《现代控制理论》实验报告

合集下载

现代控制理论实验报告

现代控制理论实验报告

实验报告( 2016-2017年度第二学期)名称:《现代控制理论基础》题目:状态空间模型分析院系:控制科学与工程学院班级: ___学号: __学生姓名: ______指导教师: _______成绩:日期: 2017年 4月 15日线控实验报告一、实验目的:l.加强对现代控制理论相关知识的理解;2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析;二、实验内容1第一题:已知某系统的传递函数为G (s)S23S2求解下列问题:(1)用 matlab 表示系统传递函数num=[1];den=[1 3 2];sys=tf(num,den);sys1=zpk([],[-1 -2],1);结果:sys =1-------------s^2 + 3 s + 2sys1 =1-----------(s+1) (s+2)(2)求该系统状态空间表达式:[A1,B1,C1,D1]=tf2ss(num,den);A =-3-210B =1C =0 1第二题:已知某系统的状态空间表达式为:321A,B,C 01:10求解下列问题:(1)求该系统的传递函数矩阵:(2)该系统的能观性和能空性:(3)求该系统的对角标准型:(4)求该系统能控标准型:(5)求该系统能观标准型:(6)求该系统的单位阶跃状态响应以及零输入响应:解题过程:程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0;[num,den]=ss2tf(A,B,C,D); co=ctrb(A,B);t1=rank(co);ob=obsv(A,C);t2=rank(ob);[At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' );[Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' );Ao=Ac';Bo=Cc';Co=Bc';结果:(1) num =0 01den =1 32(2)能控判别矩阵为:co =1-30 1能控判别矩阵的秩为:t1 =2故系统能控。

