泰勒公式
泰勒展开常用公式

泰勒展开常用公式摘要:1.泰勒展开的定义和背景2.泰勒展开常用公式3.泰勒展开的应用领域4.总结正文:泰勒展开是微积分学中一种重要的数学工具,它可以帮助我们更好地理解函数的性质和行为。
泰勒展开,又称泰勒公式,是由英国数学家布鲁克·泰勒在17 世纪提出的。
泰勒展开是一种用多项式逼近函数的方法,通过它,我们可以将一个复杂的函数表示为一系列简单的多项式之和,从而简化问题。
泰勒展开常用公式如下:对于一个函数f(x),在点x=a 的泰勒展开公式为:f(x) ≈ f(a) + f"(a)(x-a) + f""(a)(x-a)^2 / 2! + f"""(a)(x-a)^3 / 3! + ...+ f^n(a)(x-a)^n / n! + R_n(x)其中,f"(a)、f""(a)、f"""(a) 等表示函数f 在点a 的各阶导数值;n! 表示n 的阶乘;R_n(x) 是余项,表示多项式逼近的误差。
泰勒展开的应用领域非常广泛,主要包括以下几个方面:1.近似计算:通过泰勒展开,我们可以将复杂的函数近似为多项式,从而简化计算过程。
例如,在数值分析中,泰勒展开可以用于插值和逼近问题。
2.分析函数性质:泰勒展开可以揭示函数的某些性质,如奇偶性、单调性、极值等。
这些性质对于研究函数的内在规律具有重要意义。
3.求解微分方程:泰勒展开可以用于求解一些微分方程,例如常微分方程和偏微分方程。
通过对函数进行泰勒展开,可以将微分方程转化为关于多项式的代数方程,从而求解。
4.构建概率分布:在概率论中,泰勒展开可以用于构建一些常见的概率分布,如正态分布、指数分布等。
通过对概率密度函数进行泰勒展开,可以得到这些概率分布的参数。
总之,泰勒展开作为一种重要的数学工具,在理论研究和实际应用中具有广泛的应用价值。
泰勒公式通式

泰勒公式通式常用的泰勒公式:e^x=1+x+x^2/2+x。
泰勒公式,应用于数学、物理领域,是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
相关内容解释:函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B 和对应法则f。
其中核心是对应法则f,它是函数关系的本质特征。
泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,常用的泰勒公式如下所示:1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……(-∞<x<∞)4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+……(-∞<x<∞)5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)6、arccos x = π- ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……) (|x|<1)7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)8、sh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+……(-∞<x<∞)9、ch x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)10、arcsh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - ……(|x|<1)11、arcth x = x + x^3/3 + x^5/5 + ……(|x|<1)扩展资料泰勒公式介绍:泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
泰勒展开的公式

泰勒展开的公式摘要:1.泰勒展开公式简介2.泰勒展开公式的应用3.泰勒级数的收敛性与性质4.泰勒展开在实际问题中的举例5.泰勒展开的局限性与注意事项正文:泰勒展开公式是数学上一种重要的公式,用于表示一个可微函数在某一点附近的近似值。
泰勒展开公式可以写成如下形式:f(x) ≈ f(a) + f"(a)(x-a) + f""(a)(x-a)^2 / 2! + f"""(a)(x-a)^3 / 3! + ...+ f^n(a)(x-a)^n / n! + R_n(x)其中,f(x) 是一个可微函数,f"(a)、f""(a)、f"""(a) 等分别表示该函数在点a 的一阶、二阶、三阶导数,R_n(x) 是余项,表示泰勒级数的误差。
泰勒展开公式在许多实际问题中具有广泛的应用。
例如,在工程领域中,我们可以利用泰勒展开公式来近似计算复杂函数的值,从而简化问题。
在金融领域,泰勒展开公式可以用于数值计算,例如计算债券的收益率、波动率等。
在自然科学中,泰勒展开公式也发挥着重要作用,如在电磁学、力学等领域求解微分方程等。
然而,泰勒展开公式并非万能,它具有一定的局限性。
当函数的阶数较高时,泰勒级数的收敛性可能会受到影响。
为了解决这一问题,我们可以采用数值方法,如牛顿法、割线法等,来提高计算精度。
此外,在实际应用中,我们还需要注意泰勒展开的截断误差,以确保计算结果的可靠性。
总之,泰勒展开公式在数学、工程、金融、自然科学等领域具有广泛的应用。
通过熟练掌握泰勒展开公式及其性质,我们能够更好地解决实际问题,提高计算效率。
十个常用泰勒公式展开

