4.求由曲线2x y =、24x y =、及直线1=y 所围图形的面积知识点:平面图形面积思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4∵第一象限所围区域1D 表达为Y-型:⎩⎨⎧<<<<y x y y 210,∴34322)2(22102311=⨯=-==⎰y dy y y S S D D(若用X-型做,则第一象限内所围区域=1D b a D D ,其中a D :⎪⎩⎪⎨⎧<<<<22410x y x x ,b D :⎪⎩⎪⎨⎧<<<<14212y x x ;∴12212201422[()(1)]443D D x x S S x dx dx ==-+-=⎰⎰) ★★5.求由曲线xy 1=与直线x y =及2=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型,解法较简单,所以用X-型做解:见图6-2-5∵两条曲线xy =和x y =的交点为(1,1)、(-1,-1),又这两条线和2=x 分别交于 )21,2(、2) ,2( ∴所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<x y xx 121,∴22211113((ln )ln 222DS x dx x x x =-=-=-⎰★★★6.抛物线x y 22=分圆822=+y x 的面积为两部分,求这两部分的面积知识点:平面图形面积思路:所围图形关于X 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-6,设阴影部分的面积为1D S ,剩余面积为2D S∵两条曲线x y 22=、822=+y x 的交于(2,2)±(舍去4-=x 的解),∴所围区域1D 表达为Y-型:⎪⎩⎪⎨⎧-<<<<-228222y x y y ;又图形关于x 轴对称,∴342)342(2)68(2)28(220320220221+=-+=--=--=⎰⎰ππy y dy y y S D(其中222cos 18cos 22cos 22844sin 2222+=+=⨯=-⎰⎰⎰=πππdt ttdt t dyy ty ) ∴34634282-=--=πππDS ★★★7.求由曲线x e y =、x e y -=与直线1=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型时,解法较简单,所以用X-型做 解:见图6-2-7∵两条曲线x e y =和x e y -=的交点为(0,1),又这两条线和1=x 分别交于) ,1(e 和) ,1(1-e∴所围区域D 表达为X-型:⎩⎨⎧<<<<-x x e y e x 10,∴2)()(1101-+=+=-=---⎰e e e e dx e e S x x x x D★★★8.求由曲线x y ln =与直线a y ln =及b y ln =所围图形的面积)0(>>a b知识点:平面图形面积思路:由于所围图形表达为Y-型时,解法较简单,所以用Y-型做 解:见图6-2-8∵在x ln 的定义域范围内所围区域D :⎩⎨⎧<<<<ye x by a 0ln ln , ∴a b edy e S b ay bayD-===⎰ln ln ln ln★★★★9.求通过(0,0),(1,2)的抛物线,要求它具有以下性质:(1)它的对称轴平行于y 轴,且向下弯;(2)它与x 轴所围图形面积最小知识点:平面图形面积和求最值思路:首先根据给出的条件建立含参变量的抛物线方程,再求最值时的参变量解:由于抛物线的对称轴平行于y 轴,又过(0,0),所以可设抛物线方程为bx ax y +=2,(由于下弯,所以0<a),将(1,2)代入bx ax y +=2,得到2=+b a ,因此x a ax y )2(2-+=该抛物线和X 轴的交点为0=x 和aa x 2-=, ∴所围区域D :2200(2)a x ay ax a x-⎧<<⎪⎨⎪<<+-⎩ ∴23223226)2()223(])2([a a x a x a dx x a ax S aa a a D-=-+=-+=--⎰)4()2(61)]2()2()2(3[61)(233322+-=-⨯-+-⨯='---a a a a a a a a S D得到唯一极值点:4-=a ,∴所求抛物线为:x x y 642+-=★★★★10.求位于曲线x e y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积知识点:切线方程和平面图形面积思路:先求切线方程,再作出所求区域图形,然后根据图形特点,选择积分区域表达类型解:x e y =⇒xe y =',∴在任一点0x x =处的切线方程为)(000x x e ey x x -=-而过(0,0)的切线方程就为:)1(-=-x e e y ,即ex y =所求图形区域为21D D D =,见图6-2-10X-型下的1D :⎩⎨⎧<<<<∞-x e y x 00,2D :⎩⎨⎧<<<<xey ex x 1∴222)(12110e e e x eedx ex e dx e S x x x D=-=-=-+=∞-∞-⎰⎰ ★★★11.求由曲线θcos 2a r =所围图形的面积知识点:平面图形面积思路:作图可知该曲线是半径为a 、圆心(0 ,a )的圆在极坐标系下的表达式,可直接求得面积为2a π,也可选择极坐标求面积的方法做。
数学分析-定积分的应用

故
3.
求曲线
图形的公共部分的面积 .
解:
与
所围成
得
所围区域的面积为
设平面图形 A 由
与
所确定 提示:
选 x 为积分变量.
旋转体的体积为
4.
若选 y 为积分变量, 则
则有
一般地 , 当曲边梯形的曲边由参数方程
给出时,
则曲边梯形面积
二、参数方程情形
例3. 求由摆线
的一拱与 x 轴所围平面图形的面积 .
解:
且曲线不在自相交,
则曲线围成面积为:
所表示的曲线是封闭的,即
如果参数方程
例3. 求椭圆
解:
所围图形的面积 .
利用椭圆的参数方程
得
当 a = b 时得圆面积公式
三、极坐标情形
求由曲线
及
围成的曲边扇形的面积 .
在区间
上任取小区间
则对应该小区间上曲边扇形面积的近似值为
所求曲边扇形的面积为
对应 从 0 变
例5. 计算阿基米德螺线
解:
到 2 所围图形面积 .
