Dijkstra算法伪代码

Dijkstra算法伪代码

1. 初始化数组dist、path和s;

2. while (s中的元素个数

2.1 在dist[n]中求最小值,其下标为k(则v k为正在生成的终点);

2.2 输出dist[j]和path[j];

2.3 修改数组dist和path;

2.4 将顶点v k添加到数组s中;

伪代码

伪代码 伪码(Pseudocode)是一种算法描述语言。使用伪码的目的是使被描述的算法可以容易地以任何一种编程语言(Pascal,C,Java等)实现。因此,伪代码必须结构清晰、代码简单、可读性好,并且类似自然语言。介于自然语言与编程语言之间。以编程语言的书写形式指明算法职能。使用伪代码,不用拘泥于具体实现。相比程序语言(例如Java, C++,C, Dephi 等等)它更类似自然语言。它是半角式化、不标准的语言。可以将整个算法运行过程的结构用接近自然语言的形式(可以使用任何一种你熟悉的文字,关键是把程序的意思表达出来)描述出来。 1.简介 定义 人们在用不同的编程语言实现同一个算法时意识到,他们的实现(注意:这里是实现,不是功能)很不同。尤其是对于那些熟练于不同编程语言的程序员要理解一个(用其他编程语言编写的程序的)功能时可能很难,因为程序语言的形式限制了程序员对程序关键部分的理解。这样伪代码就应运而生了。伪代码提供了更多的设计信息,每一个模块的描述都必须与设计结构图一起出现。伪代码是一种非正式的,类似于英语结构的,用于描述模块结构图的语言。 应用领域 当考虑算法功能(而不是其语言实现)时,伪码常常得到应用。伪码中常被用于技术文档和科学出版物中来表示算法,也被用于在软件开发的实际编码过程之前表达程序的逻辑。伪代码不是用户和分析师的工具,而是设计师和程序员的工具。计算机科学在教学中通常使用虚拟码,以使得所有的程序员都能理解。综上,简单地说,让人便于理解的代码。不依赖于语言的,用来表示程序执行过程,而不一定能编译运行的代码。在数据结构讲算法的时候用的很多。伪代码用来表达程序员开始编码前的想法。 2.语法规则 例如,类Pascal语言的伪码的语法规则是:在伪码中,每一条指令占一行(else if,例外)。指令后不跟任何符号(Pascal和C中语句要以分号结尾)。书写上的“缩进”表示程序中的分支程序结构。这种缩进风格也适用于if-then-else语句。用缩进取代传统Pascal中的begin和end语句来表示程序

哈夫曼树及其应用(完美版)

数据结构课程设计设计题目:哈夫曼树及其应用 学院:计算机科学与技术 专业:网络工程 班级:网络 131 学号:1308060312 学生姓名:谢进 指导教师:叶洁 2015年7 月12 日

设计目的: 赫夫曼编码的应用很广泛,利用赫夫曼树求得的用于通信的二进制编码称为赫夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是赫夫曼编码。哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 1、熟悉树的二叉树的存储结构及其特点。 2、掌握建立哈夫曼树和哈夫曼编码的方法。 设计内容: 欲发一封内容为AABBCAB ……(共长 100 字符,字符包括A 、B 、C 、D 、E 、F六种字符),分别输入六种字符在报文中出现的次数(次数总和为100),对这六种字符进行哈夫曼编码。 设计要求: 对输入的一串电文字符实现赫夫曼编码,再对赫夫曼编码生成的代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵赫夫曼树,此构造过程称为赫夫曼编码。设计实现的功能: 1.以二叉链表存储, 2.建立哈夫曼树; 3.求每个字符的哈夫曼编码并显示。

北邮数据结构实验3哈夫曼编码

数据结构实验报告 实验名称:实验3——哈夫曼编码 学生姓名: 班级: 班内序号: 学号: 日期:2013年11月24日 1.实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个 字符的频度,并建立赫夫曼树 2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每 个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的 字符串输出。 4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译 码,并输出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼 编码的压缩效果。 2. 程序分析 2.1存储结构: struct HNode { char c;//存字符内容 int weight; int lchild, rchild, parent; }; struct HCode