现代控制理论实训报告

现代控制理论实训报告

一、前言随着科技的飞速发展,自动化、智能化已成为现代工业生产的重要特征。

为了更好地掌握现代控制理论,提高自己的实践能力,我参加了现代控制理论实训课程。

本次实训以状态空间法为基础,研究多输入-多输出、时变、非线性一类控制系统的分析与设计问题。

通过本次实训,我对现代控制理论有了更深入的了解,以下是对本次实训的总结。

二、实训目的1. 巩固现代控制理论基础知识,提高对控制系统的分析、设计和调试能力。

2. 熟悉现代控制理论在工程中的应用,培养解决实际问题的能力。

3. 提高团队合作意识,锻炼动手能力和沟通能力。

三、实训内容1. 状态空间法的基本概念:状态空间法是现代控制理论的核心内容,通过建立状态方程和输出方程,描述系统的动态特性。

2. 状态空间法的基本方法:包括状态空间方程的建立、状态转移矩阵的求解、可控性和可观测性分析、状态反馈和观测器设计等。

3. 控制系统的仿真与实现:利用MATLAB等仿真软件,对所设计的控制系统进行仿真,验证其性能。

4. 实际控制系统的分析:分析实际控制系统中的控制对象、控制器和被控量,设计合适的控制策略。

四、实训过程1. 理论学习:首先,我对现代控制理论的相关知识进行了复习,包括状态空间法、线性系统、非线性系统等。

2. 实验准备:根据实训要求,我选择了合适的实验设备和软件,包括MATLAB、控制系统实验箱等。

3. 实验操作:在实验过程中,我按照以下步骤进行操作:(1)根据实验要求,建立控制系统的状态空间方程。

(2)求解状态转移矩阵,并进行可控性和可观测性分析。

(3)设计状态反馈和观测器,优化控制系统性能。

(4)利用MATLAB进行仿真,观察控制系统动态特性。

(5)根据仿真结果,调整控制器参数,提高控制系统性能。

4. 结果分析:通过对仿真结果的分析,我对所设计的控制系统进行了评估,并总结经验教训。

五、实训成果1. 掌握了现代控制理论的基本概念和方法。

2. 提高了控制系统分析与设计能力,能够独立完成实际控制系统的设计。

现代理论控制实验2

现代理论控制实验2
2s+6 2 s+1
与(1)中一致,这是因为线性变换并不改变系统的特征值 由 step(g3) hold on step(g2) hold on step(g1)得
Байду номын сангаас
单位阶跃输出相应得到的曲线如图所示
可见得到的曲线完全覆盖了(1)和(2)中得到的曲线, 说明得到的曲线与(1)和(2) 中相同,因为系统的传递函数并没有发生变化
和记录这些曲线。 当输入改变时, 每个状态变量曲线是否随着改变?能否根据这 些曲线判断系统以及各状态变量的能控性?不能控和能控状态变量的响应曲线 有何不同? (5)根据(2)和(4)所得曲线能否判断系统状态以及各状态变量的能观测性? 2. 已知系统
0 0 1 0 2 0 3 0 1 0 x x u 0 0 0 2 0 0 0 4 0 0
由 a=[-3 -4;-1 0];c=[-1 -1];vo=obsv(a,c);rank(vo)得 ans=1 所以系统是状态不能观的 由 a=[-3 -4;-1 0];b=[4;1];c=[-1 -1];d=0;uc=ctrb(a,b);uy=[c*uc
d];rank(uy)得 ans=1 所以系统是输出不能控的 状态能控性和输出能控性之间并没有联系 (2) 由 step(gtf) hold on impulse(gtf)可得系统的输入分别为单位阶跃函数和单
y 1 0 1 0x
(1)将给定的状态空间模型转换为传递函数模型。令初始状态为零,用 MATLAB 计算系统的单位阶跃输出响应,绘制和记录相应的曲线。 (2)按能控性分解给定的状态空间模型并记录所得的结果,然后再将其转换为 传递函数模型。它与(1)中所得的传递函数模型是否一致?为何?令初始状态 为零,用 MATLAB 计算系统的单位阶跃输出响应,并绘制和记录相应曲线。这一 曲线与(1)中的输出曲线是否一致?为何? (3)按能观测性分解给定的状态空间模型并记录分解所得的结果,然后再将其 转换为传递函数模型。它与(1)中的传递函数模型是否一致?为何?令初始状 态为零,用 MATLAB 计算系统的单位阶跃输出响应,并绘制和记录相应曲线。这 一曲线与(1)中的输出曲线是否一致? (4)按能控性能观测性分解给定的状态空间模型并记录分解所得的结果,然后 再将其转换为传递函数模型。它与(1)中的传递函数模型是否一致?为何?令 初始状态为零,用 MATLAB 计算系统的单位阶跃输出响应,并绘制和记录相应的 曲线。这一曲线与(1)中的输出曲线是否一致?为何? 三、实验结果 1(1) 系统的能控性和能观性判断结果如下 由 a=[-3 -4;-1 0];b=[4;1];uc=ctrb(a,b);rank(uc)得 ans =1 所以系统是状态不能控的

现代控制理论实验报告

现代控制理论实验报告

现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----K KMATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。

零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P ,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。

传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu表示对系统的第iu个输入量求传递函数;对单输入iu为1;验证教材P438页的例9-6。

求P512的9-6题的状态空间描述。

>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。

现代控制理论基础实验报告

现代控制理论基础实验报告

紫金学院计算机系实验报告现代控制理论基础实验报告专业:年级:姓名:学号:提交日期:实验一 系统能控性与能观性分析1、实验目的:1.通过本实验加深对系统状态的能控性和能观性的理解;2.验证实验结果所得系统能控能观的条件与由它们的判据求得的结果完全一致。

2、实验内容:1.线性系统能控性实验;2. 线性系统能观性实验。

3、实验原理:系统的能控性是指输入信号u 对各状态变量x 的控制能力。

如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态变量转移到状态空间的坐标原点。

则称系统是能控的。

系统的能观性是指由系统的输出量确定系统所有初始状态的能力。

如果在有限的时间内,根据系统的输出能唯一地确定系统的初始状态,则称系统能观。

对于图10-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中4321R R R R ≠,则输入电压u 能控制i L 和u c 状态变量的变化,此时,状态是能控的;状态变量i L 与u c 有耦合关系,输出u c 中含有i L 的信息,因此对u c 的检测能确定i L 。

即系统能观的。

反之,当4321R R =R R 时,电桥中的c 点和d 点的电位始终相等, u c 不受输入u 的控制,u 只能改变i L 的大小,故系统不能控;由于输出u c 和状态变量i L 没有耦合关系,故u c 的检测不能确定i L ,即系统不能观。