十个常用泰勒公式展开常用泰勒公式是在微积分中常用的一种展开函数的方法,可以将一个复杂的函数表示为一系列简单的多项式函数的和。
这些多项式函数的系数与原函数在某个点的导数有关,通过计算这些导数可以得到展开式的各项系数。
以下是十个常用的泰勒公式展开。
1. 正弦函数展开:正弦函数的泰勒展开式为:sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...2. 余弦函数展开:余弦函数的泰勒展开式为:cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ...3. 自然指数函数展开:自然指数函数的泰勒展开式为:e^x = 1 + x + (x^2)/2! + (x^3)/3! + ...4. 对数函数展开:对数函数的泰勒展开式为:ln(1+x) = x - (x^2)/2 + (x^3)/3 - (x^4)/4 + ...5. 幂函数展开:幂函数的泰勒展开式为:(x+a)^n = a^n + n*a^(n-1)*x + (n*(n-1)*a^(n-2)*x^2)/2! + ...6. 反正弦函数展开:反正弦函数的泰勒展开式为:arcsin(x) = x + (x^3)/6 + (3*x^5)/40 + ...7. 反余弦函数展开:反余弦函数的泰勒展开式为:arccos(x) = π/2 - arcsin(x) = π/2 - x - (x^3)/6 - (3*x^5)/40 - ...8. 反正切函数展开:反正切函数的泰勒展开式为:arctan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 + ...9. 双曲正弦函数展开:双曲正弦函数的泰勒展开式为:sinh(x) = x + (x^3)/3! + (x^5)/5! + (x^7)/7! + ...10. 双曲余弦函数展开:双曲余弦函数的泰勒展开式为:cosh(x) = 1 + (x^2)/2! + (x^4)/4! + (x^6)/6! + ...以上是十个常用的泰勒公式展开。
泰勒常用公式

泰勒常用公式泰勒常用公式的基本形式如下:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...其中,f(x)是函数在点x处的值,f(a)是函数在点a处的值,f'(a)是函数在点a处的一阶导数的值,f''(a)是函数在点a处的二阶导数的值,f'''(a)是函数在点a处的三阶导数的值,以此类推。
在这个无穷级数中,每一项都是函数在点a处的导数与自变量x与a之差的幂的乘积,再除以相应的阶乘。
泰勒常用公式的本质是将一个函数在某一点附近的局部行为用一个无穷级数来逼近。
通过考虑足够多的项,我们可以得到一个非常接近原函数的近似值。
这对于计算机科学中的数值计算非常有用,因为我们可以用有限的项来计算一个函数的值,而不需要进行复杂的数学运算。
泰勒常用公式的应用非常广泛。
在物理学中,我们经常需要对物理现象进行建模和计算。
通过使用泰勒常用公式,我们可以将一个复杂的物理过程用一个简单的数学函数来表示,从而更方便地进行计算和分析。
在工程学中,泰勒常用公式可以用于设计和优化各种工程系统。
在计算机科学中,泰勒常用公式可以用于图像处理、机器学习等领域,从而提高计算的效率和准确性。
泰勒常用公式的应用还有一些限制。
首先,它只适用于光滑的函数,也就是可以无限次求导的函数。
对于一些不光滑的函数,如阶梯函数或绝对值函数,泰勒常用公式并不适用。
其次,泰勒常用公式只在某一点的附近有效,对于整个定义域来说并不一定准确,特别是在函数的极值点附近。
此外,泰勒常用公式在计算中也存在误差累积的问题,随着项数的增加,误差也会逐渐累积,因此需要在实际应用中进行适当的调整和控制。
总结起来,泰勒常用公式是一个非常重要的数学工具,用于将一个函数在某一点的附近用无穷级数来表示。
它的应用广泛,可以用于物理学、工程学、计算机科学等领域。
常用泰勒公式展开