{ char data; char code[100]; }; //字符及其编码结构 class Huffman { private: HNode* huffTree; //Huffman树 HCode* HCodeTable; //Huffman编码表 public: Huffman(void); void CreateHTree(int a[], int n); //创建huffman树 void CreateCodeTable(char b[], int n); //创建编码表 void Encode(char *s, string *d); //编码 void Decode(char *s, char *d); //解码 void differ(char *,int n); char str2[100];//数组中不同的字符组成的串 int dif;//str2[]的大小 ~Huffman(void); }; 结点结构为如下所示: 三叉树的节点结构: struct HNode//哈夫曼树结点的结构体 { int weight;//结点权值 int parent;//双亲指针 int lchild;//左孩子指针 int rchild;//右孩子指针 char data;//字符 }; 示意图为: int weight int parent int lchild int rchild Char c 编码表节点结构:

4.29 算法伪代码练习讲义

4.29 算法练习讲义 1、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ 第4题图 2.右图是一个算法流程图,则输出的k 的值是 . 3.右图是一个算法的流程图,则输出的的值是. n

4.右图是一个算法流程图,则输出的n 的值是. 5.根据如图所示的伪代码,可知输出的结果S 为_____. 6 若输入变量N 的值为3,则输出的值为;若输出变量的S 的值为30,则变量N 的值为。 7.如果,当126,9,8.5x x P ===时3x =。

8、下图是一个算法的流程图,则输出的S的值是。 ,则判断框内可填写。 9.阅读流程图,若输出的S的值为7 10.运行如图所示的流程图,若输出的结果是62,则判断框中整数M的值是。 11.下图是某算法的流程图,则程序运行后所输出的S的值是。 12.上图是一个算法流程图,则输出的x的值是。

13.执行如图所示的流程图,输出的k的值为。 14、根据如图所示的伪代码,可知输出的结果S为________. 15、根据下图所示的伪代码,可知输出的结果S为 16.执行如图所示的程序框图,输出的x值为________.

(第16题图) 17.如图,运行伪代码所示的程序,则输出的结果是____. 18.右边程序输出的结果是____. 19.如右图是一个算法流程图,则输出S的值是.

20.根据如图所示的伪代码,最后中输出的a的值为. 21.某程序框图如右上图所示,则该程序运行后输出的S值是. 22.如图是一个算法流程图,则输出的s的值是____.

《算法概论》-伪代码

目录 算法概论 (1) 序言 (1) 第一章 (2) 乘法 (2) 除法 (2) 两数的最大公因数 (2) 扩展 (2) RSA (3) 第二章:分治算法 (3) 整数相乘的分治算法 (3) 递推式 (3) 2.3合并排序 (3) 第三章图的分解 (4) 3.2.1寻找从给定顶点出发的所有可达顶点 (4) 3.2.2 深度优先搜索 (4) 第四章 (4) 4.2、广度优先搜索 (4) 4.4.1、dijkstra最短路径算法 (5) 4.6.1、含有负边 (5) Bellman-Ford算法 (6) 4.7、有向无环图的最短路径 (6) 第五章贪心算法 (6) 5.1 最小生成树 (6) 算法概论 序言 Fibonacci数列: 死板的算法: function Fib1(n) If n=0:return 0 If n=1:return 1 Return fib1(n-1)+fib1(n-2) (递归,很多计算是重复的,不必要)

