重积分、曲线积分、曲面积分
二重积分三重积分 曲线积分 曲面积分

二重积分三重积分曲线积分曲面积分二重积分二重积分的概念二重积分是微积分中的重要概念之一,它是对二元函数在一个有界闭区域上的积分运算。
二重积分可以看作是对一个平面区域的面积进行加权求和,其中权重由函数值决定。
二重积分的计算可以通过分割区域,将区域内的小面积元素加权求和的方式进行。
二重积分的计算方法二重积分的计算方法有多种,常见的有直角坐标系下的面积法和极坐标系下的面积法。
在直角坐标系下,二重积分可以通过将区域分割成小矩形,计算每个小矩形的面积乘以函数值的和来近似计算。
在极坐标系下,可以通过将区域分割成小扇形,计算每个小扇形的面积乘以函数值的和来近似计算。
二重积分的应用二重积分在物理学、统计学、经济学等领域有广泛的应用。
在物理学中,二重积分可以用来计算平面分布的物理量,如电荷密度、质量分布等。
在统计学中,二重积分可以用来计算二维随机变量的概率密度函数。
在经济学中,二重积分可以用来计算两个变量之间的相关性。
三重积分三重积分的概念三重积分是对三元函数在一个有界闭区域上的积分运算。
它可以看作是对一个空间区域的体积进行加权求和,其中权重由函数值决定。
三重积分的计算可以通过分割区域,将区域内的小体积元素加权求和的方式进行。
三重积分的计算方法三重积分的计算方法有多种,常见的有直角坐标系下的体积法和柱面坐标系下的体积法。
在直角坐标系下,三重积分可以通过将区域分割成小立方体,计算每个小立方体的体积乘以函数值的和来近似计算。
在柱面坐标系下,可以通过将区域分割成小柱体,计算每个小柱体的体积乘以函数值的和来近似计算。
三重积分的应用三重积分在物理学、流体力学、电磁学等领域有广泛的应用。
在物理学中,三重积分可以用来计算空间分布的物理量,如电荷密度、质量分布等。
在流体力学中,三重积分可以用来计算流体的质量、动量和能量等。
在电磁学中,三重积分可以用来计算电场和磁场的分布。
曲线积分曲线积分的概念曲线积分是对向量场沿曲线的积分运算。
重积分与曲线曲面积分的计算方法

重积分与曲线曲面积分的计算方法重积分和曲线曲面积分是微积分中的重要概念,它们在多变量函数的研究和应用中起着重要作用。
本文将介绍重积分和曲线曲面积分的概念及其计算方法。
一、重积分的概念和计算方法1. 重积分的概念重积分是对多变量函数在一定区域上的积分运算。
设函数f(x, y)在闭区域D上有定义,则重积分的定义为:∬Df(x, y) dA,其中,dA表示面积元素,可以用dx dy来表示。
2. 重积分的计算方法(1)可分离变量的重积分若函数f(x, y)可以表示为f(x)g(y),则重积分可以分解为两个一元积分的乘积,即:∬Df(x, y) dA = (∫f(x)dx) (∫g(y)dy)。
(2)极坐标下的重积分若D是以极坐标表示的闭区域,即D={(r,θ) | α≤θ≤β, g1(r)≤r≤g2(r)},则重积分可以表示为:∬Df(x, y) dA = ∫βα∫g2(r)g1(r) f(r cosθ, r sinθ) r dr dθ。
(3)变量替换法的重积分当积分区域D是一般的闭区域,通过适当的变量替换可以将其变换为简单的形式。
例如,对于直角坐标系下的曲线,可以通过变量替换来简化重积分的计算。
二、曲线曲面积分的概念和计算方法1. 曲线积分的概念曲线积分是对向量场沿曲线的积分运算。
设向量场F(x, y)在曲线C上有定义,则曲线积分的定义为:∮CF(x, y)·dr,其中,dr为曲线的微元向量。
2. 曲线积分的计算方法(1)参数方程表示的曲线积分若曲线C可以由参数方程表示,即C: r(t)=[x(t),y(t)],a≤t≤b,则曲线积分可以表示为:∮CF(x, y)·dr = ∫baF(x(t),y(t))·r'(t)d t。