例6. 计算心形线
所围图形的
面积 .
解:
(利用对称性)
例7. 计算心形线
与圆
所围图形的面积 .
提示:
方法1 利用对称性
旋转而成的环体体积 V
方法2 用柱壳法
说明: 上式可变形为
上
半圆为
下
此式反映了环体微元的另一种取法(如图所示).
备用题
解:
1. 求曲线
所围图形的面积.
显然
面积为
同理其它.
又
故在区域
高考讲定积分及其应用举例课件理

总结词
定积分的定义包括将函数分割成小段, 然后求和;定积分的性质包括奇偶性、 可加性等。
VS
详细描述
定积分的定义是将一个函数分割成许多小 段,然后求这些小段的面积和。具体来说 ,如果函数f(x)在区间[a,b]上连续,那么 对于这个区间上的任意两个点a和b,都 有定积分∫(f(x))dx = F(b) - F(a),其中 F(x)是f(x)的原函数。此外,定积分还具 有一些性质,例如奇偶性、可加性等。这 些性质在计算定积分时非常有用。
04
定积分的计算方法
直接积分法
第一季度
第二季度
第三季度
第四季度
总结词
直接积分法是最基本的 积分方法,主要依靠微 分的概念进行计算。
详细描述
直接积分法是将一个函 数的积分转化为另一个 函数的导数的过程。具
体地,对于一个函数 f(x),其不定积分就是 所有使得f(x)成立的函 数F(x)的导数。换句话 说,不定积分就是找到 一个函数,使得这个函 数的导数等于原函数。
微积分基本定理
01
微积分基本定理的定义
微积分基本定理是指对于一个给定的函数f(x),如果对其进行积分,那
么该积分等于f(x)的原函数在该区间上的增量。
02
微积分基本定理的意义
微积分基本定理是微积分学的基础,它揭示了可积函数的原函数与积分
之间的联系,为解决微积分问题提供了基本的方法和工具。
03
微积分基本定理的应用
05
定积分的应用扩展
物理应用
匀速直线运动
01
定积分可应用于计算位移,特别是在匀速直线运动中,速度是
恒定的,因此可以通过对速度的积分来求解位移。
简谐振动
02
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 定积分与其应用学习目标理解定积分的概念,掌握定积分的基本性质. 掌握变上限定积分的导数的计算方法.熟练应用牛顿-莱布尼兹公式计算定积分,熟练掌握定积分的换元积分法和分部积分法. 了解定积分在经济管理中的应用,会利用定积分计算平面图形的面积.定积分和不定积分是积分学中密切相关的两个基本概念,定积分在自然科学和实际问题中有着广泛的应用.本章将从实例出发介绍定积分的概念、性质和微积分基本定理,最后讨论定积分在几何、物理上的一些简单应用.5.1 定积分的概念与性质定积分无论在理论上还是实际应用上,都有着十分重要的意义,它是整个高等数学最重要的内容之一.5.1.1实例分析1.曲边梯形的面积在初等数学中,我们已经学会计算多边形和圆的面积,至于任意曲边所围成的平面图形的面积,只有依赖于曲边梯形并利用极限的方法才能得到比较完满的解决.所谓曲边梯形,就是在直角坐标系中,由直线0,,===y b x a x 与曲线)(x f y =所围成的图形,如图5.1(a),(b),(c)都是曲边梯形.现在求0)(≥x f 时,在连续区间],[b a 上围成的曲边梯形的面积A (如图5.1(a),(b)所(a)示),用以往的知识没有办法解决.为了求得它的面积,我们按下述步骤来计算:(1)分割——将曲边梯形分割成小曲边梯形在区间],[b a 内任意插入1-n 个分点:b x x x x x a n n =<<⋅⋅⋅<<<=-1210,把区间],[b a 分成n 个小区间:],[,],[],,[],,[1,12110n n i i x x x x x x x x -- ,第i 个小区间的长度为),,1(1n i x x x i i i ⋅⋅⋅=-=∆-,过每个分点作垂直于x 轴的直线段,它们把曲边梯形分成n 个小曲边梯形(图5.2),小曲边梯形的面积记为),2,1(n i A i ⋅⋅⋅=∆.(2)近似——用小矩形面积近似代替小曲边梯形面积在小区间],[1i i x x -上任取一点),,2,1(n i i ⋅⋅⋅=ξ,作以],[1i i x x -为底,)(i f ξ为高的小矩形,用小矩形的面积近似代替小曲边梯形的面积,则),,2,1()(n i x f A i i i ⋅⋅⋅=∆≈∆ξ.(3)求和——求n 个小矩形面积之和n 个小矩形面积之和近似等于曲边梯形之和A ,即n A A A A ∆+⋅⋅⋅+∆+∆=21n n x f x f x f ∆+⋅⋅⋅+∆+∆≈)()()(2211ξξξi ni i x f ∆=∑=)(1ξ.(4)取极限令{}i ni x ∆=≤≤1max λ,当分点n 无限增多且0→λ时,和式ini ix f ∆∑=)(1ξ的极限便是曲边梯形的面积A ,即i ni i x f A ∆=∑=→)(lim 1ξλ.2.变速直线运动的路程设一物体作变速直线运动,其速度是时间t 的连续函数)(t v v =,求物体在时刻1T t =到2T t =间所经过的路程S.图5.2我们知道,匀速直线运动的路程公式是:vt S =,现设物体运动的速度v 是随时间的变化而连续变化的,不能直接用此公式计算路程,而采用以下方法计算:(1)分割——把整个运动时间分成n 个时间段在时间间隔],[21T T 内任意插入1-n 个分点:21101T t t t t T n n =<<⋅⋅⋅<<=-,把],[21T T 分成n 个小区间:],[,],[],,[],,[1,12110n n i i t t t t t t t t --⋅⋅⋅⋅⋅⋅,第i 个小区间的长度为),,2,1(1n i t t t i i i ⋅⋅⋅=-=∆-第i 个时间段内对应的路程记作),2,1(n i S i ⋅⋅⋅=∆.