合理的算法: functionFib2(n) If n=0:return 0 Create an array f[0…n] f[0]=0,f[1]=1 fori=2…n: f[i]=f[i-1] + f[i-2] return f[n] (随时存储中间计算结果,之后直接调用) 大O符号:若存在常数c>0,使得f(n)<=c*g(n)成立,则f=O(g)。f增长的速度慢于g。第一章 乘法: functionMultiply(x,y) If y=0:return 0 z=multiply(x,y/2)//向下取整 If y is even: //even---偶数 return 2z else: return x+2z 除法: functionDivide(x,y) If x=0: return (q,r)=(0,0) (q,r)=divide( x/2 ,y) //向下取整 q=2*q,r=2*r if x is odd:r=r+1 if r>=y :r=r-y,q=q+1 return (q,r) p22 两数的最大公因数: function Euclid(a,b) if b=0: return a return Euclid(b,a mod b) 扩展:

哈夫曼树的编写与输出

/******************************************/ /********* 哈夫曼树的编写与输出***********/ /******************************************/ /*用静态三叉链表实现哈夫曼树类型定义如下:*/ #define N 20 #define M 2*N-1 typedef struct { int weight; int parent; int LChild; int RChild; } HTNode,HuffmanTree[M+1]; /*select函数主体程序代码*/ void select(HuffmanTree ht,int j,& s1,& s2 ) { int i,k; int n=0; HuffmanTree rt; for(k=0;k<=j;k++) { if(ht[k].parent ==0) { rt[k]=ht[k]; n=n+1; } } for(k=0;k

int m; m=2*n-1; for(i=n+1;i<=m;i++) { ht[i]={0,0,0,0}; } /*--------初始化完毕,对应算法步鄹(1)---------*/ for(i=n+1;i<=m;i++) { int s1,s2; select(ht,i-1,&s1,$s2); ht[i].weight=ht[s1].weight +ht[s2].weight ; ht[s1].parent=i;ht[s2].parent=i; ht[i].LChild=s1;ht[i].RChild=s2; } }

哈夫曼编码算法实现完整版

实验三树的应用 一.实验题目: 树的应用——哈夫曼编码 二.实验内容: 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。 要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。 三、程序源代码: #include #include #include #include typedef struct{ char data; int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * * HuffmanCode; void Select(HuffmanTree &HT,int n,int m) {HuffmanTree p=HT; int tmp; for(int j=n+1;j<=m;j++) {int tag1,tag2,s1,s2; tag1=tag2=32767;

for(int x=1;x<=j-1;x++)

{ if(p[x].parent==0&&p[x].weights2) //将选出的两个节点中的序号较小的始终赋给s1 { tmp=s1; s1=s2; s2=tmp;} p[s1].parent=j; p[s2].parent=j; p[j].lchild=s1; p[j].rchild=s2; p[j].weight=p[s1].weight+p[s2].weight; } } void HuffmanCoding(HuffmanTree &HT,int n,char *w1,int*w2) { int m=2*n-1; if(n<=1) return; HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); HuffmanTree p=HT; for(int i=1;i<=n;i++) { p[i].data=w1[i-1]; p[i].weight=w2[i]; p[i].parent=p[i].lchild=p[i].rchild=0; } for(;i<=m;i++) { p[i].weight=p[i].parent=p[i].lchild=p[i].rchild=0; } Select(HT,n,m); ofstream outfile; //生成hfmTree文件 outfile.open("hfmTree.txt",ios::out); for (i=1;i<=m;i++)

哈夫曼树及编码综合实验报告

《用哈夫曼编码实现文件压缩》 实验报告 课程名称数据结构B 实验学期 2017 至 2018 学年第一学期学生所在院部计算机学院 年级 2016 专业班级信管B162 学生姓名学号 成绩评定: 1、工作量: A(),B(),C(),D(),F( ) 2、难易度:A(),B(),C(),D(),F( ) 3、答辩情况: 基本操作:A(),B(),C(),D(),F( ) 代码理解:A(),B(),C(),D(),F( ) 4、报告规范度:A(),B(),C(),D(),F( ) 5、学习态度:A(),B(),C(),D(),F( )总评成绩:_________________________________ 指导教师: 兰芸