1.1 当4321R RR R ≠时u L u i R R R R C R R R R R R R R L R R R R R R C R R R R R R R R L u i C L C L ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫+++-+-+-⎝⎛+-+-+++-=⎪⎪⎭⎫ ⎝⎛01)11(1)(1)(1)(143214343212143421243432121 (10-1)y=u c =[01]⎪⎪⎪⎭⎫⎝⎛c L u i (10-2)由上式可简写为bu Ax x+= cx y =式中⎪⎪⎭⎫ ⎝⎛=C L u i x ⎪⎪⎪⎪⎪⎭⎫+++-+-+-⎝⎛+-+-+++-=)11(1)(1)(1)(143214343212143421243432121R R R R C R R R R R R R R L R R R R R R C R R R R R R R R L A⎪⎪⎪⎭⎫⎝⎛=01L b 1] [0=c由系统能控能观性判据得][Ab brank =2 2=⎥⎦⎤⎢⎣⎡cA c rank故系统既能控又能观。

现代控制理论实验

现代控制理论实验

现代控制理论实验华北电力大学实验报告||实验名称状态空间模型分析课程名称现代控制理论基础||专业班级:自动化1203 学生姓名:孟令虎学号:201209020216 成绩:指导教师:刘鑫屏老师实验日期: 2015.4.24一、实验目的l.加强对现代控制理论相关知识的理解;2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境三、实验内容1、 模型转换例 1.把传递函数模型转化为状态空间模型3248G s =81912s s s s ++++()。

解:程序如下num=[4 8]; den=[1 8 19 12];[A,B,C,D]=tf2ss(num,den); G=ss(A,B,C,D) 运行结果: A =-8 -19 -12 1 0 0 0 1 0 B = 1 0 0 C =0 4 8 D =0 结果为112233-8 -19 -1211 0 010 1 00x x x x u x x ∙∙∙⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦,[]1230 4 8x y x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例2.把状态空间模型转化为传递函数模型A=0 1 00 0 1-6 -11 -6⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B=001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C= []2 3 0 D=0。

解:程序如下:clearA=[0 1 0;0 0 1;-6 -11 -6]; B=[0;0;1]; C=[3 2 0]; D=0; iu=1;[num,den] = ss2tf(A,B,C,D,iu); sys=tf(num,den) 运行结果为:Transfer function: 2 s + 3---------------------- s^3 + 6 s^2 + 11 s + 62、 状态方程状态解和输出解例1.单位阶跃输入作用下的状态响应A=0 1 00 0 1-6 -11 -6⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B=001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C=[]2 3 0 D=0。

中北大学现代控制理论实验报告

中北大学现代控制理论实验报告

中北大学计算机与控制工程学院实验报告《现代控制理论》专业电气工程与智能控制班级XX070541学号XX070541XX姓名XX辅导老师成绩实验日期2017.04.25 实验时间8:30—11:30实验名称单级倒立摆系统控制特性分析实验目的1、旋转倒立摆线性模型建立与分析;2、利用MATLAB 分析线性定常系统的可控性、可观性与稳定性;3、线性模型与非线性模型对比;实验内容(1)根据实验原理中提供的单级倒立摆模型及可控、可观、稳定性判定方法,自编写程序判断倒立摆系统中占空比δ→旋转臂角位移α,占空比δ→摆杆角位移q 两通道的可控性,求解两通道系统的变换矩阵Qc;(2)自编写程序判断倒立摆系统中占空比δ→旋转臂角位移α,占空比δ→摆杆角位移q 两通道的可观性,求解两通道系统的变换矩阵Qo;(3)自编写程序判断倒立摆系统中占空比δ→旋转臂角位移α,占空比δ→摆杆角位移q 两通道的稳定性;实验原理或流程图实验过程或源代码J=0.0423m=0.404辅导老师成绩实验日期2017.04.25 实验时间8:30—11:30 实验名称单级倒立摆极点配置控制系统设计实验目的1. 根据设计指标获取理想极点位置;2.利用MATLAB 基于极点配置方法求解状态反馈矩阵;实验内容实验原理或流程图实验过程或源代码引用实验1的全部程序并附加以下程序disp('原系统的极点');p=eig(A)' %求矩阵A的全部特征根P=[-100;-101;-7.07+10*sqrt(-1/2);-7.07-10*sqrt(-1/2)]; K=place(A,B,P) %对系统进行极点配置disp('配置后系统的极点为')p=eig(A-B*K)'Simulink仿真输出结果显示系统稳定。

