蛋白质和氨基酸的测定
食品分析课件6.蛋白质及氨基酸的测定

对连续测定结果进行趋势分析,了解变化趋势。
数据可靠性评估
1 2
重复性检验
通过多次重复测定,评估测定方法的重复性。
准确性检验
通过与其他已知准确度高的方法进行比较,评估 测定方法的准确性。
3
检出限和精密度
根据方法检出限和精密度,评估数据可靠性。
06
实际应用与案例分析
食品营养标签的制定
蛋白质含量
在食品生产过程中,蛋白质含量的均匀度是评价产品质量的重要指标之一。通过 测定不同批次或不同部位食品中的蛋白质含量,可以了解产品的均匀度,从而控 制产品质量。
氨基酸比例
氨基酸比例是评价食品质量的重要参考指标。不同食品中的氨基酸比例有所不同 ,通过测定食品中的氨基酸比例,可以了解产品的质量,为质量控制提供依据。
05
数据分析与解读
数据处理方法
平均值计算
对多次测定结果取平均值,以减少误差。
异常值剔除
根据统计学原理,将偏离平均值过大的数据剔除。
数据标准化
将不同来源的数据进行标准化处理,以便于比较。
结果解读与比较
正常范围判断
将测定结果与标准值或参考值进行比较,判断是否在正常范围内。
差异分析
对不同样品或不同处理条件下的结果进行差异分析,找出显著性差 异。
操作规范
严格遵守操作规程,避免操作 不当导致实验失败或安全事故
。
数据记录
及时记录实验数据,避免丢失 数据或误差。
安全须知
穿戴防护服
实验过程中需穿戴实验 服和化学防护眼镜等个
人防护用品。
保持通风
保持实验室通风良好, 避免有害气体积累。
废弃物处理
急救措施
按照实验室规定正确处 理废弃物,防止环境污
第3章 蛋白质和主要必需氨基酸的测定

(三)同类种子中蛋白质的测定(双缩脲法) 2 操作步骤
(2)标准回归方程的测定。分别称取0.050 0~0.120 0g待测定谷物样品20--30个(也 可用蛋白质含量差异大的样品30个左 右),先用开氏法测出具蛋白质的含量, 然后按上法显色并测定吸收值A,作出标 准回归方程。
(三)同类种子中蛋白质的测定(双缩脲法) 3 备注
(三)同类种子中蛋白质的测定(双缩脲法) 2. 方法特点及应用范围
本法须用开氏法作标准回归方程。本法灵 敏度较低但经试验其与开氏法的相关性较 好,操作简单快速,适用样品广泛,在生物 化学领域中测定蛋白质含量时常用此法。本 法亦适用于豆类、油料、米谷等作物种子及 肉类等样品测定,尤适用于大批品种选择用。
(一)籽粒中粗蛋白质的测定
H2SO4一K2SO4一CuSO4一Se消煮法 2 操作步骤 (2)氮的测定。用移液管吸取澄清待测液5.00或 10.00mL放入半微量定氮仪中进行定氮。同时作空 白试验。
(一)籽粒中粗蛋白质的测定
H2SO4一K2SO4一CuSO4一Se消煮法 3 说明
(1)本法测定的结果为粗蛋白质的含量。如要测 定纯蛋白质的含量,则样品应先用蛋白质沉淀剂 碱性硫酸铜、碱性醋酸铅、200g·L-1 - 250g·L-1单 宁或100g·L-1三氯乙酸等处理,将蛋白质从水溶 液中沉淀出来,再测定此沉淀的全氮量,乘以蛋 白质的换算系数即可得:“纯蛋白质”量。
该法为美国谷物化学协会(AACC)测定谷物蛋白质的正式 方法,且已有据此法原理为基础的快速测定蛋白质的自动 分析仪。 一般的生化分析中采用的双缩脲试剂是碱性硫酸铜水溶 液,不适用于种子蛋白质的分析,因为它不稳定,而且会 浸出有色物质、脂肪及一些淀粉物质,干扰比色测定。而 异丙醇双缩脲试剂,可以减少这些物质的溶解,排除干扰。 本法对温度及时间的要求严格,否则再现性不高。采用室 温20-25℃,须于120~190min内比色;40℃为15-70min显 色稳定;而在60℃连续振荡条件下显色,则反应时间缩短 为5min。 离心须用6 000r·min-1,10min可得澄清液,小于4000r·min-1 的效果不佳。
食品中一般成分分析—蛋白质和氨基酸的测定

反应原理
电位滴定法是靠电极电位的突跃来指示滴定终点。 在滴定到达终点前后,滴液中的待测离子浓度往往变 化很大,引起电位的突跃,被测成分的含量仍然通过 消耗滴定剂的量来计算。
反应原理
因此,电位滴定准确度和精密度高,可用于滴定 突跃小或不明显的滴定反应,也可用于有色或浑浊试 样的滴定,电位滴定装置简单、操作方便,可自动化。 使用不同的指示电极,电位滴定法可以进行酸碱滴定, 氧化还原滴定,配合滴定和沉淀滴定。
食品中通常含有多种氨基酸,因此需要测定氨基酸的总 量,不能以氨基酸百分率来表示,只能以氨基酸中所含的 氮即氨基酸态氮的百分率来表示。
氨基酸含量一直是某些发酵产品如调味品的重要质量指 标,也是目前许多保健食品的质量指标之一。
与蛋白质中氨基酸结合状态不同,呈游离状态的氨基酸 的含氮量可直接测定,因此称为氨基酸态氮。
.
