粒子在电磁场中的运动

合集下载

带电粒子在有界匀强磁场中的运动

带电粒子在有界匀强磁场中的运动
息烽县第一中学物理组
廖红英
带电粒子在有界匀 强磁场中的运动
知识回顾
一、带电粒子在匀强磁场中运动形式
(1)V//B-------匀速直线运动 (2)V⊥B-------匀速圆周运动 (3)粒子运动方向与磁场有一夹角 (大于0度小于90度)-------轨迹为螺旋线
带电粒子在匀强磁场中 做匀速圆周运动,洛伦 兹力就是它做圆周运动 的向心力
(3)欲使粒子要打在极板上,
则粒子入射速度v应满足么条 件?
+q L
m
v
B
L
3、如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直纸面向外,磁感应强度为B。一个正电 子以速度v从O点射入磁场,入射方向在xy平面内, 与x轴正向的夹角为θ。若正电子射出磁场的位置 与O点的距离为L,求:
(1)正电子在匀强磁场中作圆周 运动的圆心角为多少?
(2)正电子作圆周运动的 半径为多少?
(3)正电子的电量和质量之比为多少?
(4)正电子在匀强磁场中运动的时间是多少?
思考:如果是负电子,那么,两种情况下的时间 之比为多少?
4、如图所示在磁感应强度为B,半径为r的圆
形匀强磁场区 ,一质量为m,电荷量为q的
带电粒子从A点沿半径方向以速度ν
射入磁场中,从C点射出,求:
(1)此粒子在磁场中做圆周运
动的半径是多少?
B v
(2)此粒子的电荷q与质量 m 之比。
MP l
ON
2、长为L的水平极板间,有垂直纸面向内的匀强磁场,如 图所示,磁场强度为B,板间距离也为L,板不带电,现有 质量为m,电量为q的带正电粒子(不计重力),从左边极 板间中点处垂直磁场以速度v平行极板射入磁场,求: (1)粒子刚好打在极板的左端点时的速度为多少? (2)粒子刚好打在极板上的右端点时的速度是多少?

《带电粒子在磁场中的运动》 说课稿

《带电粒子在磁场中的运动》 说课稿

《带电粒子在磁场中的运动》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“带电粒子在磁场中的运动”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计以及教学反思这几个方面来展开我的说课。

一、教材分析“带电粒子在磁场中的运动”是高中物理选修 3-1 第三章第六节的内容。

这部分知识是磁场这一章的重点和难点,也是高考的热点之一。

它不仅在电磁学中有着重要的地位,还为后续学习带电粒子在复合场中的运动以及现代科技中的应用奠定了基础。

本节课的主要内容包括:带电粒子在匀强磁场中的运动规律,如匀速圆周运动的半径和周期公式;带电粒子在有界磁场中的运动轨迹分析。

教材在编排上,先通过实验引入,让学生观察带电粒子在磁场中的运动现象,然后从理论上进行分析推导,得出运动规律。

这种从感性认识到理性认识的过程,符合学生的认知规律,有助于学生对知识的理解和掌握。

二、学情分析学生已经学习了电场、磁场的基本概念和性质,掌握了牛顿运动定律、圆周运动的相关知识,具备了一定的分析和解决问题的能力。

但是,对于带电粒子在磁场中的运动这一较为抽象的内容,学生可能会感到理解困难。

在学习过程中,学生可能会遇到以下几个问题:一是对洛伦兹力的方向判断不够熟练;二是难以将牛顿运动定律和圆周运动的知识灵活应用到带电粒子在磁场中的运动分析中;三是对于有界磁场中带电粒子运动轨迹的分析,空间想象力不足。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解带电粒子在匀强磁场中做匀速圆周运动的条件和规律。