实验心得:学会了如何进行系统极点配置。

在simulink仿真模型中,可直接引用矩阵ABCD,一个系统的输入输出维数应相等。

南昌大学现代控制理论实验报告

南昌大学现代控制理论实验报告

实验报告实验课程:现代控制理论姓名:学号:专业班级:2016年6月实验一系统的能控性与能观性分析一、实验设备PC计算机,MATLAB软件。

二、实验目的①学习系统状态能控性、能观测性的定义及判别方法;②通过用MATLAB编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握将一般形式的状态空间描述变换成能控标准形、能观标准形。

三、实验原理说明参考教材利用MATLAB判定系统能控性”利用MATLAB判定系统能观测性”四、实验步骤①根据系统的系数阵A和输入阵B,依据能控性判别式,对所给系统采用MATLAB编程;在MATLAB界面下调试程序,并检查是否运行正确。

②根据系统的系数阵A和输出阵C,依据能观性判别式,对所给系统采用MATLAB编程;在MATLAB界面下调试程序,并检查是否运行正确。

③构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。

五.实验例题验证1、已知系数阵A和输入阵B分别如下,判断系统的状态能控性与能观性,,2. 已知系统状态空间描述如下(1)判断系统的状态能控性;(2)判断系统的状态能观测性;(3)构造变换阵,将其变换成能控标准形;(4)构造变换阵,将其变换成能观测标准形;六、实验心得本实验运用MATLAB进行系统能控性与能观性分析,很直观的看到了结果,加深了自己对能控能观的理解,实验过程很顺利,第一个实验还是比较简单的。

实验二典型非线性环节一.实验要求1.了解和掌握典型非线性环节的原理。

2.用相平面法观察和分析典型非线性环节的输出特性。

二.实验原理及说明实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路,模拟电路见图3-4-5 ~ 图3-4-8所示。

1.继电特性理想继电特性的特点是:当输入信号大于0时,输出U0=+M,输入信号小于0,输出U0=-M。

理想继电特性如图3-4-1所示,模拟电路见图3-4-5,图3-4-1中M值等于双向稳压管的稳压值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.现代控制理论实验报告组员:院系:信息工程学院专业:指导老师:年月日实验1 系统的传递函数阵和状态空间表达式的转换[实验要求]应用MATLAB 对系统仿照[例1.2]编程,求系统的A 、B 、C 、阵;然后再仿照[例1.3]进行验证。

并写出实验报告。

[实验目的]1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。

[实验内容]1 设系统的模型如式(1.1)示。

p m n R y R u R x DCx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1.1)其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。

系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。

D B A SI C s den s num s G +-==-1)()()(()( (1.2)式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。

2 实验步骤① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式(1.2),采用MATLA 的file.m 编程。

注意:ss2tf 和tf2ss 是互为逆转换的指令;② 在MATLA 界面下调试程序,并检查是否运行正确。

③ [1.1] 已知SISO 系统的状态空间表达式为(1.3),求系统的传递函数。

,2010050010000100001043214321u x x x x x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43210001x x x x y (1.3)程序:A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0;[num,den]=ss2tf(A,B,C,D,1)程序运行结果:num =0 -0.0000 1.0000 -0.0000 -3.0000 den =1.0000 0 -5.0000 0 0从程序运行结果得到:系统的传递函数为:24253)(ss s S G --= ④ [1.2] 从系统的传递函数式求状态空间表达式。

程序:num =[0 0 1 0 -3]; den =[1 0 -5 0 0]; [A,B,C,D]=tf2ss(num,den)程序运行结果:A =0 5 0 0 1 0 0 0 0 1 0 00 0 1 0B =1C =0 1 0 -3D =⑤ [1.3] 对上述结果进行验证编程%将[1.2]上述结果赋值给A、B、C、D阵;A=[0 5 0 0;1 0 0 0;0 1 0 0;0 0 1 0];B=[1;0;0;0];C=[0 1 0 -3];D=0;[num,den]=ss2tf(A,B,C,D,1)实验结果:num =0 0.0000 1.0000 0.0000 -3.0000den =1.0000 0 -5.0000 0 0程序运行结果与[1.1]完全相同。