(2)向量场与切向量的内积在计算曲线积分时,常常需要将向量场与曲线上的切向量进行内积。
若曲线C由向量函数r(t)=[x(t),y(t)]表示,则曲线的切向量为r'(t)=[x'(t),y'(t)]。
曲线、曲面积分与定积分、重积分的关系

曲线、曲面积分与定积分、重积分的关系作者:李雪峰
来源:《文理导航·教育研究与实践》 2018年第12期
【摘要】定积分、重积分、曲线与曲面积分是积分学的重要组成部分,它们之间有着千丝万缕的联系。
本文将重点阐述曲线、曲面积分与定积分、重积分的关系。
【关键词】曲线积分;曲面积分;定积分;重积分;关系从定义上看,它们都是通过“大化小,常代变,近似和,取极限”这四步得到一个特殊和式极限的形式,而这一形式可以统一写成:
前面我们分别介绍了第一类曲线积分与定积分,第二类曲线积分与定积分、二重积分,第一类曲面积分与二重积分,第二类曲面积分与二、三重积分的关系。
而书中又介绍了两类曲线积分之间的关系和两类曲面积分之间的关系,还有斯托克斯公式又说明了曲线与曲面积分的关系。
综上所述,充分说明了虽然曲线、曲面积分与定积分、重积分它们有着不同的定义、积分域与计算方法,但同时又有着密不可分的关系。
它们之间的转化真是妙趣无穷。
【参考文献】
[1]同济大学数学系编.高等数学(第六版)下册[M].北京:高等教育出版社,2007。
七大积分总结范文

七大积分总结范文积分是微积分的一个重要概念,它在数学、物理及工程学等领域中具有广泛的应用。
在微积分中,积分被认为是导数的逆运算,可以用来求函数的面积、弧长、体积等。
在数学中,有七大积分,包括定积分、不定积分、曲线积分、曲面积分、重积分、线积分和路径积分。
下面将对这七大积分进行详细总结。
定积分是微积分中最基本的积分形式,它可以用于计算曲线下面积。
定积分被表示为∫f(x)dx,在区间 [a,b] 上计算函数 f(x) 的定积分,可以得到曲线 f(x) 和 x 轴之间的面积。
定积分的计算有很多方法,如牛顿-莱布尼茨公式、Riemann 可积性等。
定积分广泛应用于计算几何、物理学、经济学等领域。
不定积分是定积分的逆运算,表示为∫f(x)dx = F(x) + C,其中F(x) 是函数 f(x) 的原函数,C 是常数。
不定积分求解的过程中,要确定函数 f(x) 的原函数 F(x),然后加上一个常数 C。
不定积分在微积分中有着广泛应用,如求函数的原函数、求定积分中的不定系数等。
曲线积分是一种沿曲线或曲线段对给定函数进行积分的方法。
它可以用来计算沿曲线运动的物体的工作量、流量、质心等。
曲线积分有两种形式:第一类曲线积分和第二类曲线积分。
第一类曲线积分表示为∫Cf(x,y) ds,第二类曲线积分表示为∫C Pdx + Qdy。
曲线积分的计算可以通过参数方程、向量法、Green 公式等方法进行。
曲面积分是对给定曲面上的函数进行积分的方法。
它可以用来计算质量、重心、通量等。
曲面积分有两种形式:第一类曲面积分和第二类曲面积分。
第一类曲面积分表示为∫∫S f(x,y,z) dS,第二类曲面积分表示为∫∫S Pdydz + Qdzdx + Rdxdy。
曲面积分的计算可以通过参数方程、向量法、高斯公式等方法进行。
重积分是对多元函数在给定区域上进行积分的方法。
它可以用来计算体积、质量、质心、惯性矩等。
重积分可以分为二重积分和三重积分。
重积分曲线曲面积分总结

D
f (x, y)对x为偶函数, 即
f ( x, y) f ( x, y),( x, y) D,
则 f ( x, y)dxdy 2 f ( x, y)dxdy,
D
D1
其中 D1 D { x 0};
6、二重积分计算
(1) 直角坐标系
D {( x, y) a x b,1( x) y 2( x)}, 其中函数1( x)、2( x)在区间[a, b]上连续.