(2)近似——在每个小区间上以匀速直线运动的路程近似代替变速直线运动的路程 在小区间],[1i i t t -上任取一点),2,1(n i i ⋅⋅⋅=ξ,用速度)(i v ξ近似代替物体在时间],[1i i t t -上各个时刻的速度,则有),,2,1()(n i t v S i i i ⋅⋅⋅=∆≈∆ξ.(3)求和——求n 个小时间段路程之和将所有这些近似值求和,得到总路程的近似值,即n S S S S ∆+⋅⋅⋅+∆+∆=21n i t v t v t v ∆+⋅⋅⋅+∆+∆≈)()()(2211ξξξi ni i t v ∆=∑=)(1ξ.(4)取极限令{}i ni t ∆=≤≤1max λ,当分点的个数n 无限增多且0→λ时,和式ini it v ∆∑=)(1ξ的极限便是所求的路程S .即i ni i t v S ∆=∑=→)(lim 1ξλ从上面两个实例可以看出,虽然二者的实际意义不同,但是解决问题的方法却是一样的,即采用“分割-近似-求和-取极限”的方法,最后都归结为同一种结构的和式极限问题.类似这样的实际问题还有很多,我们抛开实际问题的具体意义,抓住它们在数量关系上共同的本质特征,从数学的结构加以研究,就引出了定积分的概念.5.1.2定积分的概念定义5.1 设函数)(x f 在区间],[b a 上有定义,任取分点b x x x x x a n n =<<⋅⋅⋅<<<=-1210 把区间],[b a 任意分割成n 个小区间],[1i i x x -,第i 个小区间的长度为),,1(1n i x x x i i i ⋅⋅⋅=-=∆-,记{}i ni x ∆=≤≤1max λ.在每个小区间],[1i i x x -上任取一点),,2,1(n i i ⋅⋅⋅=ξ作和式ini ix f ∆∑=)(1ξ,当0→λ时,若极限ini ix f ∆∑=→)(lim1ξλ存在(这个极限值与区间],[b a 的分法与点iξ的取法无关),则称函数)(x f 在],[b a 上可积,并称这个极限为函数)(x f 在区间],[b a 上的定积分,记作⎰b adx x f )(,即⎰b adx x f )(i ni i x f ∆=∑=→)(lim 1ξλ .其中,“)(x f ”称为被积函数,“dx x f )(”称为被积表达式,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间.根据定积分的定义,前面所讨论的两个实例可分别叙述为: ①曲边梯形的面积A 是曲线)(x f y =在区间],[b a 上的定积分.⎰=badx x f A )((0)(≥x f ).②变速直线运动的物体所走过的路程S 等于速度函数)(t v v =在时间间隔],[21T T 上的定积分.⎰=21)(T T dt t v S .关于定积分的定义作以下几点说明:⑴闭区间上的连续函数是可积的;闭区间上只有有限个间断点的有界函数也是可积的. ⑵定积分是一个确定的常数,它取决于被积函数)(x f 和积分区间],[b a ,而与积分变量使用的字母的选取无关,即有⎰⎰=bab adt t f dx x f )()(.⑶在定积分的定义中,有b a <,为了今后计算方便,我们规定:⎰⎰-=baa bdx x f dx x f )()(.容易得到0)(=⎰a adx x f .5.1.3定积分的几何意义设)(x f 是[]b a ,上的连续函数,由曲线)(x f y =与直线0,,===y b x a x 所围成的 曲边梯形的面积记为A .由定积分的定义与5.1.1实例1,容易知道定积分有如下几何意义:(1)当0)(≥x f 时,A dx x f b a=⎰)((2)当0)(≤x f 时,A dx x f b a-=⎰)((3)如果)(x f 在[]b a ,上有时取正值,有时取负值时,那么以[]b a ,为底边,以曲线)(x f y =为曲边的曲边梯形可分成几个部分,使得每一部分都位于x 轴的上方或下方.这时定积分在几何上表示上述这些部分曲边梯形面积的代数和,如图5.3所示,有321)(A A A dx x f b a+-=⎰其中321,,A A A 分别是图5.3中三部分曲边梯形的面积,它们都是正数.例5.1.1利用定积分的几何意义,证明21112π=-⎰-dx x .证 令]1,1[,12-∈-=x x y ,显然0≥y , 则由21x y -=和直线1,1=-=x x ,0=y 所围成的曲边梯形是单位圆位于x 轴上方的半圆. 如图5.4所示.因为单位圆的面积π=A ,所以 半圆的面积为2π. 由定积分的几何意义知:21112π=-⎰-dx x .5.1.4定积分的性质由定积分的定义,直接求定积分的值,往往比较复杂,但易推证定积分具有下述性质,其中所涉与的函数在讨论的区间上都是可积的.性质5.1.1 被积表达式中的常数因子可以提到积分号前,即⎰⎰=bab adx x f k dx x kf )()(.性质5.1.2 两个函数代数和的定积分等于各函数定积分的代数和,即[]⎰⎰⎰±=±bab ab adx x g dx x f dx x g x f )()()()(.这一结论可以推广到任意有限多个函数代数和的情形. 性质5.1.3(积分的可加性)对任意的点c ,有⎰⎰⎰+=bcc ab adx x f dx x f dx x f )()()(.注意 c 的任意性意味着不论c 是在],[b a 之内,还是c 在],[b a 之外,这一性质均成立. 性质5.1.4如果被积函数c c x f (,)(=为常数),则⎰-=b aa b c cdx )(.特别地,当1=c 时,有⎰-=b aa b dx .性质5.1.5(积分的保序性)如果在区间],[b a 上,恒有)()(x g x f ≥,则⎰⎰≥b abadx x g dx x f )()(.性质5.1.6(积分估值定理)如果函数)(x f 在区间],[b a 上有最大值M 和最小值m ,则).