(2)掌握带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能熟练应用。

(3)学会分析带电粒子在有界磁场中的运动轨迹。

2、过程与方法目标(1)通过实验观察和理论推导,培养学生的观察能力、分析推理能力和逻辑思维能力。

(2)通过对带电粒子在有界磁场中运动轨迹的分析,提高学生的空间想象力和应用数学知识解决物理问题的能力。

1.3带电粒子在匀强磁场中的运动

1.3带电粒子在匀强磁场中的运动
思路导引:
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2



.
55

10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7


5
.
6875






洛伦兹力提供向心力
v2
qvB m
r



圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间

t
T

带电粒子在磁场中的运动动态圆法课件

带电粒子在磁场中的运动动态圆法课件
应用潜力。
探索动态圆法与其他物理方法的结合, 以解决更复杂、更广泛的物理问题。
开发基于动态圆法的计算机模拟软件, 为实验研究和工程应用提供更准确、更
便捷的工具。
THANKS
感谢观看
稳定性
动态圆在磁场中的运动是稳定的 ,只要洛伦兹力与向心力平衡, 带电粒子就会做稳定的圆周运动 。
05
动态圆法在物理实验中的应用
实验原理和步骤
• 实验原理:动态圆法是一种通过观察带电粒子在磁场中的运动 轨迹来研究磁场特性的实验方法。通过改变磁场强度或粒子速 度,可以观察到轨迹圆半径的变化,从而得到磁场与粒子运动 之间的关系。
课程目标和意义
掌握动态圆法的基本原理和计算 方法,能够运用动态圆法解决实
际问题。
理解带电粒子在磁场中运动的物 理机制,提高对电磁学原理的理
解和应用能力。
通过学习动态圆法,培养学生的 逻辑思维和数学分析能力,为进 一步学习物理学和相关领域打下
基础。
02
带电粒子在磁场中的基本性质
电荷在磁场中的受力
在等离子体物理实验中,动态圆法也 被用来研究等离子体的特性和行为。
在粒子加速器、回旋加速器、核聚变 装置等实验设备中,需要利用动态圆 法来研究带电粒子的运动轨迹和行为。
04
带电粒子在磁场中的动态圆运动
动态圆在磁场中的受力分析
洛伦兹力
带电粒子在磁场中受到的力称为洛伦兹力,其方向由左手定则确定,大小为$F = qvBsintheta$,其中$q$是带电粒子的电荷量,$v$是速度,$B$是磁感应 强度,$theta$是速度与磁感应强度的夹角。
实验结果和结论
实验结果
通过动态圆法实验,可以观察到带电粒子在磁场中的运动轨迹呈现圆形,并且随着磁场强度的增加或粒子速度的 减小,轨迹圆的半径逐渐减小。实验结果与理论值基本一致。

处理带电粒子在磁场中的运动时常要确定轨迹和圆心,请问你几种办法确定圆心

处理带电粒子在磁场中的运动时常要确定轨迹和圆心,请问你几种办法确定圆心

处理带电粒子在磁场中的运动时常要确定轨迹和圆心,请问你几种办法确定圆心
确定带电粒子在磁场中运动的轨迹和圆心的方法取决于问题的具体情况和已知条件。

以下是几种常见的方法:
1. 洛伦兹力定律:利用洛伦兹力定律可以确定带电粒子在磁场中的受力方向和大小。

如果带电粒子的运动是在一个匀强磁场中,则可以根据洛伦兹力的方向和大小来确定粒子的加速度,从而找到粒子的运动轨迹和圆心。

2.运动方程:如果已知带电粒子的初始速度和磁场中的洛伦兹力,可以使用牛顿运动定律和洛伦兹力定律建立运动方程,然后解方程得到带电粒子的轨迹和圆心。

3. 受力分析:通过分析带电粒子在磁场中的受力情况,可以确定粒子的加速度方向和大小。

如果粒子的加速度始终垂直于速度方向,那么粒子的运动轨迹将是一个圆形,圆心就是粒子的加速度方向上的投影。

4. 动量定理:利用动量定理,可以将洛伦兹力的方向和大小与带电粒子的运动轨迹联系起来。

通过分析粒子在磁场中的动量变化,可以确定圆心的位置。

这些方法可以根据具体问题的不同进行选择和应用。

在实际问题中,可能需要结合多种方法来确定带电粒子在磁场中的运动轨迹和圆心。

1/ 1。

带电粒子在磁场中的运动 ppt课件

带电粒子在磁场中的运动  ppt课件

(2)电子从C到D经历的时间是多少?
(电子质量me=
9.1×10-31kg,电量e ppt课件
=
1.6×10-19C)
13
◆带电粒子在单直边界磁场中的运动
①如果垂直磁场边界进入,粒子作半圆运动后 垂直原边界飞出;
O
O1
B
S
ppt课件
14
②如果与磁场边界成夹角θ进入,仍以与磁场 边界夹角θ飞出(有两种轨迹,图中若两轨迹 共弦,则θ1=θ2)。
运动从另一侧面边界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
ppt课件
24
【习题】
1、如图所示.长为L的水平极板间,有垂直纸面向内的
匀强磁场,磁感强度为B,板间距离也为L,板不带电,
现有质量为m,电量为q的带正电粒子(不计重力),从左
边极板间中点处垂直磁感线以速度v水平射入磁场,欲
界垂直的直线上
度方向垂直的直线上
①速度较小时,作半圆运动后 从原边界飞出;②速度增加为 某临界值时,粒子作部分圆周 运动其轨迹与另一边界相切; ③速度较大时粒子作部分圆周 运动后从另一边界飞出
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
圆心
在过
入射
vB
点跟
d
c
速度 方向
o
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
垂直
θv
B
的直
线上
①a 速度较小时粒子作部分b 圆周