重积分
1. 理解二重积分、三重积分的概念, 了解 重积分的性质.
2. 掌握二重积分的计算法(直角坐标、极 坐标),了解三重积分的计算法(直角坐标、 柱面坐标、球面坐标).
3. 会用重积分求一些几何量与物理量.
二重积分
1. 定义 平面上有界闭区域D上二元有界函数
z = f (x, y)的二重积分 n
V x) dy z2 ( x, y) f ( x, y, z)dz
a
y1 ( x )
z1 ( x , y )
当V投影到zx平面或yz平面上时,结果类似.
(b) “先二后一法” ---截面法
f ( x, y, z)dxdydz c2 dz f ( x, y, z)dxdy
Fx
f
D
(
x
(
2
x, y2
y)
x a
2
)
3 2
d
,
Fy
f
D
(
x
(
2
x, y2
y)
y a
2
)
3 2
d
,
Fz
af
D
(
x2
( x,
y2
y) a2
3 d
重积分与曲线曲面积分的计算

重积分与曲线曲面积分的计算重积分与曲线曲面积分是高等数学中重要的概念和计算方法。
本文将介绍重积分和曲线曲面积分的定义和计算方法,并通过实例演示其应用。
一、重积分的定义与计算方法重积分,又称多重积分或二重积分,是对二维或多维空间内的函数在给定区域上的积分运算。
其定义如下:设函数 f(x, y) 在闭区域 D 上有界,则重积分的定义为:∬D f(x, y) dA = limn→∞ ΣΣ f(xi*, yj*) ΔS其中,ΣΣ表示对所有小矩形的求和,xi*和yj*分别代表每个小矩形中任意一点的横纵坐标,ΔS为小矩形的面积。
计算重积分需要先确定积分区域 D,再利用累次积分的方法进行计算。
具体步骤如下:1. 确定积分区域 D 的范围和方程。
2. 将重积分转化为累次积分,先对 x 进行积分,再对 y 进行积分。
计算时可利用定积分的性质,如线性性、区间可加性等。
3. 按照积分区域 D 的特点选择适当的坐标系,如直角坐标系、极坐标系、柱坐标系等。
4. 进行累次积分计算,注意求导和换元等运算的使用。
通过以上计算步骤,可以求得重积分的值,从而对函数在给定区域上的积分进行计算。
二、曲线曲面积分的定义与计算方法曲线曲面积分是对曲线或曲面上的向量场进行积分的运算。
其定义如下:1. 曲线积分:设曲线 C 是一个可求长度的光滑曲线,其参数方程为x = φ(t), y = ψ(t), z = χ(t),向量场 F(x, y, z) = P(x, y, z) i + Q(x, y, z) j +R(x, y, z) k。
则曲线积分的定义为:∮C F⋅dr = ∫ab F(φ(t), ψ(t), χ(t))⋅(φ'(t) i + ψ'(t) j + χ'(t) k) dt其中,a 和 b 分别代表曲线参数的起点和终点。
2. 曲面积分:设曲面 S 是一个可求面积的光滑曲面,其参数方程为x = φ(u, v), y = ψ(u, v), z = χ(u, v),向量场 F(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k。
重积分、曲线积分、曲面积分

重积分、曲线积分、曲面积分一、曲线积分第一型曲线积分(对弧长)定义:设L 为平面上可求长度的曲线段,(,)f x y 为定义在L 上的函数。
对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段(1,2,,),i L i n = i L 的弧长记为,i s ∆ 分割T的细度为1max ,i i nT s ≤≤=∆ 在i L 上任取一点(,)(1,2,,).i i i n ξη= 若极限1lim(,)niiiT i f s ξη→=∆∑存在,则称此极限值为(,)f x y 在L 上的第一型曲线积分(对弧长的积分),记作(,)Lf x y ds ⎰。
若L 为空间可求长曲线段,(,,)f x y z 为定义在L 上的函数,则可类似定义(,,)f x y z 在空间曲线L 上的第一型曲线积分,并且记为(,,)Lf x y z ds ⎰。