用哈夫曼编码实现文件压缩 1、了解文件的概念。 2、掌握线性链表的插入、删除等算法。 3、掌握Huffman树的概念及构造方法。 4、掌握二叉树的存储结构及遍历算法。 5、利用Huffman树及Huffman编码,掌握实现文件压缩的一般原理。 微型计算机、Windows 7操作系统、Visual C++6.0软件 输入的字符创建Huffman树,并输出各字符对应的哈夫曼编码。 五.系统设计 输入字符的个数和各个字符以及权值,将每个字符的出现频率作为叶子结点构建Huffman树,规定哈夫曼树的左分支为0,右分支为1,则从根结点到每个叶子结点所经过的分支对应的0和1组成的序列便为该结点对应字符的哈夫曼编码。 流程图如下 1.输入哈夫曼字数及相应权值

相应代码 int main() { HuffmanTree HTree; HuffmanCode HCode; int *w, i; int n,wei; //编码个数及权值 printf("请输入需要哈夫曼编码的字符个数:"); scanf("%d",&n); w=(int*)malloc((n+1)*sizeof(int)); for(i=1; i<=n;i++) { printf("请输入第%d字符的权值:",i); fflush(stdin); scanf("%d",&wei); w[i]=wei; } HuffmanCoding(&HTree,&HCode,w,n); return 1; } 2.输出HT初态(每个字符的权值)

数据结构实验三题目二_哈夫曼树

2008级数据结构实验报告 实验名称:实验三树 学生姓名: 班级: 班内序号: 学号: 日期: 20013年11月26日 1.实验要求 实验目的 通过选择下面两个题目之一进行实现,掌握如下内容: 掌握二叉树基本操作的实现方法 了解赫夫曼树的思想和相关概念 学习使用二叉树解决实际问题的能力 实验内容 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1.初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并 建立赫夫曼树 2.建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每个字符的编码 输出。 3.编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输出。 4.译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译码,并输出译码结 果。 5.打印(Print):以直观的方式打印赫夫曼树(选作) 6.计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼编码的压缩效果。 2. 程序分析 哈夫曼树结点的储存结构除了二叉树所有的双亲域parents,左子树域lchild,右子树域rchild。还需要有字符域word,权重域weight,编码域code。其中由于编码是一串由0和1组成的字符串,所以code是一个字符数组。 进行哈夫曼编码首先要对用户输入的信息进行统计,将每个字符作为哈夫曼树的叶子结点。统计每个字符出现的次数(频度)作为叶子的权重,统计次数可以根据每个字符不同的ASCII 码。并根据叶子结点的权重建立一个哈夫曼树。 建立每个叶子的编码从根结点开始,规定通往左子树路径记为0,通往右子树路径记为 1.由于编码要求从根结点开始,所以需要前序遍历哈夫曼树,故编码过程是以前序遍历二叉树

数据结构 哈夫曼编码 实验报告

数据结构实验报告 实验名称:实验3——树(哈夫曼编/解码器) 学生姓名: 班级: 班内序号: 学号: 日期:2011年12月5日 1.实验要求 利用二叉树结构实现哈夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频 度,并建立哈夫曼树 2、建立编码表(CreateTable):利用已经建好的哈夫曼树进行编码,并将每个字符的 编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输 出。 4、译码(Decoding):利用已经建好的哈夫曼树对编码后的字符串进行译码,并输出 译码结果。 5、打印(Print):以直观的方式打印哈夫曼树(选作) 计算输入的字符串编码前和编码后的长度,并进行分析,讨论哈夫曼编码的压缩效果。 并用I love data Structure, I love Computer。I will try my best to study data Structure.进行测试。 2. 程序分析 哈夫曼树结点的存储结构包括双亲域parent,左子树lchild,右子树rchild,还有字符word,权重weight,编码code 对用户输入的信息进行统计,将每个字符作为哈夫曼树的叶子结点。统计每个字符出现的次数作为叶子的权重,统计次数可以根据每个字符不同的ASCII码,根据叶子结点的权重建立一个哈夫曼树。 建立每个叶子的编码从根结点开始,规定通往左子树路径记为0,通往右子树路径记为1。由于编码要求从根结点开始,所以需要前序遍历哈夫曼树,故编码过程是以前序遍历二叉树为基础的。同时注意递归函数中能否直接对结点的编码域进行操作。 编码信息只要遍历字符串中每个字符,从哈夫曼树中找到相应的叶子结点,取得相应的编码。最后再将所有找到的编码连接起来即可。 译码则是将编码串从左到右逐位判别,直到确定一个字符。这就是哈夫曼树的逆过程。