()()(a b M dx x f a b m ba-≤≤-⎰性质5.1.7 (积分中值定理) 如果函数)(x f 在区间],[b a 上连续,则在),(b a 内至少有一点ξ,使得⎰-=b aa b f dx x f ))(()(ξ),(b a ∈ξ.证因)(x f 在],[b a 内连续,所以)(x f 在],[b a 内有最大值M 和最小值m , 由性质5.1.6知: ).()()(a b M dx x f a b m b a-≤≤-⎰从而有 .)(1M dx x f ab m b a ≤-≤⎰ 这就说:⎰-b a dx x f ab )(1是介于m 与M 之间的一个实数. 由连续函数的介值定理1.10知:至少存在一点),(b a ∈ξ,使得)()(1ξf dx x f a b b a=-⎰.即⎰-=b aa b f dx x f ))(()(ξ),(b a ∈ξ.注 性质5.1.7的几何意义是:由曲线)(x f y =,直线b x a x ==,和x 轴所围成曲边梯形的面积等于区间],[b a 上某个矩形的面积,这个矩形的底是区间],[b a ,矩形的高为区间],[b a 内某一点ξ处的函数值)(ξf , 如图5.5所示.显然,由性质5.1.7可得⎰-=b a dx x f ab f )(1)(ξ,)(ξf 称为函数)(x f 在区间],[b a 上的平均值.这是求有限个数的平均值的拓广.性质5.1.8(对称区间上奇偶函数的积分性质) 设)(x f 在对称区间],[a a -上连续,则有 ①如果)(x f 为奇函数,则⎰-=a a dx x f 0)(; ②如果)(x f 为偶函数,则⎰⎰-=a aadx x f dx x f 0)(2)(.例5.1.2估计定积分dx e x ⎰--112的值.解 设2)(x e x f -=,22)('x xe x f --=,令0)('=x f ,得驻点0=x ,比较0=x 与区间端点1±=x 的函数值,有1)0(0==e f ,ee f 1)1(1==±-. 显然2)(x e x f -=在区间]1,1[-上连续,则)(x f 在]1,1[-上的最小值为em 1=,最大值为1=M ,由定积分的估值性质,得22112≤≤⎰--dx e ex . 例5.1.3 比较定积分dx x ⎰102与dx x ⎰13的大小.解 因为在区间]1,0[上,有32x x ≥,由定积分保序性质,得dx x ⎰12dx x ⎰≥13.定积分定积分的原始思想可以追溯到古希腊.古希腊人在丈量形状不规则的土地的面积时,先尽可能地用规则图形(例如矩形和三角形)把要丈量的土地分割成若干小块,并且忽略那些边边角角的不规则的小块.计算出每一小块规则图形的面积,然后将它们相加,就得到土地面积的近似值.后来看来,古希腊人丈量土地面积的方法就是面积思想的萌芽.在十七世纪之前,数学家们没有重视古希腊人的伟大思想,当时流行的方法是不可分量法.这种方法认为面积和体积可以看作是由不可分量的运动产生出来的.这种方法没有包含极限概念,也没有采用代数与算数的方法.因此,不可分量的思想没有取得成功.虽然积分概念未能很好得建立起来,然而,到牛顿那个年代,数学家们已经能够计算许多简单的函数的积分.虽然十三世纪就出现了利用分割区间作和式并计算面积的朦胧思想(奥雷姆,法国数学家).但是建立黎曼积分(即定积分)的严格定义的努力基本上由柯西开始.他比较早地用函数值的和式的极限定义积分(他还定义了广义积分).但是柯西对于积分的定义仅限于连续函数.1854年,黎曼指出了积分的函数不一定是连续的或者分段连续的,从而把柯西建立的积分进行了推广.他把可积函数类从连续函数扩大到在有限区间中具有无穷多个间断点的函数.黎曼给出关于黎曼可积的两个充分必要条件.其中一个是考察函数)(x f 的振幅;另一个充分必要条件就是对于区间],[b a 的每一个划分b x x x a n =≤≤≤= 10,构造积分上和与积分下和:S=i ni ix M∆⋅∑=1s=i ni i x m ∆⋅∑=1其中M i 和m i 分别是函数)(x f 在每个子区间上的最大值和最小值.)(x f 在],[b a 黎曼可积的充分必要条件就是0)(lim 0max =-→∆s S x至今,这个定理仍然经常出现在微积分和数学分析的教科书中.达布(法国数学家)对于黎曼的积分的定义作了推广.他严格地证明了不连续函数,甚至有无穷多个间断点的函数,只要间断点可以被包含在长度可以任意小的有限个区间之内就是可积分的.在牛顿和莱布尼兹之前,微分和积分作为两种数学运算、两种数学问题,是分别加以研究的.虽然有不少数学家已经开始考虑微分和积分之间的联系,然而只有莱布尼兹和牛顿(各自独立地)将微分和积分真正沟通起来,明确地找到了两者之间内在的直接的联系,指出微分和积分是互逆的两种运算.而这正是建立微积分的关键所在.牛顿在1666年发表的著作《流数简论》中,从确定面积率的变化入手,通过反微分计算面积,把面积计算看作是求切线的逆.从而得到了微积分基本定理.在1675年,莱布尼兹就认识到,作为求和过程的积分是微分的逆.他于1675—1676年给出了微积分基本定理)()(a f b f dx dx dfba-=⎰ 并于1693年给出了这个定理的证明.简单直观并且便于应用,是黎曼积分的优点.黎曼积分的缺点主要是理论方面的.一方面,黎曼积分的可积函数类太小.基本上是“分段连续函数”构成的函数类.另一方面,黎曼积分在处理诸如函数级数的逐项积分、重积分的交换积分顺序以与函数空间的完备性这样一些重要的理论问题时,存在许多不可克服的障碍于.是在上一世纪末到本世纪初,一种新的积分理论—勒贝格积分应运而生.它是黎曼积分的推广,勒贝格积分的建立是积分学领域的重大发展.它在很大程度上克服了黎曼积分在理论上遇到的上述困难.勒贝格积分是近代分析数学发展的重要动力和基础.习题5.11.用定积分表示由曲线322+-=x x y 与直线4,1==x x 与x 轴所围成的曲边梯形的面积.2.