性质: 1. 若(,)(1,2,,)i Lf x y ds i k =⎰存在,(1,2,,)i c i k =为常数,则1(,)ki i Li c f x y ds =∑⎰也存在,且11(,)(,).kki i i i LLi i c f x y ds c f x y ds ===∑∑⎰⎰2. 若曲线段L 由曲线12,,k L L L 首尾相接而成,且(,)(1,2,,)i Lf x y ds i k =⎰都存在,则(,)Lf x y ds ⎰也存在,且1(,)(,).ikLL i f x y ds f x y ds ==∑⎰⎰3. 若(,)Lf x y ds ⎰与(,)Lg x y ds ⎰都存在,且在L 上(,)(,),f x y g x y ≤ 则(,)(,).LL f x y ds g x y ds ≤⎰⎰4. 若(,)Lf x y ds ⎰存在,则|(,)|Lf x y ds ⎰也存在,且|(,)||(,)|LLf x y ds f x y ds ≤⎰⎰。
5. 若(,)Lf x y ds ⎰存在,L 的弧长为s ,则存在常数c ,使得(,)Lf x y ds ⎰=cs 。
二重积分第一类曲面积分第二类曲线

二重积分第一类曲面积分第二类曲线
在三维空间中,曲面积分和曲线积分是两种基本的积分形式。
二重积分
在平面直角坐标系中,给定一个曲形边界,定义该曲形内部所有点的面积总和为二重积分。
若一个平面有两个坐标轴x和y,那么在该平面上的函数f(x,y)的二重积分为:
$$\iint_R f(x,y) \,dx\,dy$$
其中,R是定义二重积分的区域,我们将R分割成许多小块,每个小块的面积为$dx\,dy$,从而把整个区域R内所有的面积
都加起来。
第一类曲面积分
给定一个曲面S,我们可以定义它的第一类曲面积分f(x,y,z)为:
$$\iint_S f(x,y,z) \,dS$$
其中,$dS$表示曲面S的微小面积。
这个曲面积分可以理解
为把曲面S上的函数f(x,y,z)都加起来,得到一个数值。
第二类曲线积分
给定一个曲线C,我们可以定义它的第二类曲线积分f(x,y,z)为:
$$\int_C f(x,y,z) \,ds$$
其中,$ds$表示曲线C的微小弧长。
这个曲线积分可以理解为对曲线C连续的函数f(x,y,z)进行积分,得到一个数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重积分、曲线积分、曲面积分一、曲线积分第一型曲线积分(对弧长)定义:设L 为平面上可求长度的曲线段,(,)f x y 为定义在L 上的函数。
对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段(1,2,,),i L i n = i L 的弧长记为,i s ∆ 分割T的细度为1max ,i i nT s ≤≤=∆ 在i L 上任取一点(,)(1,2,,).i i i n ξη= 若极限1lim(,)niiiT i f s ξη→=∆∑存在,则称此极限值为(,)f x y 在L 上的第一型曲线积分(对弧长的积分),记作(,)Lf x y ds ⎰。
若L 为空间可求长曲线段,(,,)f x y z 为定义在L 上的函数,则可类似定义(,,)f x y z 在空间曲线L 上的第一型曲线积分,并且记为(,,)Lf x y z ds ⎰。
性质: 1. 若(,)(1,2,,)i Lf x y ds i k =⎰存在,(1,2,,)i c i k =为常数,则1(,)ki i Li c f x y ds =∑⎰也存在,且11(,)(,).kki i i i LLi i c f x y ds c f x y ds ===∑∑⎰⎰2. 若曲线段L 由曲线12,,k L L L 首尾相接而成,且(,)(1,2,,)i Lf x y ds i k =⎰都存在,则(,)Lf x y ds ⎰也存在,且1(,)(,).ikLL i f x y ds f x y ds ==∑⎰⎰3. 若(,)Lf x y ds ⎰与(,)Lg x y ds ⎰都存在,且在L 上(,)(,),f x y g x y ≤ 则(,)(,).LL f x y ds g x y ds ≤⎰⎰4. 若(,)Lf x y ds ⎰存在,则|(,)|Lf x y ds ⎰也存在,且|(,)||(,)|LLf x y ds f x y ds ≤⎰⎰。
5. 若(,)Lf x y ds ⎰存在,L 的弧长为s ,则存在常数c ,使得(,)Lf x y ds ⎰=cs 。
计算设有光滑曲线(),:[,],(),x t L t y t ϕαβψ=⎧∈⎨=⎩函数(,)f x y 为定义在L 上的连续函数,则(,)((),())Lf x y d s f t t d t βαϕψ=⎰⎰。