北京邮电大学信通院数据结构实验三——哈夫曼树实验报告

2009级数据结构实验报告 实验名称:实验三——哈夫曼编/解码器的实现 学生姓名:陈聪捷 日期:2010年11月28日 1.实验要求 一、实验目的: 了解哈夫曼树的思想和相关概念; 二、实验内容: 利用二叉树结构实现哈夫曼编/解码器 1.初始化:能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立哈夫曼树。 2.建立编码表:利用已经建好的哈夫曼树进行编码,并将每个字符的编码输出。 3.编码:根据编码表对输入的字符串进行编码,并将编码后的字符串输出。 4.译码:利用已经建好的哈夫曼树对编码后的字符串进行译码,并输出译码结果。 5.打印:以直观的方式打印哈夫曼树。 6.计算输入的字符串编码前和编码后的长度,并进行分析,讨论哈夫曼编码的压缩效果。 7.用户界面可以设计成“菜单”方式,能进行交互,根据输入的字符串中每个字符出现的次数统计频度,对没有出现的字符一律不用编码。 2. 程序分析 2.1 存储结构 二叉树 template class BiTree { public: BiTree(); //构造函数,其前序序列由键盘输入 ~BiTree(void); //析构函数 BiNode* Getroot(); //获得指向根结点的指针 protected: BiNode *root; //指向根结点的头指针 }; //声明类BiTree及定义结构BiNode Data: 二叉树是由一个根结点和两棵互不相交的左右子树构成

二叉树中的结点具有相同数据类型及层次关系 哈夫曼树类的数据域,继承节点类型为int的二叉树 class HuffmanTree:public BiTree data: HCode* HCodeTable;//编码表 int tSize; //编码表中的总字符数 二叉树的节点结构 template struct BiNode //二叉树的结点结构 { T data; //记录数据 T lchild; //左孩子 T rchild; //右孩子 T parent; //双亲 }; 编码表的节点结构 struct HCode { char data; //编码表中的字符 char code[100]; //该字符对应的编码 }; 待编码字符串由键盘输入,输入时用链表存储,链表节点为struct Node { char character; //输入的字符

伪代码的使用规范

伪代码的使用 伪代码(Pseudocode)是一种算法描述语言。使用为代码的目的是为了使被描述的算法可以容易地以任何一种编程语言(Pascal, C, Java, etc)实现。因此,伪代码必须结构清晰,代码简单,可读性好,并且类似自然语言。 下面介绍一种类Pascal语言的伪代码的语法规则。 伪代码的语法规则 1.在伪代码中,每一条指令占一行(else if例外,),指令后不跟任何符号 (Pascal和C中语句要以分号结尾); 2.书写上的“缩进”表示程序中的分支程序结构。这种缩进风格也适用于 if-then-else语句。用缩进取代传统Pascal中的begin和end语句来表示程序的块结构可以大大提高代码的清晰性;同一模块的语句有相同的缩进量,次一级模块的语句相对与其父级模块的语句缩进; 例如: line 1 line 2 sub line 1 sub line 2 sub sub line 1 sub sub line 2 sub line 3 line 3 而在Pascal中这种关系用begin和end的嵌套来表示, line 1 line 2 begin sub line 1 sub line 2 begin sub sub line 1 sub sub line 2 end; sub line 3 end; line 3