利用定积分的几何意义,作图证明: (1)⎰=1012xdx (2)20224R x R R π=-⎰3.不计算定积分,比较下列各组积分值的大小. (1)dx x ⎰10,dx x ⎰12 (2)dx e x ⎰1,dx e x ⎰-12(3)⎰43ln xdx ,xdx ⎰432ln (4)⎰40cos πxdx ,⎰40sin πxdx4.利用定积分估值性质,估计下列积分值所在的X 围. (1)dx e x ⎰10 (2)⎰-2)2(dx x x(3)dx x x⎰+2121 (4)dx x x ⎰--202955.试用积分中值定理证明0sin lim 1=⎰++∞→dx xxn n n .5.2 定积分的基本公式定积分就是一种特定形式的极限,直接利用定义计算定积分是十分繁杂的,有时甚至无法计算.本节将介绍定积分计算的有力工具——牛顿—莱布尼兹公式.5.2.1变上限定积分定义5.2 设函数)(x f 在区间],[b a 上连续,对于任意],[b a x ∈,)(x f 在区间],[x a 上也连续,所以函数)(x f 在],[x a 上也可积.显然对于],[b a 上的每一个x 的取值,都有唯一对应的定积分⎰x adt t f )(和x 对应,因此⎰xadt t f )(是定义在],[b a 上的函数.记为⎰=Φxadt t f x )()(,],[b a x ∈.称)(x Φ叫做变上限定积分,有时又称为变上限积分函数.变上限积分函数的几何意义是: 如果0)(>x f ,对][b a ,上任意x ,都 对应唯一一个曲边梯形的面积)(x Φ, 如图5.6中的阴影部分.因此变上限 积分函数有时又称为面积函数.函数)(x Φ具有如下重要性质.定理5.1 如果函数)(x f 在区间],[b a 上连续,则⎰=Φx adt t f x )()(在],[b a 上可导,且)()()()(b x a x f dt t f dx d x xa≤≤==Φ'⎰.证给定函数)(x Φ的自变量x 的改变量x ∆,函数)(x Φ有相应的改变量∆Φ.则⎰⎰⎰∆+∆+=-=Φ-∆+Φ=∆Φx x xx ax x adt t f dt t f dt t f x x x )()()()()(.由定积分的中值定理,存在),(),(x x x x x x ∆+∆+∈或ξ,使x f dt t f x x x∆=⎰∆+)()(ξ成立.所以)()(lim )(lim )(lim lim)()(000x f f f xxf x x x f x x x x 连续ξξξξ→→∆→∆→∆==∆∆=∆∆Φ=Φ'.由定理5.1可知,如果函数)(x f 在区间],[b a 上连续,则函数⎰=Φx adt t f x )()(就是)(x f 在区间],[b a 上的一个原函数.由定理5.1我们有下面的结论.定理5.2(原函数存在定理) 如果)(x f 在区间],[b a 上连续,则它的原函数一定存在,且其中的一个原函数为⎰=Φxadt t f x )()(.注 这个定理一方面肯定了闭区间],[b a 上连续函数)(x f 的一定有原函数(解决了第四章第一节留下的原函数存在问题),另一方面初步地揭示积分学中的定积分与原函数之间的联系.为下一步研究微积分基本公式奠定基础.例5.2.1 计算tdt e dx d x tsin 0⎰-.解tdt e dxd x t sin 0⎰-=]sin [0'⎰-tdte x t=x e x sin -. 例5.2.2 求⎰+→xx dt t x020)1ln(1lim .解 当0→x 时,此极限为0型不定式,两次利用洛必塔法则有⎰+→x x dt t x20)1ln(1lim =2)1ln(limx dt t x x ⎰+→ =xx x 2)1ln(lim0+→=211lim 0x x +→=21例5.2.3求dt t dx d x )1(212+⎰. 解 注意,此处的变上限积分的上限是2x ,若记2x u =,则函数dt t x )1(212+⎰可以看成是由dt t y u)1(12+=⎰与2x u =复合而成,根据复合函数的求导法则得dt t dx d x )1(212+⎰=dxdu dt t du d u ])1([12+⎰=x u 2)1(2+ =x x 2)1(4+=x x 225+.一般地有,如果)(x g 可导,则)()]([])([])([)()(x g x g f dt t f dt t f dxd x x g a x g a '='=⎰⎰. 上式可作为公式直接使用.例5.2.4求极限402sin limxtdt x x ⎰→.解 因为0lim 4=→x x ,⎰⎰==→20000sin sin lim x x tdt tdt ,所以这个极限是0型的未定式,利用洛必塔法则得42sin limx tdt x x ⎰→=32042sin lim xx x x ⋅→=2202sin lim x x x → =220sin lim 21x x x → =21.5.2.2微积分基本公式定理5.3 如果函数)(x f 在区间],[b a 上连续,且)(x F 是)(x f 的任意一个原函数,那么⎰-=b aa Fb F dx x f )()()(.证 由定理5.2知,⎰=Φx adt t f x )()(是)(x f 在区间],[b a 的一个原函数,则)(x Φ与)(x F 相差一个常数C ,即C x F dt t f x a+=⎰)()(.又因为C a F dt t f a a+==⎰)()(0,所以)(a F C -=.于是有)()()(a F x F dt t f x a -=⎰. 所以⎰-=b aa Fb F dx x f )()()(成立.为方便起见,通常把)()(a F b F -简记为ba x F )(或ba x F )]([,所以公式可改写为)()()()(a F b F x F dx x f b a b a-==⎰上述公式称为牛顿—莱布尼兹(Newton-Leibniz )公式,又称为微积分基本公式.