常用泰勒公式展开泰勒公式是数学中的一种展开方法,它可以将一个函数在某一点的邻域内用无穷级数表示。
这种展开方法常用于近似计算和数值分析中。
本文将介绍常用的泰勒公式展开,并探讨其应用。
一、泰勒公式的基本形式泰勒公式的基本形式可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...其中,f(x)是要展开的函数,a是展开点,f'(a)、f''(a)、f'''(a)分别是函数f(x)在点a处的一阶、二阶、三阶导数。
二、泰勒公式的应用1. 近似计算泰勒公式的一个重要应用是进行近似计算。
通过将一个复杂的函数用泰勒公式展开,可以将其转化为一个简单的多项式函数,从而方便进行计算。
例如,我们可以用泰勒公式展开sin(x),得到以下近似公式:sin(x) ≈ x - x^3/3! + x^5/5! - x^7/7! + ...这个公式可以用来计算较小的角度下的sin值,而不需要使用复杂的三角函数表或计算器。
类似地,我们还可以用泰勒公式展开cos(x)、e^x等函数进行近似计算。
2. 极值点和拐点的判断通过泰勒公式展开,我们可以判断一个函数的极值点和拐点。
对于一个函数f(x),如果在某一点a处,f'(a)=0且f''(a)>0,那么a就是f(x)的一个极小值点;如果f''(a)<0,那么a就是f(x)的一个极大值点。
类似地,如果f'''(a)=0且f''''(a)>0,那么a就是f(x)的一个拐点。
通过泰勒公式展开并计算导数,我们可以得到函数在某一点处的导数值,从而判断函数的极值点和拐点,进一步分析函数的性质。
3. 函数的逼近和插值泰勒公式展开还可以用于函数的逼近和插值。
泰勒公式简介

泰勒公式(Taylor's Theorem)是微积分中一个重要的定理,它描述了一个函数在某一点附近的局部近似。
泰勒公式的一般形式如下:
如果函数f(x)f(x)在x=ax=a处具有nn阶导数,那么在该点附近的泰勒展开式为:
其中:
f(a)f(a) 是函数在点x=ax=a处的函数值。
f'(a)f′(a) 是函数在点x=a处的一阶导数。
f''(a)f′′(a) 是函数在点x=a处的二阶导数。
f'''(a)f′′′(a) 是函数在点x=a处的三阶导数。
f(n)(a)f (n)(a) 是函数在点x=a处的第n阶导数。
这个展开式允许我们将一个复杂的函数在某一点近似为一个多项式,这在数学分析、工程、物理学和计算机科学等领域中有广泛的应用。
特别是在数值计算中,泰勒公式可以用来构建数值逼近方法,以便在计算机上近似复杂函数的值。
泰勒公式表达式