在C中这种关系用{ 和 } 的嵌套来表示, line 1 line 2 { sub line 1 sub line 2 { sub sub line 1 sub sub line 2 } sub line 3 } line 3 3.在伪代码中,通常用连续的数字或字母来标示同一即模块中的连续语句, 有时也可省略标号。 例如: 1. line 1 2. line 2 a. sub line 1 b. sub line 2 1. sub sub line 1 2. sub sub line 2 c. sub line 3 3. line 3 4.符号△后的内容表示注释; 5.在伪代码中,变量名和保留字不区分大小写,这一点和Pascal相同,与 C或C++不同; 6.在伪代码中,变量不需声明,但变量局部于特定过程,不能不加显示的说 明就使用全局变量; 7.赋值语句用符号←表示,x←exp表示将exp的值赋给x,其中x是一个变 量,exp是一个与x同类型的变量或表达式(该表达式的结果与x同类型); 多重赋值i←j←e是将表达式e的值赋给变量i和j,这种表示与j←e 和i←e等价。 例如: x←y x←20*(y+1) x←y←30

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。 一.进化论知识 作为遗传算法生物背景的介绍,下面内容了解即可: 种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。 个体:组成种群的单个生物。 基因 ( Gene ) :一个遗传因子。 染色体 ( Chromosome ):包含一组的基因。 生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。 遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。 简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。 二.遗传算法思想 借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。 举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中

实验四.哈夫曼编码的贪心算法设计

实验四 哈夫曼编码的贪心算法设计(4学时) [实验目的] 1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法; 2. 编程实现哈夫曼编译码器; 3. 掌握贪心算法的一般设计方法。 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 核心源代码 #include #include #include typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 //选择两个parent 为0,且weight 最小的结点s1和s2 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) ∑=j i k k a

伪代码定义及实例

伪代码 伪代码(Pseudocode)是一种算法描述语言。使用伪代码的目的是为了使被描述的算法可以容易地以任何一种编程语言(Pascal,C,Java,etc)实现。因此,伪代码必须结构清晰、代码简单、可读性好,并且类似自然语言。介于自然语言与编程语言之间。以编程语言的书写形式指明算法职能。使用伪代码, 不用拘泥于具体实现。相比程序语言(例如Java, C++,C, Dephi 等等)它更类似自然语言。它是半角式化、不标准的语言。可以将整个算法运行过程的结构用接近自然语言的形式(可以使用任何一种你熟悉的文字,关键是把程序的意思表达出来)描述出来。 定义 人们在用不同的编程语言实现同一个算法时意识到,他们的实现(注意:这里是实现,不是功能)很不同。尤其是对于那些熟练于不同编程语言的程序员要理解一个(用其他编程语言编写的程序的)功能时可能很难,因为程序语言的形式限制了程序员对程序关键部分的理解。这样伪代码就应运而生了。伪代码提供了更多的设计信息,每一个模块的描述都必须与设计结构图一起出现。伪代码是一种非正式的,类似于英语结构的,用于描述模块结构图的语言。 应用领域 当考虑算法功能(而不是其语言实现)时,伪代码常常得到应用。伪码中常被用于技术文档和科学出版物中来表示算法,也被用于在软件开发的实际编码过程之前表达程序的逻辑。伪代码不是用户和分析师的工具,而是设计师和程序员的工具。计算机科学在教学中通常使用虚拟码,以使得所有的程序员都能理解。综上,简单的说,让人便于理解的代码。不依赖于语言的,用来表示程序执行过程,而不一定能编译运行的代码。在数据结构讲算法的时候用的很多。伪代码用来表达程序员开始编码前的想法。 语法规则 例如,类Pascal语言的伪代码的语法规则是:在伪代码中,每一条指令占一行(else if,例外)。指令后不跟任何符号(Pascal和C中语句要以分号结尾)。书写上的“缩进”表示程序中的分支程序结构。这种缩进风格也适用于if-then-else语句。用缩进取代传统Pascal中的begin和end语句来表示程序的块结构可以大大提高代码的清晰性;同一模块的语句有相同的缩进量,次一级模块的语句相对与其父级模块的语句缩进。 伪代码实例 伪代码:是用介于自然语言和计算机语言之间的文字和符号(包括数学符号)来描述算法。【简单示例】输入3个数,打印输出其中最大的数。可用如下的伪代