定理5.3揭示了定积分与被积函数的原函数之间的内在联系,它把求定积分的问题转化为求原函数的问题.确切地说,要求连续函数)(x f 在],[b a 上的定积分,只需要求出)(x f 在区间],[b a 上的一个原函数)(x F ,然后计算)()(a F b F -就可以了.例5.2.5 计算dx x ⎰102.解 因为C x dx x +=⎰3231,所以 dx x ⎰12=10331x =33031131⨯-⨯=31. 例5.2.6求dx e e xx⎰-+111. 解 dx e e xx ⎰-+111=⎰-++111)1(x xe e d =11)1ln(-+x e =)1ln()1ln(1-+-+e e =1.例5.2.7求dx x ⎰--312.解 根据定积分性质5.1.3,得dx x ⎰--312=⎰⎰⎰⎰---+-=-+-21322132)2()2(|2||2|dx x dx x dx x dx x=322212)221()212(x x x x -+--=2129+=5.例5.2.8求极限.)321(lim 4333nn n ++++∞→ 解 根据定积分定义,得.4141)(1lim )321(lim 14110334333====++++∑⎰=∞→∞→x dx x ni n n n n i n n牛顿与莱布尼兹牛顿(Newton ,Isaac ,1643~1727)英国物理学家,数学家,天文学家.经典物理学理论体系的建立者.莱布尼兹(Gottfriend Wilhelm Leibniz,1646-1716)是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才.他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献.微积分创立的优先权,数学上曾掀起了一场激烈的争论.实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿.莱布尼兹在1684年10月发表的《教师学报》上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献.牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家G 、W 莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以与类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法.他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外.”(但在第三版与以后再版时,这段话被删掉了.)因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的.牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹.莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不与的.莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一.因此,他发明了一套适用的符号系统,如,引入dx 表示x 的微分,∫表示积分,等等.这些符号进一步促进了微积分学的发展.1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性.你知道为什么称为牛顿---莱布尼兹公式了吧!习题5.21. 求下列函数的导数: (1)dt t x F x ⎰+=021)( (2)dt ttx F x a⎰=2sin )( (3)dt e t x F xt⎰-=12)( (4)tdt x F x x⎰-=22cos )(2.求下列函数的极限: (1)xtdt x x ⎰→02cos lim(2)211)1()1(lim--⎰→x dtt t x x(3)2arctan limx tdt x x ⎰→ (4)2)11(limx dtt t x x ⎰--+→3.求函数⎰-=x dt t t x F 0)2()(在区间]3,1[-上的最大值和最小值.4.求由曲线x x y 22+-=与直线2,0==x x 与x 轴所围成的曲边梯形的面积. 5.求下列定积分的值: (1)dx x x )1(212-+⎰(2)dx x x )2(21+⎰(3)dx x x⎰+2021 (4)dx x ⎰211 (5)dx x ⎰πcos (6)dx e x⎰225.3 定积分的积分法在第四章我们学习了用换元积分法和分部积分法求已知函数的原函数.把它们稍微改动就是定积分的换元积分法和分部积分法.但最终的计算总是离不开牛顿-莱布尼兹公式.5.3.1定积分的换元积分法定理5.4 设函数)(x f 在区间],[b a 上连续,并且满足下列条件: (1))(t x ϕ=,且)(αϕ=a ,)(βϕ=b ;(2))(t ϕ在区间],[βα上单调且有连续的导数)(t ϕ'; (3)当t 从α变到β时,)(t ϕ从a 单调地变到b . 则有⎰⎰'=b adt t t f dx x f βαϕϕ)()]([)(上述公式称为定积分的换元积分公式.在应用该公式计算定积分时需要注意以下两点: ①从左到右应用公式,相当于不定积分的第二换元法.计算时,用)(t x ϕ=把原积分变量x 换成新变量)(t ϕ,积分限也必须由原来的积分限a 和b 相应地换为新变量t 的积分限α和β,而不必代回原来的变量x ,这与不定积分的第二换元法是完全不同的.②从右到左应用公式,相当于不定积分的第一换元法(即凑微分法).