营养学分类
(2)半必需氨基酸或条件必需氨基酸 人体虽能够合成精氨酸和组氨酸,但通常不能满足 正常的需要,因此,又被称为半必需氨基酸或条件必需 氨基酸,在幼儿生长期这两种是必需氨基酸。 (3)非必需氨基酸 指能由简单的前体合成,不需要从食物中获得的氨 基酸。例如甘氨酸、丙氨酸等氨基酸。
.
.
化学结构分类
仪器及试剂
仪器及试剂
1.仪器 分光光度计、容量瓶、具塞刻度试管、移液管、恒温水浴锅等; 2.试剂 (1)20g/L茚三酮溶液 称取茚三酮1g置于盛有35mL热水的烧杯中使 其溶解,加入40mg氯化亚锡,搅拌过滤作为防腐剂。滤液放置于棕色 瓶中冷暗处过夜,加水至58.04 磷酸盐缓冲溶液 准确称取磷酸二氢钾4.5350g于烧杯中,用少量蒸馏水溶解,移入500mL 容量瓶中,加水稀释至刻度,摇匀备用; 准确称取磷酸氢二钠11.9380g于烧杯中,用少量蒸馏水溶解,移入 500mL容量瓶中,加水稀释至刻度,摇匀备用; 取上述配制好的磷酸二氢钾溶液10mL与190mL磷酸氢二钠溶液混匀即为 pH8.04磷酸盐缓冲溶液。
食品中蛋白质和氨基酸的测定(精)

2.合成色素的提取
聚酰胺吸附色素
3.定性分析 14. 定量分析 5 .薄层层析法、高效液相色谱法测定的基本要 求
三、甜味剂的测定
糖精钠的测定:糖精是应用较为广泛的人工甜味 剂 其学名为邻—磺酰苯甲酰亚胺其结构式为:
1.HPLC法 2.酚磺酞比色法 [原理] 样品中的糖精钠在酸性条件下用乙醚提 取分离后,与酚和硫酸在175 ℃作用,生成酚 磺酞,再与氢氧化钠反应产生红色溶液,与标 准系列比较定量。 [说明] ①本法受温度影响较大,要使糖精充分与 酚在硫酸作用下生成酚磺酞,应严格控制在 175士2℃温度下反应 2小时。②苯甲酸等有机 物对测定有干扰,故要通过碱性氧化铝层析柱 以排除干扰。 3. 紫外分光光度法
二、蛋白质和氨基酸的分类
三、蛋白质的一般性质
1. 物理性质
2 .化学性质
第二节 蛋白质的测定
蛋白质的测定方法分两大类:一类是利用蛋白质 的共性即含氮量、肽键和折射率等测定蛋白质 含量;另一类是利用蛋白质中的氨基酸残基、 酸性和碱性基因以及芳香基团等测定蛋白质含 量 。 具体测定方法:凯氏定氮法是最常用的,国内 外应用普遍;双缩脲反应、染料结合反应、酚 试剂法; 国外:红外分析仪
④ 样品中若含脂肪较多时,消化过程中易产生大 量泡沫,为防止泡沫溢出瓶外,在开始消化时 应用小火加热,并时时摇动;或者加入少量辛 醇或液体石蜡或硅油消泡剂,并同时注意控制 热源强度。 ⑤ 当样品消化液不易澄清透明时,可将凯氏烧 瓶冷却,加入30%过氧化氢 2—3 m1 后再继 续加热消化。 ⑥ 若取样量较大,如干试样超过5 g 可按每克 试样5 m1的比例增加硫酸用量。
[步骤] 整个过程分三步:消化、蒸馏、吸收与 滴 定 1.消化 总反应式: 2NH2(CH2)2COOH+13H2SO4= (NH42SO4+6CO2+12SO2+16H2O
