桥梁抗震
桥梁抗震规范

桥梁抗震规范
桥梁抗震规范是由国家规范性文件控制的,对桥梁结构在地震力作用下的有效抗震性能及设计进行指导和规约。
桥梁抗震规范中分两个部分:一部分为地震力计算和地震力抗震设计;一部分为桥梁结构体系材料性能评定及控制,全面控制桥梁施工抗震性能。
一、地震力计算和地震力抗震设计
1、地震计算:包括津门落差法的应力时程及非线性时程的确定,地震励磁幅值、地震动时程和随机动性质计算,绑定地表震级和桥梁地基质量计算,建立桥梁震源大小及励磁参数等。
2、地震力抗震设计:确定抗震性能要求,确定桥梁抗震设计结构体系,确定抗震结构控制参数,确定桥梁抗震设计分析方法,确定抗震设计措施及其设计方法。
二、桥梁结构体系材料性能评定及控制
1、桥梁结构体系材料性能评定:桥梁抗震规范要求对桥梁用材进行设计有效性能评定,明确桥梁用材形状和尺寸,以及其在正常及地震力作用下有效性能,以及桥梁连接部位评定要求。
2、材料控制:根据公路铁路工程国家规范完善桥梁用材抗震性能控制,包括在桥梁用料质量检验上,充分调动桥梁质量检验人员的责任心,有效控制桥梁施工抗震性能。
总之,桥梁抗震规范的建立和完善,整个桥梁建设施工过程抗震性能得到有效控制,为桥梁安全稳定维护、抵御地震灾害提供可靠的保障。
桥梁设计中的抗震设计规范解读

桥梁设计中的抗震设计规范解读设计一座桥梁时,抗震设计是必不可少的一项工作。
抗震设计规范旨在规范桥梁的抗震能力,以保证桥梁在地震或其他外力作用下不会倒塌或轻微损坏。
本文将解读桥梁设计中的抗震设计规范。
一、桥梁抗震设计的基本原则在设计中,桥梁的抗震设计需要遵循以下基本原则:1. 建立适当的耐震能力目标:桥梁的设计耐震能力要与场地特点和重要性相适应,以达到灾害损失控制的要求。
2. 充分考虑动力效应:桥梁在地震作用下所承受的力不仅包括静力荷载,还包括动力荷载。
因此,在抗震设计时,应对桥梁在地震中的动力反应进行充分的研究。
3. 选取适当的地震波:地震波是桥梁抗震设计中的重要参考依据。
选择与实际场地相符合的地震波,能更好地反映地震灾害的损伤情况。
4. 均衡造价与耐震能力:建立可靠的抗震设计方案,尽可能达到规定要求,但也要考虑造价因素。
5. 要有系统的桥梁抗震设计文件:桥梁抗震设计文件需要详尽、清晰、全面地说明整个设计过程,以便建造方、监理方或审核单位审核和验收。
二、抗震设计规范的具体要求根据相关规范,进行桥梁的抗震设计时,需要遵循以下具体要求:1. 桥墩设计:与桥梁基础联结强度要求高,桥墩的纵向和横向的强度应适宜,特别是在桥墩土基础不良的情况下,要对桥墩加强抗震支撑和加固。
2. 桥面铺装设计:(1)桥面铺装的振动感应要素在桥梁的横向和纵向上的传递原则应有规定。
(2)桥面铺装的直接基础的作用范围是桥墩、上部结构和基础,后期在桥梁设计方案及施工中应考虑铺装的垂直和水平方向受震影响的设定。
(3)桥面铺装设计中的连接构件,如伸缩缝、支座、传动杆、角钢、焊缝、螺栓等,应有相应的规范,特别是在连接构件处的振动应力会引起硬件结构变形,对硬件的材料和工艺水平等要求较高。
3. 桥梁设计标准:(1)要求各种附属设施的设计、材料和施工,必须获得质量检验合格证书。
(2)在桥梁设计和制造中,对材料的选用和材料的变形、疲劳特性以及统计学参数要求非常的苛刻。
桥梁工程中的抗震设计

桥梁工程中的抗震设计抗震是桥梁工程设计的重要环节之一,它直接关系到桥梁的耐久性和安全性。
在地震频发的地区,桥梁的抗震设计更加重要。
本文将探讨桥梁工程中的抗震设计原理和方法。
一、地震力的分析和计算抗震设计首先需要对地震力进行分析和计算。
地震力的大小和方向是影响桥梁抗震性能的重要因素。
地震力的计算需要考虑到地震烈度、震源距离、土壤条件等多个因素,并结合地震学和土木工程学的理论进行分析。
通过合理的计算方法,能够准确预测桥梁在地震作用下的响应。
二、桥梁结构的抗震设计1. 抗震设计的目标桥梁结构的抗震设计目标是在地震波作用下,保证桥梁的整体稳定性和结构安全性。
一般来说,桥梁的主要抗震性能指标包括位移限值、加速度限值和应力限值等。
在设计过程中,需要根据桥梁的特点和使用环境确定相应的指标,以确保桥梁在地震中具有足够的抗震能力。
2. 结构抗震设计的方法结构抗震设计的方法有很多,其中常用的包括弹性设计、弹塑性设计和减震设计等。
弹性设计是指在地震荷载下,结构仍然处于弹性状态,通过控制应力、位移等参数,确保结构的安全性。
弹塑性设计考虑了结构的塑性变形能力,在超出弹性阶段后,通过合理的塑性形变控制,提高结构的耗能能力。
减震设计是通过设置减震装置,将地震力转化为其他形式消耗,从而减小结构的震动反应。
三、桥梁基础的抗震设计桥梁基础是支撑整个桥梁结构的关键组成部分,其抗震设计至关重要。
抗震基础设计需要考虑到地震力传递、土壤的动力特性等因素。
一般来说,桥梁基础的抗震设计可以采用加固和加深基础、选用合适的基础形式等方法,以提高基础的抗震性能。
四、监测与维护桥梁工程的抗震设计不仅仅局限于初始设计阶段,还需要在桥梁运行的全生命周期内进行监测和维护。
通过实时监测桥梁的工作状态和结构响应,能够及时发现和处理可能存在的问题,保证桥梁的安全稳定运行。
综上所述,桥梁工程中的抗震设计是确保桥梁安全的重要环节。
通过合理的地震力分析和计算、结构和基础的抗震设计,以及监测和维护工作,可以提高桥梁的抗震能力,保障桥梁的安全性和耐久性。
桥梁抗震方案