一般不用设出新的积分变量,这时,原积分的上、下限不需改变,只要求出被积函数的一个原函数,就可以直接应用牛顿—莱布尼兹公式求出定积分的值.例5.3.1求dx xx ⎰+301.解 令t x =+1,则12-=t x ,tdt dx 2=,当0=x 时,1=t ,当3=x 时,2=t ,于是dx xx ⎰+301=tdt t t 21212⋅-⎰=dt t ⎰-212)1(2=213]31[2t t -=38 例5.3.2 求xdx x sin cos 203⎰π.解法一设x t cos =,则xdx dt sin -=,当0=x 时,1=t ;当2π=x 时,0=t ,于是xdx x sin cos 203⎰π=)(013dt t -⋅⎰=dt t ⎰103=104]41[t =41. 解法二xdx x sin cos 203⎰π=x xd cos cos 203⎰-π=204]cos 41[πx -=41. 解法一是变量替换法,上下限要改变;解法二是凑微分法,上下限不改变. 例5.3.3 求dx e x ⎰-2ln 01.解 令t e x =-1,则)1ln(2t x +=,dt ttdx 212+=,当0=x 时,0=t ;当2ln =x 时,1=t ,于是dx e x⎰-2ln 01=dt t t t ⎰+⋅10212=dt t t ⎰+102212=dt t)111(2102⎰+- =10]arctan [2t t -=22π-.例5.3.4设)(x f 在区间],[a a -上连续,证明: (1)如果)(x f 为奇函数,则⎰-=a a dx x f 0)(; (2)如果)(x f 为偶函数,则⎰⎰-=a aadx x f dx x f 0)(2)(.这结论是定积分的性质5.1.8,下面我们给出严格的证明.证由定积分的可加性知x d x f x d x f x d x f aaaa⎰⎰⎰+=--00)()()(,对于定积分⎰-0)(adx x f ,作代换t x -=,得⎰-0)(a dx x f =⎰--0)(adt t f =⎰-a dt t f 0)(=⎰-a dx x f 0)(,所以⎰⎰⎰-+-=aaa adx x f dx x f dx x f 0)()()(=⎰-+adx x f x f 0)]()([(1)如果)(x f 为奇函数,即)()(x f x f -=-,则0)()()()(=-=-+x f x f x f x f , 于是⎰-=aadx x f 0)(.(2)如果)(x f 为偶函数,即)()(x f x f =-,则)(2)()()()(x f x f x f x f x f =+=-+,于是⎰⎰-=aaadx x f dx x f 0)(2)(.例5.3.5 求下列定积分: (1)dx xxx ⎰-+33421sin (2)dx x x 22224-⎰- 解 (1)因为被积函数421sin )(xxx x f +=是奇函数,且积分区间]3,3[-是对称区间,所以dx x xx ⎰-+33421sin =0.(2)被积函数224)(x x x f -=是偶函数,积分区间]2,2[-是对称区间,所以dx x x 22224-⎰-=dx x x 22242-⎰,令t x sin 2=,则tdt dx cos 2=,t x cos 242=-, 当0=x 时,0=t ;当2=x 时,2π=t ,于是dx x x22224-⎰-=tdt t ⎰2022cos sin 162π=tdt 2sin 8202⎰π=dt t ⎰-20)4cos 1(4π=20)4sin 4(πt t -=π2.2.分部积分法定理5.5设函数)(x u u =和)(x v v =在区间],[b a 上有连续的导数,则有)()()]()([)()(x du x v x v x u x dv x u bab ab a⎰⎰-=.上述公式称为定积分的分部积分公式.选取)(x u 的方式、方法与不定积分的分部积分法完全一样.例5.3.6求⎰21ln xdx x .解⎰21ln xdx x =⎰212)(ln 21x xd =)(ln 21ln 21212212x d x x x ⎰-=⎰-21212ln 2xdx =212412ln 2x -=432ln 2-.例5.3.7 求⎰πsin xdx x .解⎰πsin xdx x =⎰-πcos x xd =⎰+-ππ0cos cos xdx x x=ππ0sin x +=π.例5.3.8 求dx e x ⎰10.解令t x =,则2t x =,tdt dx 2=,当0=x 时,0=t ;当1=x 时,1=t .于是dx e x ⎰10=dt te t ⎰102=⎰102t tde =dt e te t t ⎰-11022=1022t ee -=222+-e e =2.此题先利用换元积分法,然后应用分部积分法.习题 5.31.求下列定积分的值:(1)dx xxe⎰+1ln 1 (2)dx x x ⎰-1021(3)dx e x x 12121⎰(4)⎰++3011x dx(5)⎰+6413xx dx (6)dx xx ⎰-1011(7)dx e x x 2202⎰(8)⎰1arctan xdx(9)⎰-+10)1ln(e dx x (10)xdx e x cos 202⎰π2.求下列定积分:(1)dx x x x x )cos sin 3(2112++⎰- (2)dx x x xx ⎰-++11242312sin (3)dx ax x a a⎰-+222 (4)dx xx ⎰--+1121sin 15.4 定积分的应用由于定积分的概念和理论是在解决实际问题的过程中产生和发展起来的,因而它的应用非常广泛.问题1 在机械制造中,某凸轮横截面的轮廓线是由极坐标方程)cos 1(θ+=a r)0(>a 确定的,要计算该凸轮的面积和体积.问题2 修建一道梯形闸门,它的两条底边各长6m 和4m ,高为6m,较长的底边与水面平齐,要计算闸门一侧所受水的压力.