泰勒公式表达式
sinx=[e^(ix)-e^(-ix)]/(2i)。
高等代数中三角函数的指数表示(由泰勒级数易得):
sinx=[e^(ix)-e^(-ix)]/(2i) 。
cosx=[e^(ix)+e^(-ix)]/2 。
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]。
泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tan θ=sinθ·secθ。
相关信息:
泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例,拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。
14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。
17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。
直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,
称为麦克劳林级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰勒公式泰勒公式(Taylor's formula)泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2,+f'''(x.)/3!?(x-x.)^3+……+f(n)(x.)/n!?(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。
)证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。
设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。
显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。
至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n .接下来就要求误差的具体表达式了。
设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。
所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。
根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。
但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。
综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。
一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。
麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。
证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f( n+1)(ξ)/(n+1)!?x^(n+1)由于ξ在0到x之间,故可写作θx,0<θ<1。
麦克劳林展开式的应用:1、展开三角函数y=sinx和y=cosx。
解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx ,f'''(x)=-cosx , f(4)(x)=sinx……于是得出了周期规律。
分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0……最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。
)类似地,可以展开y=cosx。
2、计算近似值e=lim x→∞ (1+1/x)^x。
解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!当x=1时,e≈1+1+1/2!+1/3!+……+1/n!取n=10,即可算出近似值e≈2.7182818。
3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。
过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。
由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。
然后让sinx乘上提出的i,即可导出欧拉公式。
有兴趣的话可自行证明一下。
[编辑本段]泰勒展开式e的发现始于微分,当 h 逐渐接近零时,计算之值,其结果无限接近一定值2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.计算对数函数的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数.若将指数函数 ex 作泰勒展开,则得以 x=1 代入上式得此级数收敛迅速,e 近似到小数点后 40 位的数值是将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由透过这个级数的计算,可得由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,另方面,所以,我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.甲)差分.考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成或 (un).数列 u 的差分还是一个数列,它在 n 所取的值以定义为以后我们干脆就把简记为(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.差分算子的性质(i) [合称线性](ii) (常数) [差分方程根本定理](iii)其中 ,而 (n(k) 叫做排列数列.(iv) 叫做自然等比数列.(iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1) (乙).和分给一个数列 (un).和分的问题就是要算和 . 怎么算呢我们有下面重要的结果:定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则和分也具有线性的性质:甲)微分给一个函数 f,若牛顿商(或差分商) 的极限存在,则我们就称此极限值为f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称为 f 的导函数,而叫做微分算子.微分算子的性质:(i) [合称线性](ii) (常数) [差分方程根本定理](iii) Dxn=nxn-1(iv) Dex=ex(iv)' 一般的指数数列 ax 之导函数为(乙)积分.设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割:;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限(让每一小段的长度都趋近于 0).若这个极限值存在,我们就记为的几何意义就是阴影的面积.(事实上,连续性也「差不多」是积分存在的必要条件.)积分算子也具有线性的性质:定理2 若 f 为一连续函数,则存在.(事实上,连续性也「差不多」是积分存在的必要条件.)定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分如果我们可以找到另一个函数 g,使得 g'=f,则注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.甲)Taylor展开公式这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清两个问题:即如何选取简单函数及逼近的尺度.(一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有n 阶的「切近」,即 ,答案就是此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个Taylor 级数就等于 f 自身.值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)+f'(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.利用 Talor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单.当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式.(二) 对于离散的情形,Taylor 展开就是:给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:答案是此式就是离散情形的 Maclaurin 公式.乙)分部积分公式与Abel分部和分公式的类推(一) 分部积分公式:设 u(x),v(x) 在 [a,b] 上连续,则(二) Abel分部和分公式:设(un),(v)为两个数列,令 sn=u1+......+un,则上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.(丁)复利与连续复利 (这也分别是离散与连续之间的类推)(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r)根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.(二) 若考虑每年复利 m 次,则 t 年后的本利和应为令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答.由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有(二)Fubini 重积分定理:设 f(x,y) 为定义在上之可积分函数,则当然,变数再多几个也都一样.(己)Lebesgue 积分的概念(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到b 所围出来的面积.Lebesgue 的想法是对 f 的影域作分割:函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分.泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… +f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数]泰勒余项可以写成以下几种不同的形式:1.佩亚诺(Peano)余项:Rn(x) = o((x-a)^n)2.施勒米尔希-罗什(Schlomilch-Roche)余项:Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p)[f(n+1)是f的n+1阶导数,θ∈(0,1)]3.拉格朗日(Lagrange)余项:Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)![f(n+1)是f的n+1阶导数,θ∈(0,1)]4.柯西(Cauchy)余项:Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n![f(n+1)是f的n+1阶导数,θ∈(0,1)]5.积分余项:Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n![f(n+1)是f的n+1阶导数]泰勒简介18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生。