蛋白质和氨基酸测定方法

第十章 蛋白质和氨基酸的测定第一节 概述蛋白质是生命的物质基础,是构成生物体细胞组织的重要成分,是生物体发育及修补组织的原料。
一切有生命的活体都含有不同类型的蛋白质。
人体内的酸、碱及水分平衡,遗传信息的传递,物质代谢及转运都与蛋白质有关。
人及动物只能从食物中得到蛋白质及其分解产物,来构成自身的蛋白质,故蛋白质是人体重要的营养物质,也是食品中重要的营养成分。
蛋白质在食品中含量的变化范围很宽。
动物来源和豆类食品是优良的蛋白质资源。
部分种类食品的蛋白质含量见表10-1表10-1 部分食品的蛋白质含量蛋白质是复杂的含氮有机化合物,摩尔质量大,大部分高达数万~数百万,分子的长轴则长达1nm ~100nm ,它们由20种氨基酸通过酰胺键以一定的方式结合起来,并具有一定的空间结构,所含的主要化学元素为C 、H 、O 、N ,在某些蛋白质中还含有微量的P 、Cu 、Fe 、I 等元素,但含氮则是蛋白质区别于其它有机化合物的主要标志。
不同的蛋白质其氨基酸构成比例及方式不同,故各种不同的蛋白质其含氮量也不同。
一般蛋白质含氮量为16%,即1份氮相当于6.25份蛋白质,此数值(6.25)称为蛋白质系食 品 种 类 蛋白质的质量分数(以湿基计)/% 食 品 种 类 蛋白质的质量分数(以湿基计)/%谷类和面食大米(糙米、长粒、生) 7.9大米(白米、长粒、生、强化) 7.1小麦粉(整粒) 13.7玉米粉(整粒、黄色) 6.9意大利面条(干、强化) 12.8玉米淀粉 0.3乳制品牛乳(全脂、液体) 3.3牛乳(脱脂、干) 36.2切达干酪 24.9酸奶(普通的、低脂) 5.3水果和蔬菜苹果(生、带皮) 0.2芦笋(生) 2.3草莓(生) 0.6莴苣(冰、生) 1.0土豆(整粒、肉和皮) 2.1 豆类 大豆(成熟的种子、生) 36.5 豆(腰子状、所有品种、 23.6 成熟的种子、生) 豆腐(生、坚硬) 15.6 豆腐(生、普通) 8.1 肉、家禽、鱼 牛肉(颈肉、烤前腿) 18.5 牛肉(腌制、干牛肉) 29.1 鸡(可供煎炸的鸡胸肉、 23.1 生) 火腿(切片、普通的) 17.6 鸡蛋(生、全蛋) 12.5 鱼(太平洋鳕鱼、生) 17.9 鱼(金枪鱼、白色、罐 26.5 装、油浸、滴干的固体)数。
第九章 蛋白质和氨基酸的测定

4.结果计算
式中
w——氨基酸态氮的质量分数;
C——氢氧化钠标准溶液的浓度,mol/L;
V1——用中性红作指示剂滴定消耗氢氧化钠标 准溶液的体积,ml;
V2——用百里酚酞作指示剂滴定消耗氢氧化钠 标准溶液的体积,ml; 0.014——氮的毫摩尔质量,g/mmol
m—— 测定用样品溶液相当于样品的质量,g。
思考题:
1.为什么说用凯氏定氮法测定出食品中的蛋白质含量 为粗蛋白含量?
2.在消化过程中加入的硫酸铜试剂有哪些作用?
3.样品消化过程中内容物的颜色发生什么变化?为什 么?