带电粒子在磁场中的运动

带电粒子在磁场中的运动

带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

2. 求半径圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。

粒子在电磁场中的运动规律

粒子在电磁场中的运动规律

粒子在电磁场中的运动规律粒子在电磁场中的运动规律一直是物理学研究的重要课题之一。

在经典物理学中,根据洛伦兹力定律,粒子在电磁场中受到的力等于电荷乘以电场强度加上粒子速度与磁感应强度的叉乘结果。

这个力的作用使粒子的运动变得复杂而有趣。

在本文中,我们将讨论粒子在电磁场中的运动规律,并探讨其应用以及与量子力学的关系。

1. 粒子在恒定电场中的运动规律当粒子处于恒定电场中时,其受到的力为电荷乘以电场强度,即F= qE,其中F为力,q为粒子电荷,E为电场强度。

根据牛顿第二定律,我们可以得到粒子在电场中的加速度a = F/m,其中m为粒子的质量。

由此可知,粒子在恒定电场中的加速度与电荷和质量有关系。

2. 粒子在恒定磁场中的运动规律当粒子处于恒定磁场中时,其受到的力为电荷乘以粒子速度与磁感应强度的叉乘结果,即F = qv × B,其中F为力,q为粒子电荷,v为粒子速度,B为磁感应强度。

由此可知,粒子在恒定磁场中的受力方向垂直于速度和磁感应强度之间的平面,并且大小正比于电荷、速度和磁感应强度之间的夹角的正弦值。

3. 粒子在电磁场中的运动规律当粒子同时处于电场和磁场中时,其受到的力为洛伦兹力,即F = qE + qv × B。

这个力的作用使粒子的运动变得复杂且有趣。

在一些特定情况下,粒子可以经历周期性或者非周期性的运动,如圆周运动、螺旋线运动等。

这些运动规律在电子学、粒子加速器和磁共振成像等领域有着重要的应用。

4. 量子力学中的粒子运动规律经典物理学的运动规律在粒子尺度下不再适用,量子力学提供了更准确的描述。

根据量子力学,粒子的运动状态由波函数表示,而粒子的位置和动量是由算符来描述的。

在电磁场中,粒子的波函数服从薛定谔方程,但受到电磁场的影响,波函数会发生演化。

这导致了一些新的量子效应,如隧道效应、量子霍尔效应等。

因此,粒子在电磁场中的运动规律在量子力学领域有着更加深入的研究和理解。

总结:粒子在电磁场中的运动规律是物理学研究的重要课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒子在电磁场中的运动
粒子在电磁场中的运动是一个重要的物理现象,它涉及到电磁学和力学的交叉领域。

本文将从经典力学的角度,以及电磁学的角度,分别探讨粒子在电磁场中的运动规律。

从经典力学的角度来看,当粒子在电磁场中运动时,它受到电场力和磁场力的作用。

根据牛顿第二定律,粒子在受力的作用下会产生加速度,从而改变它的速度和位置。

电场力和磁场力分别由库仑定律和洛伦兹力给出。

考虑粒子在电场中的运动。

电场力是由电场中的电荷作用于粒子上产生的。

根据库仑定律,电场力的大小与电荷的大小成正比,与电场强度的大小成正比,与电荷与电场之间的夹角的余弦值成正比。

当粒子带电量为q,电场强度为E时,电场力F的大小可以用以下公式表示:
F = qE
其中,F为电场力的大小,q为粒子的电荷量,E为电场的强度。

这个公式说明了电场力与粒子带电量和电场强度之间的关系。

接下来,考虑粒子在磁场中的运动。

磁场力是由磁场中的磁感应强度和粒子的运动状态共同作用于粒子上产生的。

根据洛伦兹力的描述,磁场力的大小与粒子的电荷量、速度和磁感应强度之间有关。

当粒子带电量为q,速度为v,磁感应强度为B时,磁场力F的大小
可以用以下公式表示:
F = qvBsinθ
其中,F为磁场力的大小,q为粒子的电荷量,v为粒子的速度,B 为磁感应强度,θ为速度与磁感应强度之间的夹角。

这个公式说明了磁场力与粒子带电量、速度和磁感应强度之间的关系。

当粒子同时受到电场力和磁场力的作用时,它将在电磁场中运动。

在这种情况下,粒子的运动轨迹将受到电场力和磁场力的共同影响。

根据牛顿第二定律,可以得到粒子在电磁场中的运动方程:
F = ma
其中,F为电场力和磁场力的合力,m为粒子的质量,a为粒子的加速度。

根据库仑定律和洛伦兹力的表达式,可以将合力F展开为电场力和磁场力的和:
F = qE + qvBsinθ
将合力F代入牛顿第二定律的方程中,可以得到粒子在电磁场中的运动方程:
ma = qE + qvBsinθ
这个方程描述了粒子在电磁场中的运动规律。

通过求解这个方程,可以得到粒子的运动轨迹、速度和位置随时间的变化规律。

总结起来,粒子在电磁场中的运动是一个复杂而有趣的物理现象。

根据经典力学的观点,粒子受到电场力和磁场力的作用,从而产生加速度,改变它的速度和位置。

粒子在电磁场中的运动规律可以通过牛顿第二定律和电磁力的表达式来描述。

进一步研究粒子在电磁场中的运动,不仅有助于理解基本的物理规律,也有重要的应用价值。

相关文档
最新文档