若曲线L 由方程(),[,]y x x a b ψ=∈表示,且()x ψ在[,]a b 上连续可导,则(,)(,(.bLaf x y ds f x x ψ=⎰⎰例1.设L 是24y x =从(0,0)O 到(1,2)A 一段,试计算第一型曲线积分.Lyds ⎰解24(1).3Lyds ==⎰⎰例2. 计算2,Lx ds ⎰其中L 为球面2222x y z a ++=被平面0x y z ++=所截得的圆周。
解 由对称性知222,LLLx ds y ds z ds ==⎰⎰⎰所以22222312().333L L L a x ds x y z ds ds a π=++==⎰⎰⎰第二型曲线积分(对坐标)有向曲线:带有方向的曲线称为有向曲线,其正方向是指从起点到终点的方向。
简单闭曲线的正方向是指逆时钟方向。
定义: 设函数(,)P x y 与(,)Q x y 定义在平面有向可求长度曲线L :AB 上,对L 的任一分割T ,它把L 分成n 个小曲线段1i i M M -(1,2,,),i n = 其中0,n M A M B ==。
记各小曲线段1i i M M -的弧长为i s ∆,分割T的细度1max .i i nT s ≤≤=∆ 又设T的分点i M 的坐标为(,)i ix y ,并记1,i i i x x x -∆=-1(1,2,,).i i i y y y i n -∆=-= 在每个小曲线段1i i M M -上任取一点(,)i i ξη,若极限11lim (,)lim (,)nni i i i i i T T i i P x Q y ξηξη→→==∆+∆∑∑存在,则称此极限为函数(,),(,)P x y Q x y 沿有向曲线L 上的第二型曲线积分(对坐标),记为(,)(,)LP x y d xQ x y d y +⎰或(,)(,)ABP x y dx Q x y dy +⎰。
上述积分还可写作(,)(,)LLP x y dx Q x y dy +⎰⎰或(,)(,)ABABP x y dx Q x y dy +⎰⎰。
为方便,上述积分可简写成LPdx Qdy +⎰。
若L 是闭曲线,上述积分可写成LPdx Qdy +⎰。
若L 为空间有向可求长度曲线,(,,),(,,),(,,)P x y z Q x y z R x y z 为定义在L 上的函数,则类似地可定义沿空间有向曲线L 上的第二型曲线积分,记为(,,)(,,)(,,)LP x y z dx Q x y z dy R x y z dz ++⎰可简写成LPdx Qdy Rdz ++⎰。
注:第一型曲线积分与曲线的方向无关,第二型曲线积分与曲线的方向有关。
性质: 1..ABBAPdx Qdy Pdx Qdy +=-+⎰⎰2. 若ii LPdx Q dy +⎰(1,2,,)i k =存在,则11k k i i i i Li i c P dx c Q dy ==⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑⎰也存在,且()111,k kki i i i i iiLLi i i c P dx c Q dy cPdx Q dy ===⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭∑∑∑⎰⎰其中(1,2,,)i c i k =为常数。
3. 若有向曲线L 是由有向曲线12,,,k L L L 首尾相接而成,且(1,2,,)iL Pdx Qdyi k +=⎰存在,则LPdx Qdy +⎰也存在,且1.ikLL i Pdx Qdy Pdx Qdy =+=+∑⎰⎰计算:设平面曲线(),:[,],(),x t L t y t ϕαβψ=⎧∈⎨=⎩其中(),()t t ϕψ在[,]αβ上具有一阶连续导函数,且点A 与B 的坐标分别为((),())ϕαψα与((),())ϕβψβ。
又设(,)P x y 与(,)Q x y 为L 上的连续函数,则''(,)(,)[((),())()((),())()].LLP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰⎰例1. 计算(),Lxydx y x dy +-⎰其中L 是由(1,1)A 沿抛物线22(1)1y x =-+到(2,3)B 的有向曲线。
解 L 为22(1)1,12,y x x =-+≤≤ 所以22212321(){[2(1)1][2(1)1]4(1)}10(10323512).3Lxydx y x dyx x x x x dx x x x dx +-=-++-+--=-+-=⎰⎰⎰例2.计算第二型曲线积分2()LI xydx x y dy x dz =+-+⎰,其中L 是螺旋线:cos ,sin ,x a t y a t z bt ===从0t =到t π=上的一段。