[实验分析]当已知系统的状态空间表达式,我们可以求得系统的传递函数。

当已知系统的传递函数式,我们也可以求得状态空间表达式。

由于一个系统的状态空间表达式并不唯一,所以程序运行结果有可能不等于原式中的矩阵,但该结果与原式是等效的。

验证结果证明了这个结论。

实验2 状态空间控制模型系统仿真及状态方程求解[实验要求]1、进行模型间的相互转换。

2、绘出系统单位阶跃及脉冲曲线。

[实验目的]1、熟悉线性定常离散与连续系统的状态空间控制模型的各种表示方法。

2、熟悉系统模型之间的转换功能。

3、利用MATLAB 对线性定常系统进行动态分析 [实验内容]1、 给定系统125.032)(2323++++++=s s s s s s s G ,求系统的零极点增益模型和状态空间模型,并求其单位脉冲响应及单位阶跃响应。

2、 已知离散系统状态空间方程:[]⎪⎪⎩⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+)(021)()(102)(101110221)1(k x k y k u k x k x 采样周期s T s 05.0=。

在Z 域和连续域对系统性能进行仿真、分析。

[实验结果及分析] 1、 程序:num=[1 2 1 3]; den=[1 0.5 2 1]; sys=tf(num,den)[z,p,k]=tf2zp(num,den) [A,B,C,D]=tf2ss(num,den) impulse(sys),hold on step(sys)程序运行结果:Transfer function:s^3 + 2 s^2 + s + 3-----------------------s^3 + 0.5 s^2 + 2 s + 1z =-2.17460.0873 + 1.1713i0.0873 - 1.1713ip =0 + 1.4142i0 - 1.4142i-0.5000k =1A =-0.5000 -2.0000 -1.0000 1.0000 0 00 1.0000 0B =1C =1.5000 -1.00002.0000D =1单位脉冲响应/单位阶跃响应:2、程序:g=[-1 -2 2;0 -1 1;1 0 -1];h =[2;0;1];c =[1 2 0];d=0;u=1;sysd=ss(g,h,c,d,0.05) dstep(g,h,c,d,u)程序运行结果:a =x1 x2 x3x1 -1 -2 2x2 0 -1 1x3 1 0 -1b =u1x1 2x2 0x3 1c =x1 x2 x3y1 1 2 0d =u1y1 0Sampling time: 0.05 Discrete-time model.Z域性能仿真图形:连续域仿真曲线:sysc=d2c(sysd,'zoh')step(sysc)和连续系统不同,离散系统中各部分的信号不再都是时间变量t的连续函数。

实验3 能控能观判据及稳定性判据[实验目的]1、利用MATLAB 分析线性定常及离散系统的可控性与可观性。

2、利用MATLAB 进行线性定常及离散系统的李雅普诺夫稳定性判据。

[实验内容]1、已知系统状态空间方程:(1) ⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=u x x 111001342100010(2)[]⎪⎪⎩⎪⎪⎨⎧-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=x y x x 0312025016200340 对系统进行可控性、可观性分析。

2、 已知系统状态空间方程描述如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=0100001000011263A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001B ,[]1100=C试判定其稳定性,并绘制出时间响应曲线来验证上述判断。

[实验结果及分析](1)能控性分析程序:A=[0 1 0;0 0 1;-2 -4 -3]B=[1 0;0 1;-1 1]Qc=ctrb(A,B)rank(Qc)程序运行结果:A =0 1 00 0 1-2 -4 -3B =1 00 1-1 1Qc =1 0 0 1 -1 10 1 -1 1 1 -7-1 1 1 -7 1 15ans =3系统满秩,故系统能控。

系统的状态可控性描述了输入对状态的控制能力(2)能观性分析程序:A=[0 4 3;0 20 16;0 -25 -20]C=[-1 3 0]rank(obsv(A,C))程序运行结果:A =0 4 30 20 160 -25 -20C =-1 3 0ans =3系统满秩,故系统能观。