为了解决这些问题,下面先介绍运用定积分解决实际问题的常用方法——微元法,然后讨论定积分在几何和物理上的一些简单应用.读者通过这部分内容的学习,不仅要掌握一些具体应用的计算公式,而且还要学会用定积分解决实际问题的思想方法.5.4.1定积分应用的微元法为了说明定积分的微元法,我们先回顾求曲边梯形面积A 的方法和步骤:(1)将区间],[b a 分成n 个小区间,相应得到n 个小曲边梯形,小曲边梯形的面积记为i A ∆),2,1(n i =;(2)计算i A ∆的近似值,即i i i x f A ∆≈∆)(ξ(其中],[,11i i i i i i x x x x x --∈-=∆ξ); (3)求和得A 的近似值,即ini ix f A ∆≈∑=1)(ξ;(4)对和取极限得⎰∑=∆==→b aini idx x f x f A )()(lim1ξλ.下面对上述四个步骤进行具体分析:第(1)步指明了所求量(面积A )具有的特性:即A 在区间],[b a 上具有可分割性和可加性.第(2)步是关键,这一步确定的i i i x f A ∆≈∆)(ξ是被积表达式dx x f )(的雏形.这可以从以下过程来理解:由于分割的任意性,在实际应用中,为了简便起见,对i i i x f A ∆≈∆)(ξ省略下标,得x f A ∆≈∆)(ξ,用],[dx x x +表示],[b a 内的任一小区间,并取小区间的左端点x 为ξ,则A ∆的近似值就是以dx 为底,)(x f 为高的小矩形的面积(如图5.7阴影部分),即dx x f A )(≈∆.通常称dx x f )(为面积元素,记为dx x f dA )(=.将(3),(4)两步合并,即将这些面积元素在],[b a 上“无限累加”,就得到面积A .即⎰=badx x f A )(.一般说来,用定积分解决实际问题时,通常按以下步骤来进行:(1)确定积分变量x ,并求出相应的积分区间],[b a ;(2)在区间],[b a 上任取一个小区间],[dx x x +,并在小区间上找出所求量F 的微元dx x f dF )(=;(3)写出所求量F 的积分表达式⎰=b adx x f F )(,然后计算它的值.利用定积分按上述步骤解决实际问题的方法叫做定积分的微元法. 注 能够用微元法求出结果的量F 一般应满足以下两个条件: ①F 是与变量x 的变化X 围],[b a 有关的量;②F 对于],[b a 具有可加性,即如果把区间],[b a 分成若干个部分区间,则F 相应地分成若干个分量.5.4.2定积分求平面图形的面积1.直角坐标系下面积的计算(1)由曲线)(x f y =和直线0,,===y b x a x 所围成曲边梯形的面积的求法前面已经介绍,此处不再叙述.(2)求由两条曲线)(),(x g y x f y ==,))()((x g x f ≥与直线b x a x ==,所围成平面的面积A (如图5.8所示).下面用微元法求面积A . ①取x 为积分变量,],[b a x ∈.②在区间],[b a 上任取一小区间],[dx x x +,该区间上小曲边梯形的面积dA 可以用高)()(x g x f -,底边为dx 的小矩形的面积近似代替,从而得面积元素dx x g x f dA )]()([-=.图5.8③写出积分表达式,即⎰-=badx x g x f A )]()([.⑶求由两条曲线)(),(y x y x ϕψ==,))()((y y ϕψ≤与直线d y c y ==,所围成平 面图形(如图5.9)的面积.这里取y 为积分变量,],[d c y ∈, 用类似 (2)的方法可以推出:⎰-=dcdy y y A )]()([ψϕ.例5.4.1 求由曲线2x y =与22x x y -= 所围图形的面积.解 先画出所围的图形(如图5.10)由方程组⎩⎨⎧-==222xx y x y ,得两条曲线的交点为 )1,1(),0,0(A O ,取x 为积分变量,]1,0[∈x .由公式得dx x x x A )2(122⎰--=1032]32[x x -=31=.例5.4.2 求曲线x y 22=与4-=x y 所围图形的面积.解 画出所围的图形(如图5.11).由方程组⎩⎨⎧-==422x y xy 得两条曲线的交点坐标为)4,8(),2,2(B A -,取y 为积分变量,]4,2[-∈y .将两曲线方程分别改写为4212+==y x y x 及得所求面积为 dy y y A ⎰--+=422)214(x 图5.92x x -图5.104-=x4232)61421(--+=y y y 18=. 注 本题若以x 为积分变量,由于图形在]8,2[]2,0[和两个区间上的构成情况不同,因此需要分成两部分来计算,其结果应为:⎰⎰--+=8220)]4(2[22dx x x dx x A82223223]421322[324x x x x+-+=18=.显然,对于例5.4.2选取x 作为积分变量,不如选取y 作为积分变量计算简便.可见适当选取积分变量,可使计算简化.例5.4.3求曲线x y x y sin cos ==与在区间],0[π上所围平面图形的面积. 解 如图5.12所示,曲线x y x y sin cos ==与的交点坐标为)22,4(π,选取x 作为 积分变量,][π,0∈x ,于是,所求面积为dx x x dx x x A ⎰⎰-+-=πππ440)cos (sin )sin (cosπππ440)sin cos ()cos (sin x x x x --++=22=.2.极坐标系下面积的计算设曲边扇形由极坐标方程)(θρρ=与射线)(,βαβθαθ<==所围成(如图5.13所示).下面用微元法求它的面积A.以极角θ为积分变量,它的变化区间是],[βα,相应的小曲边扇形的面积近似等于半径为)(θρ,中心角为θd 的圆扇形的面积,从而得面积微元为θθρd dA 2)]([21=x图5.12。