4.样品经消化进行蒸馏之前为什么要加入氢氧化钠? 这时溶液的颜色会发生什么变化?为什么?如果没有变 化,说明了什么问题?须采取什么措施? 5.蛋白质蒸馏装置的水蒸气发生器中的水为何要用硫 酸调成酸性? 6.蛋白质测定的结果计算为什么要乘上蛋白质系数?
(5) 混合指示剂
甲基红—溴甲酚绿混合指示剂: 5份2g/L溴甲酚绿95%乙醇溶液与1份2g/L甲基红乙 醇溶液混合均匀。终点为灰红色。 或甲基红—亚甲蓝混合指示剂:
一体积的亚甲蓝(0.05%酒精溶液)和二体积的甲 基红指示剂(0.05%酒精溶液)的混合物。终点为紫色。
(6) 饱和硼酸溶液(40g/L): 称取20g硼酸溶解于500mL热水中,摇匀备用。 (7) 0.1N盐酸标准溶液
第九章 蛋白质和氨基酸的测定
第一节 概述 第二节 蛋白质的测定方法 第三节 氨基酸态氮的测定
第一节 概述
一、pro组成与蛋白质系数 1.组成 pro是由两性氨基酸通过肽键结合在一起的大 分子化合物。
元素组成百分比:
元素 C H O N S P
百分比 50 7 23
16
第2章 蛋白质和主要必需氨基酸的测定

第一节 概述
蛋白质是植物的重要组成成分,也是农产品品质中最重 要的成分。
它的含量依作物种类、部位、生育时期、品种特性而有
变化。植物各部位器官中蛋白质含量也不同,其中以籽 粒中最多,如豆类可达45%-55%,其次是花、叶、茎和 根。
作物在不同的生育阶段根部位吸收的氮,不断向新生组
赖氨酸是一种必须的氨基酸。缺乏赖氨酸,人与动物不仅不能正常
发育,还会引起某些疾病。在绝大多数谷物中,赖氨酸是最缺乏的 氨基酸,被称为第一限制氨基酸。
对人体的作用:
1.提高智力、促进生长、增强体质。 2.增进食欲、改善营养不良状况。 3.改善失眠,提高记忆力。 4.帮助产生抗体、激素和酶,提高免疫力、增加血色素。
较慢,试剂费用较高。
近年已出现几种以开氏法原理为基础的全自动或半自
动的开氏定氮仪。
瑞典的Tecator公司生产的开氏1030分析仪(Kjeltec Auto 1030 Analyzer)、日本生产的kjel-Auto自动氮和 蛋白质分析仪和丹麦FOSS公司生产的Kjel—FOSS自 动蛋白质分析仪等。
二酮炔-茚二酮胺(DYDA),显色(570nm)后的氨基酸由光度计 检测。
氨基酸自动分析仪
操作步骤
(1) 全氨基酸试样的制备(盐酸水解)。 (2) 胱氨酸及色氨酸的水解(盐酸分解过程
中破坏,需另行制备)。
(3) 植物性产品中游离氨基酸试样的制备。 (4) 上机测定。
二、谷物和饲料中赖氨酸的测定 ——染料结合法-DBL法
0.01 mol· -1(1/2H2SO4)或0.02 mol· -1 HCl标准溶液。 L L 其他试剂同第四章(土壤全氮的测定)。
食品分析与检验蛋白质与氨基酸的测定

食品分析与检验蛋白质与氨基酸的测定蛋白质与氨基酸的测定在食品分析与检验领域中具有重要意义。
蛋白质是食品中重要的营养组分,而氨基酸是构成蛋白质的基本单元,对于评价食品的品质和安全性具有重要意义。
本文将介绍蛋白质与氨基酸的测定方法及其在食品分析与检验中的应用。
蛋白质的测定方法主要有几种:生物测定法、光谱法和色谱法。
其中,生物测定法主要是通过测定食品中的氮元素含量来间接测定蛋白质含量。
常用的方法有凯氏氮法、造浆法和改良Kjeldahl法等。
光谱法主要是通过根据蛋白质的特征光吸收谱测定其含量。
常用的方法有紫外-可见光谱法、荧光光谱法和红外光谱法等。
色谱法是通过分离和检测蛋白质的各种成分来测定其含量。
常用的方法有凝胶过滤层析法、液相色谱法和气相色谱法等。
氨基酸是构成蛋白质的基本单元,对于评价蛋白质的营养价值和品质具有重要作用。