伪代码及其实例讲解

伪代码及其实例讲解 伪代码(Pseudocode)是一种算法描述语言。使用伪代码的目的是为了使被描述的算法可以容易地以任何一种编程语言(Pascal,C,Java,etc)实现。因此,伪代码必须结构清晰、代码简单、可读性好,并且类似自然语言。介于自然语言与编程语言之间。 它以编程语言的书写形式指明算法的职能。相比于程序语言(例如Java, C++,C, Dephi 等等)它更类似自然语言。它是半角式化、不标准的语言。我们可以将整个算法运行过程的结构用接近自然语言的形式(这里,你可以使用任何一种你熟悉的文字,中文,英文等等,关键是你把你程序的意思表达出来)描述出来. 使用伪代码, 可以帮助我们更好的表述算法, 不用拘泥于具体的实现. 人们在用不同的编程语言实现同一个算法时意识到,他们的实现(注意:这里是实现,不是功能)很不同。尤其是对于那些熟练于不同编程语言的程序员要理解一个(用其他编程语言编写的程序的)功能时可能很难,因为程序语言的形式限制了程序员对程序关键部分的理解。这样伪代码就应运而生了。 当考虑算法功能(而不是其语言实现)时,伪代码常常得到应用。计算机科学在教学中通常使用虚拟码,以使得所有的程序员都能理解。 综上,简单的说,让人便于理解的代码。不依赖于语言的,用来表示程序执行过程,而不一定能编译运行的代码。在数据结构讲算法的时候用的很多。 语法规则 例如,类Pascal语言的伪代码的语法规则是:在伪代码中,每一条指令占一行(else if,例外)。指令后不跟任何符号(Pascal和C中语句要以分号结尾)。书写上的“缩进”表示程序中的分支程序结构。这种缩进风格也适用于if-then-else语句。用缩进取代传统Pascal中的begin和end语句来表示程序的块结构可以大大提高代码的清晰性;同一模块的语句有相同的缩进量,次一级模块的语句相对与其父级模块的语句缩进。 算法的伪代码语言在某些方面可能显得不太正规,但是给我们描述算法提供了很多方便,并且可以使我们忽略算法实现中很多麻烦的细节。通常每个算法开始时都要描述它的输入和输出,而且算法中的每一行都给编上号码,在解释算法的过程中会经常使用算法步骤中的行号来指代算法的步骤。算法的伪代码描述形式上并不是非常严格,其主要特性和通常的规定如下: 1) 算法中出现的数组、变量可以是以下类型:整数、实数、字符、位串或指针。通常这些类型可以从算法的上下文来看是清楚的,并不需要额外加以说明。 2) 在算法中的某些指令或子任务可以用文字来叙述,例如,"设x是A中的最大项",这里A是一个数组;或者"将x插入L中",这里L是一个链表。这样做的目的是为了避免因那些与主要问题无关的细节使算法本身杂乱无章。 3) 算术表达式可以使用通常的算术运算符(+,-,*,/,以及表示幂的^)。逻辑表达式可以使用关系运算符=,≠,<,>,≤和≥,以及逻辑运算符与(and),或(or),非(not)。 4) 赋值语句是如下形式的语句:a<-b 。 这里a是变量、数组项,b是算术表达式、逻辑表达式或指针表达式。语句的含义是将b的值赋给a。 5) 若a和b都是变量、数组项,那么记号a<->b 表示a和b的内容进行交换。