系统的状态可观性描述了通过输出可以观测状态的能力2、程序:A=[-3 -6 -2 -1;1 0 0 0;0 1 0 0;0 0 1 0];B=[1;0;0;0];C=[0 0 1 1];D=[0];[z,p,k]=ss2zp(A,B,C,D,1);Flagz=0;n=length(A);for i=1:nifreal(p(i))>0Flagz=1;endenddisp('系统的零极点模型为');z,p,k程序运行结果:系统的零极点模型为z =-1.0000p =-1.3544 + 1.7825i-1.3544 - 1.7825i-0.1456 + 0.4223i-0.1456 - 0.4223ik =1程序:if Flagz==1disp('系统不稳定');else disp('系统是稳定的');endstep(A,B,C,D);程序运行结果为:系统是稳定的程序:step(A,B,C,D);程序运行结果为:051015202530354000.20.40.60.811.21.4Step ResponseTime (sec)A m p l i t u d e从图中可以看出,系统是稳定的实验4 状态反馈及状态观测器的设计[实验要求] 1、求出系统的状态空间模型;2、依据系统动态性能的要求,确定所希望的闭环极点P ;3、利用上面的极点配置算法求系统的状态反馈矩阵K ;4、检验配置后的系统性能。

[实验目的]1、熟悉状态反馈矩阵的求法。

2、熟悉状态观测器设计方法。

[实验内容]1、 某控制系统的状态方程描述如下:[]242471,0001,01000010000124503510=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=C B A 通过状态反馈使系统的闭环极点配置在P=[-30,-1.2,-2.4±4i 位置上,求出状态反馈阵K,并绘制出配置后系统的时间响应曲线。

2、考虑下面的状态方程模型:[]0,001,10000,100008.20980010==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=D C B A 要求选出合适的参数状态观测器(设观测器极点为op=[-100;-102;-103])。

[实验结果及分析]1、程序:A=[-10 -35 -50 -24;1 0 0 0;0 1 0 0;0 0 1 0];B=[1;0;0;0];C=[1 7 24 24];D=[0];disp('原系统的极点为');p=eig(A)' %求原系统极点转置np=[-30;-1.2;-2.4+sqrt(-16);-2.4-sqrt(-16)]K=place(A,B,np) %求反馈K值disp('极点配置后的闭还系统为');sysnew=ss(A-B*K,B,C,D) %配置后新系统disp('配置后系统的极点为');pp=eig(A-B*K)' %求新系统极点step(sysnew/dcgain(sysnew)) %dcgain为求最大增益,使得最后结果在0—1程序运行结果:原系统的极点为p =-4.0000 -3.0000 -2.0000 -1.0000np =-30.0000-1.2000-2.4000 + 4.0000i-2.4000 - 4.0000iK =26.0000 172.5200 801.7120 759.3600极点配置后的闭还系统为a =x1 x2 x3 x4x1 -36 -207.5 -851.7 -783.4x2 1 0 0 0x3 0 1 0 0x4 0 0 1 0b =u1x1 1x2 0x3 0x4 0c =x1 x2 x3 x4y1 1 7 24 24d =u1y1 0Continuous-time model.配置后系统的极点为pp =-30.0000 -2.4000 - 4.0000i -2.4000 + 4.0000i -1.20002、程序:A=[0 1 0;980 0 -2.8;0 0 -100];B=[0;0;100];C=[1 0 0];D=[0];op=[-100;-102;-103];disp('原系统为');sysold=ss(A,B,C,D)disp('原系统的闭还极点为');p=eig(A)n=length(A); %求A阵维度Q=zeros(n); % 为n维0阵Q(1,:)=C; %C阵为Q第一行for i=2:nQ(i,:)=Q(i-1,:)*A;endm=rank(Q);if m==nH=place(A',C',op')';elsedisp('系统不是状态完全可观测') enddisp('状态观测器模型');est=estim(sysold,H)disp('配置后观测器的极点为');p=eig(est)程序运行结果:原系统为a =x1 x2 x3x1 0 1 0x2 980 0 -2.8x3 0 0 -100b =u1x1 0x2 0x3 100c =x1 x2 x3y1 1 0 0u1y1 0Continuous-time model.原系统的闭还极点为p =31.3050-31.3050-100.0000状态观测器模型a =x1 x2 x3 x1 -205 1 0 x2 -1.051e+004 0 -2.8 x3 0 0 -100 b =u1x1 205x2 1.149e+004x3 0c =x1 x2 x3y1 1 0 0y2 1 0 0y3 0 1 0y4 0 0 1d =u1y1 0y2 0y3 0y4 0Input groups:Name ChannelsMeasurement 1Output groups:Name ChannelsOutputEstimate 1StateEstimate 2,3,4Continuous-time model.配置后观测器的极点为-103.0000 -102.0000 -100.0000。

相关文档
最新文档