氨基酸的测定方法主要有色谱法和生物传感器方法。
其中,色谱法是目前最主要的氨基酸定量方法,其主要包括高效液相色谱法和气相色谱法。
高效液相色谱法常用于氨基酸的定性和定量分析,具有灵敏度高、选择性好和分析速度快的特点;气相色谱法通常用于氨基酸的定性分析,具有高分离能力和分析速度快的优势。
生物传感器方法是一种新兴的氨基酸测定方法,通过利用生物传感器对氨基酸的选择性响应来测定其含量。
生物传感器方法具有灵敏度高、反应快和操作简便等特点。
在食品分析与检验中,蛋白质与氨基酸的测定具有广泛的应用。
首先,蛋白质含量是评价食品营养价值的重要指标之一、通过测定食品中蛋白质的含量,可以评估其蛋白质营养价值和食品质量。
其次,氨基酸是判定食品蛋白质种类和品质的重要指标。
通过测定食品中各种氨基酸的含量,可以评价蛋白质的品质和营养价值。
此外,蛋白质与氨基酸的测定还可以用于食品的伪标问题的检验,如检验食品中是否含有非法添加的蛋白质或氨基酸衍生物。
综上所述,蛋白质与氨基酸的测定在食品分析与检验中具有重要意义。
通过选择合适的测定方法,可以准确、快速地测定食品中的蛋白质含量和氨基酸组成,从而评价食品的品质、安全性和营养价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯硫酸沸点 340℃,加入硫酸钾之后可以提高
至400℃以上。也可加入硫酸钠,氯化钾等提 高沸点,但效果不如硫酸钾。
<2> 加硫酸铜 作为催化剂。还可以作消化终点 指示剂(做蒸馏时碱性指示剂)。还可以加氧 化汞、汞(均有毒,价格贵)、硒粉、二氧化 钛。 <3> 加氧化剂 如双氧水、次氯酸钾等加速有机 物氧化速度。
注:测蛋白质时叫双缩脲法,并不另加双缩脲。 样品不用消化
2. 方法特点及应用范围
本法灵敏度较低,但操作简单快速,故在生物化学 领域中测定蛋白质含量时常用此法。本法亦适用于 豆类、油料、米谷等作物种子及肉类等样品测定。 3.主要仪器: 分光光度计,离心机(4000 r/min) 4. 试剂: (1) 碱性硫酸铜溶液 (2) 四氯化碳
b.展开剂的选择方法: Ⅰ.微量圆环法。 Ⅱ.用小载波片试验,微量展开剂展开5cm。 Ⅲ.图解法: 样品极性小,选吸附剂活性高,展开剂极性低的。 样品极性大,选吸附剂活性低,展开剂极性高。 • 有机溶剂极性由小到大为: 石油醚、环己烷、四氯化碳、三氯乙烷、甲苯、 苯、二氯甲烷、氯仿、乙醚、乙酸乙酯、丙酮、 正丙醇、乙醇、甲醇、水、吡啶、有机酸类等。
北京福德泰和科技有限公司
产品名称: 凯氏定氮仪
二、双缩脲法
传统的凯氏定氮法应用范围广,灵敏度高、准 确,不要大仪器,但费时间,有环境污染。 新开发的:双缩脲法、 紫外分光光度法、 染料结合法、 水杨酸比色法等。
1. 原理 脲(尿素)NH2—CO—NH2 加热至150~160℃时, 两分子缩和成双缩脲。 NH2—CO—NH2 + NH2—CO—NH2 NH2—CO—NH—CO—NH2 + NH3 双缩脲能和硫酸铜的碱性溶液生成紫色络和物,这 种反应叫双缩脲反应。(缩二脲反应) 蛋白质分子中含有肽键 —CO—NH— 与双缩脲结构 相似。在同样条件下也有呈色反应,在一定条件下, 其颜色深浅与蛋白质含量成正比,可用分光光度计 来测其吸光度,确定含量。(560nm)
① 用 H3 BO3吸收后再以标准 HCl 溶液滴定。根 据标准酸消耗量可以计算出蛋白质的含量。 ② 也可以用过量的标准 H 2 SO 4 或标准 HCl 溶液 吸收后再以标准NaOH滴定过量的酸。
整个过程分三步:消化、蒸馏、吸收与滴定 1. 消化 总反应式:
2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O 一定要用浓硫酸(98%)
(二)茚三酮的比色法 原理:氨基酸在一定条件下与茚三酮起反应, 生成蓝紫色化合物,可比色定量。
二.个别氨基酸的定量测定
介绍了8种氨基酸的定量测定方法。
第七节
氨基酸的分离与测定
一.薄层色谱法(薄层层析法(TLC 法) Thin Layer Chromatography 简介: 近年来发展起来的一种微量而快速的层析 方法,它把吸附剂或支持剂均匀的铺在玻璃板 上成一薄层,把样品点在薄层上,然后用合适 的溶剂展开,从而达到分离、鉴定和定量的目 的。因为层析在薄层上进行,所以称为薄层层 析。它的应用范围比纸上层析更广泛,常用来 分析氨基酸、农药残留量、黄曲霉毒素等。
N = N×6.25 = 蛋白质含量 16%
一、 凯氏定氮法
由Kieldhl于1833年提出,现发展为常量、 微量、自动定氮仪法,半微量法及改良凯氏法。
(一)常量凯氏定氮法
1. 原理
样品与浓硫酸和催化剂一同加热消化,使蛋 白质分解,其中碳和氢被氧化为二氧化碳和水逸 出,而样品中的有机氮转化为氨与硫酸结合成硫 酸铵。然后加碱蒸馏,使氨蒸出。
2.特点:适用于发酵工业,如发酵液中含氮量,其 发酵过程中氮量减少情况等。(适于食品 中游离氨基酸的测定)
3.双指示剂: ① 40%中性甲醛溶液:以百里酚酞作指示剂,用 氢氧化钠将40%甲醛中和至蓝色。 ② 0.1%百里酚酞乙醇溶液, ③ 0.1%中性红50%乙醇溶液, ④ 0.1 mol/L 氢氧化钠标准溶液。 4.操作:同时取两份样: ① + 中性红指示剂,用氢氧化钠直接滴,中和 样液中其它酸性物质。 ② + 百里酚酞+ 中性甲醛+ NaOH 滴,中和了 样液中氨基酸的羧基与其它酸性物质的总 和。 二者之差可计算氨基酸含量
方法2、 溶解11.5 g HgI2 + KI 10 g于适量少 许水,后加水稀释至50 ml,静置后,取其澄清液, 弃去沉淀,储存于棕色瓶中。 • 结果计算: 注意:F——氮换算为蛋白质的系数,一般为 6.25 也可查表。 • 说明: ① 所用试剂溶液应用无氨蒸馏水配制。 ② 消化时不要用强火,应保持和缓沸腾,以免 粘贴在凯氏瓶内壁上的含氮化合物在无硫酸存 在的情况下消化不完全而造成氮损失。
⑥ 若取样量较大,如干试样超过5 g 可按每克试 样5 m1的比例增加硫酸用量。
⑦ —般消化至呈透明后,继续消化30分钟即可, 但对于含有特别难以氨化的氮化合物的样品.如 含赖氨酸、组氨酸、色氨酸、酪氨酸或脯氨酸等 时,需适当延长消化时间。有机物如分解完全, 消化液呈蓝色或浅绿色,但含铁量多时,呈较深 绿色。
• 操作方法: 以奈氏试剂——〔Nessler试剂,K2(HgI4)〕 检验NH4+离子,遇铵根,离子析 出黄色或红棕色沉淀。 配制 方法1、 3.5 g KI + 1.3 g HgCl2 溶于70 毫升 水。加30毫升4 mol/L氢氧化钠(或氢氧化钾)溶 液,必要时过滤,并存于玻璃瓶中盖紧口。
蛋白质的测定方法分两大类: 一类是利用蛋白质的共性即含氮量、肽键和折 射率等测定蛋白质含量; 另一类是利用蛋白质中的氨基酸残基、酸性和 碱性基因以及芳香基团等测定蛋白质含量。 具体测定方法:
凯氏定氮法——最常用的,国内外应用普遍。 双缩脲反应、染料结合反应、酚试剂法 国外: 红外分析仪
氨基酸总量——酸碱滴定法测定。
④ 展开:点样完了 ,放入密闭容器中 (展开 槽),倾斜一定角度10~30°,下端浸入展 开剂 1cm ,千万别让溶剂浸过了样点。到离 顶端一部分,取出样板、晾干、显色。