MD5算法的伪代码

var int[64] r, k //r specifies the per-round shift amounts r[ 0..15]:= {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22} r[16..31]:= {5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20} r[32..47]:= {4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23} r[48..63]:= {6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21} //Use binary integer part of the sines of integers as constants: for i from 0 to 63 k[i] := floor(abs(sin(i + 1)) × 2^32) //Initialize variables: var int h0 := 0x67452301 var int h1 := 0xEFCDAB89 var int h2 := 0x98BADCFE var int h3 := 0x10325476 //Pre-processing: append "1" bit to message append "0" bits until message length in bits ≡ 448 (mod 512) append bit length of message as 64-bit little-endian integer to message //Process the message in successive 512-bit chunks: for each 512-bit chunk of message break chunk into sixteen 32-bit little-endian words w[i], 0 ≤ i ≤ 15 //Initialize hash value for this chunk: var int a := h0 var int b := h1 var int c := h2 var int d := h3 //Main loop: for i from 0 to 63 if 0 ≤ i ≤ 15 then f := (b and c) or ((not b) and d) g := i else if 16 ≤ i ≤ 31 f := (d and b) or ((not d) and c)

哈夫曼树实验报告

2006级数据结构实验报告 实验名称:实验三——树 学生姓名:王璇 班级:2009211118 班内序号:29 学号:09210543 日期:2010年12月20日 1.实验要求 利用二叉树结构实现哈夫曼编/解码器 基本要求如下: 初始化:能够对输入的任意长度的字符串s进行统计,统计每个字符的频率,并建立哈夫曼树. 建立编码表:利用已经建好的哈夫曼树进行编码,并将每个字符的编码输出. 编码: 根据编码表对输入的字符串进行编码,并将编码后的字符串输出. 编码:利用已经建好的哈夫曼树对编码后的字符串进行译码,并输出译码结果. 计算输入的字符串编码前和编码后的长度,并进行分析,讨论哈夫曼编码的压缩效果. 2. 程序分析 哈夫曼树类里的成员函数声明如下: class Huffman { private: HNode *HTree;//哈夫曼树 HCode *HCodeTable;//哈夫曼编码表 int num; char aftercode[1000]; int countcode; public: void CreateHTree(int a[],int n);//创建哈夫曼树 void CreateCodeTable(char b[]);//创建编码表 void Encode(char *d);//编码 void Decode(char *d);//解码 ~Huffman(); void SelectMin(int &x,int &y,int end);//找最小值 void Reverse(char*code);//倒序

int Countcode();//计算编码长 }; 2.1 存储结构 采用数组储存的方法: 建立的哈夫曼树由结点HNode数组组成,每个结点包括结点权值,双亲指针,左右孩子指针. 建立的哈夫曼编码表由结点HCode数组组成,每个结点包括字符值,编码字符数组。 初始化中,包括两个数组,分别储存输入语句字符以及统计的每个字符的次数 2.2 关键算法分析 [内容要求] 1、关键算法:比如插入、删除等基本算法的思想,或是约瑟夫问题的基本思想等, 要求使用自然语言描述和伪代码描述,具体可参考书上的伪代码 1、代码详细分析:比如双链表的插入,需要将4句关键代码写清楚,并画出示意 图,可参考书上P69页图2-21。 2、关键算法的时间、空间复杂度 关键算法1:统计出现过的字符以及相应的次数 Huffman ce; char sentence[100];//统计所有出现过的不同字符 int times[100]={0};//统计相应字符出现的次数 char line[100];//输入的字符串数组 char *afterdecode=new char[100];//在堆里申请的字符数组,用来储存解码后的字符串 char c; cout<<"请输入语句,以@结束"<

算法设计及的分析部分算法伪代码

第三章蛮力法 1.选择排序 ?SelectionSort(A[0..n-1]) for i=0 to n-2 do min=i for j=i+1 to n-1 do if A[j]

4.顺序查找算法 算法SwquentialSearch2(A[0...n],k) //顺序查找算法的实现,它用了查找键来作限位器 //输入:一个n个元素的数组A和一个查找键K //输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回-1 A[n]<--k i<--0 while A[i]!=K do i<--i+1 if i

相关文档
最新文档