解 直接使用公式得32222223322220(c o s s i n c o s s i n c o s c o s )11111s i n s i n (1)s i n 2(1).32222|I a t t at a t t a bt d t a t a t a b tt a b πππ=-+-+⎡⎤⎛⎫=--+++=+ ⎪⎢⎥⎝⎭⎣⎦⎰应用 求变力作功力(,)((,),(,))F x y P x y Q x y =沿有向曲线L 对质点所作的功为 (,)(,)LW P x y dx Q x y dy =+⎰。
例3求在力(,,F y x x y z-++的作用下,质点由(,0,0)A a 沿螺旋线1L :cos ,sin ,,02x a t y a t z bt t π===≤≤到(,0,2)B a b π所作的功。
解 由于sin ,cos ,dx a tdt dy a tdt dz bdt =-==,所以直接使用公式可得122222222()(sin cos cos sin )2().L W ydx xdy x y z dza t a t ab t ab t b t dt b a πππ=-+++=--+++=-⎰⎰习题 1. 计算||,Ly ds ⎰其中L 为单位圆周221x y +=。
2.计算⎰,其中L 是2222x y z a ++=与x y =相交的圆周。
3. 计算22,L xdx ydy x y -++⎰ 其中L 为圆周221x y +=,依逆时钟方向。
4. 计算Lxdx ydy zdz ++⎰,其中L :从(1,1,1)到(2,3,4)的直线段。
5. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(,0)a 沿椭圆移动到(0,)b ,求力所作的功。
答案:1. 4, 2. 22a π, 3. 0, 4. 13, 5. 22(),2k b a k -为比例系数。
二、二重积分定义:设D 为xy 平面上的有界闭区域,(,)f x y 为定义在D 上的函数。
用任意的曲线把D 分成n 个小区域12,,.n σσσ 以i σ∆表示小区域的面积,这些小区域构成D 的一个分割T , 以i d 表示小区域i σ的直径,称1max i i nT d ≤≤=为分割T 的细度。
在每个i σ上任取一点(,)i i ξη,作和式1(,)ni i i i f ξησ=∆∑,称它为函数(,)f x y 在D上属于分割T 的一个积分和。
如果 01lim(,)niiiT i f ξησ→=∆∑存在,则称(,)f x y 在D 上可积,此极限值就称为(,)f x y 在D 上的积分,记为(,)Df x y d σ⎰⎰,即1(,)lim (,)ni i i DT i f x y d f σξησ→==∆∑⎰⎰。
定理:有界闭区域上的连续函数必可积。
性质:1. 若(,)f x y 在区域D 上可积,k 为常数,则(,)kf x y 在D 上也可积,且(,)(,).DDkf x y d k f x y d σσ=⎰⎰⎰⎰2. 若(,),(,)f x y g x y 在D 上都可积,则(,)(,)f x y g x y ±在D 上也可积,且[(,)(,)](,)(,).DDDf x yg x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰3. 若(,)f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(,)f x y 在12D D ⋃上也可积,且1212(,)(,)(,).D D D D f x y d f x y d g x y d σσσ⋃=+⎰⎰⎰⎰⎰⎰4. 若(,),(,)f x y g x y 在D 上都可积,且(,)(,)f x y g x y ≤,(,),x y D ∈ 则(,)(,)DDf x y dg x y d σσ≤⎰⎰⎰⎰5. 若(,)f x y 在区域D 上可积,则函数(,)f x y 在区域D 上也可积,且(,)(,).DDf x y d f x y d σσ≤⎰⎰⎰⎰6. 若(,)f x y 在区域D 上可积,且(,),(,),m f x y M x y D ≤≤∈ 则 (,),D D DmS f x y d MS σ≤≤⎰⎰这里D S 是积分区域D 的面积。