a. 展开剂的有关情况:主要是低沸点的 2 ~ 3 种有 机溶剂组成的溶剂系统,分离效果主要决定于展 开剂的选择,因为吸附剂在一定情况下是恒定的, 吸附剂的选择余地远远小于展开剂的选择。
(一)原理:
取一定量经水解的样品溶液,滴在制好的薄层
板上,在溶剂系统中进行双向上行法展开,样品各
组分在薄层板上经过多次的被吸附、解吸、交换等 作用,同一物质具有相同的Rf值,不同成分则有不
同的Rf值,因而各种混合物可达到彼此被分离的目
的。然后用茚三酮显色,与标准氨基酸进行对比,
鉴别各种氨基酸种类,从显色斑点颜色的深浅可以
面粉 9.9%,
苹果 1.4%
菠菜 2.4%,
黄瓜 1.0%,
测定食品中的蛋白质的含量,对于评价食品的 营养价值,合理开发利用食品资源、提高产品质 量、优化食品配方、指导经济核算及生产过程控 制均具有极其重要的意义。
•一些蛋白质的含氮量 一般为 15%~ 17.6%,有的上下浮动 可以测出总氮 N
大致确定其含量。
• Rf = a / b
溶剂前沿 b 样点 a
点样原点
• 优点: ① 展开时间短,一般在20—30分钟,展开距离 通常只需10 cm,且分离效果好。 ② 层析后得到的斑点小而清晰。 ③ 能够使用多种显色剂。 ④ 点样量少,灵敏度高。(比纸层析高10—100 倍) 精确到0.01ug。 ⑤ 也可用于大量分离>500 mg,作为样品制备 层析。 • 缺点:Rf值重现性比纸上层析差。 • 分类:按层析的原理可分为:吸附、分配、 离子交换、凝胶等。
10-2 10-2
三、 自动凯氏定氮法
1、原理及适用范围同前 2、特点:
(1)消化装置用优质玻璃制成的凯氏消化瓶,红 外线加热的消化炉。 (2)快速:一次可同时消化8个样品,30分钟可消 化完毕。 (3)自动:自动加碱蒸馏,自动吸收和滴定,自 动数字显示装置。可计算总氮百分含量并记录,12 分钟完成1个样。
(三)操作方法: ① 薄层板制备 ② 样品液制备 ③ 点样:距薄板底端2cm处,用针画一标记作为 原点。再以点样距扳子宽窄可点几个点同时 展开,点与点之间间隔1~2cm。 a.可用毛细玻璃管、微量吸管或微量注射器。注 意要等一个点干了再点另一个点。 b.用一小直径ф 3 mm 滤纸片,浸入样液,埋到 板子上先挖好一个小洞穴。
③ 消化时应注意不时转动凯氏烧瓶,以便利用冷 凝酸液将附在瓶壁上的固体残渣洗下,并促进其消 化完全。 ④ 样品中若含脂肪较多时,消化过程中易产生 大量泡沫,为防止泡沫溢出瓶外,在开始消化 时应用小火加热,并时时摇动;或者加入少量 辛醇或液体石蜡或硅油消泡剂,并同时注意控 制热源强度。 ⑤ 当样品消化液不易澄清透明时,可将凯氏烧 瓶冷却,加入30%过氧化氢 2—3 m1 后再继续 加热消化。
仪器:要防止 爆沸。
2. 蒸馏
消化液 + 40% 氢氧化钠加热 蒸馏,放出氨 气。
3. 吸收与滴定 <1>用4%硼酸吸收,用盐酸标准溶液滴定,指示 剂用混合指示剂(甲基红—溴甲基酚绿混合指 示剂)国标用亚甲基兰+甲基红。 指示剂 红色 吸收 绿色 滴定 红色
(酸) (碱) (酸)
<2> 用过量的 H2SO4 或 HCl 标准溶液吸收,再 用 NaOH 标准溶液滴定过剩的酸液,用甲基红 指示剂。
⑧ 蒸馏装置不能漏气。
⑨ 蒸馏前若加碱量不足,消化液呈蓝色不生成 氢氧化铜沉淀,此时需再增加氢氧化钠用量。
氢氧化铜在70~90℃时发黑。
⑩ 蒸馏完毕后,应先将冷凝管下端提离液面清 洗管口,再蒸1分钟后关掉热源
1、原理及适用范围同前 2、与常量法不同点: 加入硼酸量有50 ml 可用微量滴定管。 10 ml, 0.01 mol/L , 滴定用盐酸浓度由0.1 mol/L