桥梁抗震方案随着人们对交通运输的不断需求,桥梁作为连接交通的重要纽带,承载着巨大的交通压力。
然而,在地震等自然灾害发生时,桥梁的安全性成为了一个重要的考虑因素。
为了确保桥梁在地震中的抗震能力,我们需要制定一套科学合理的抗震方案。
本文将从桥梁建设的设计阶段、施工阶段以及使用和维护阶段综合考虑,提出一种综合性的桥梁抗震方案。
一、设计阶段在桥梁的设计阶段,我们需要从以下几个方面考虑桥梁的抗震性能。
1. 地震烈度评估:首先,需要对桥梁所在地区的地震烈度进行评估,了解地震的频率、震级以及地震波特征。
根据不同地区的地震烈度,可以制定相应的抗震设计参数,确保桥梁具备足够的抗震能力。
2. 结构布局优化:优化桥梁的结构布局,采用合理的桥型和桥墩布置,以增加桥梁的整体稳定性。
比如,在地震影响较大的地区,可以采用适度的曲线形式,减小主梁的跨度,提高桥梁的抗震能力。
3. 使用抗震构件:在设计桥梁的结构时,可以使用抗震减灾技术,如采用橡胶支座、隔震墩等抗震构件,提高桥梁的整体抗震性能。
二、施工阶段在桥梁的施工阶段,抗震措施同样需要得到充分关注和实施。
1. 施工质量控制:确保桥梁的施工质量符合设计要求,特别是关键构件的安装和连接部分。
通过密实土方、控制加固浆料的配制比例、加强钢筋的质量监测等方式,提高桥梁的整体抗震性能。
2. 施工过程监控:实施严格的施工监控,对桥梁的施工过程进行实时监测和记录,发现问题及时调整施工方案,确保施工过程中的抗震要求得到满足。
三、使用和维护阶段在桥梁的使用和维护阶段,我们需要采取综合性的措施,确保桥梁的持续抗震能力。
1. 定期检测和评估:定期对桥梁进行全面检测和评估,发现桥梁结构的损伤或者变形情况,进行及时维修和加固。
同时,根据检测结果,对桥梁的抗震性能进行评估和调整。
2. 维护保养工作:加强桥梁的维护保养工作,及时清理桥梁上的积水、杂物等,防止对桥梁的结构产生影响。
定期对桥梁的防腐、涂漆等工作进行维护,保障桥梁的使用寿命和抗震能力。
桥梁设计中的抗震规范要求

桥梁设计中的抗震规范要求桥梁是连接两个地点的重要交通设施,其结构稳定性对于交通运输的安全和效率具有至关重要的作用。
然而,地震是一种常见的自然灾害,给桥梁带来严重的破坏和风险。
因此,在桥梁设计中,抗震规范要求成为了必不可少的考虑因素。
1. 抗震设计目标桥梁的抗震设计目标是确保在地震发生时,桥梁结构能够保持稳定并限制破坏。
主要目标包括:- 控制桥梁的渐进破坏,避免局部破裂或崩溃;- 限制桥梁结构的变位,确保桥梁对车辆通行的影响最小化;- 确保桥梁的结构完整性,防止桥梁产生全面崩溃。
2. 抗震力学分析桥梁的抗震设计需要进行抗震力学分析,以研究桥梁在地震作用下的受力和变形情况。
主要分析内容包括:- 桥梁的自振周期分析,确定振动特性;- 桥梁在地震作用下的动力响应分析,包括受力、位移和动应力等参数;- 确定桥梁结构的抗震性能指标,如抗震弹性系数和耗能能力等。
3. 抗震设计方法根据抗震力学分析的结果,抗震设计方法主要包括以下几个方面:- 采用适当的抗震设计参数,如强度等级和位移限制;- 选择合适的结构形式和材料,以提高抗震能力;- 优化桥梁结构,确保在地震作用下的受力均匀分布;- 加强桥墩和桥梁连接处的抗震性能,避免发生局部破坏;- 设计合适的减震措施和能量耗散装置,提高桥梁的耐震能力;4. 抗震设防要求抗震设防要求是指桥梁设计中对于地震作用的规定和要求。
根据地震地区的构造特点和地震烈度,抗震设防要求会有所不同。
一般包括以下方面的要求:- 设计地震加速度谱和反应谱,用于抗震力学分析;- 限制桥梁结构的最大变位,确保正常通行;- 确定桥梁的最小抗震强度,以保障结构的安全性;- 要求采用抗震构造措施,如加强桥墩和桥梁连接部位;- 确定抗震设计的控制材料性能和构件尺寸。
5. 抗震施工要求除了设计阶段的抗震规范要求,抗震施工要求也是确保桥梁抗震性能的重要环节。
主要包括以下几个方面:- 选用符合抗震要求的材料和设备;- 严格按照设计要求进行施工,避免施工质量问题对抗震性能的影响;- 设置合适的监测装置,及时掌握桥梁结构的变化情况。
桥梁抗震工作总结范文(3篇)

第1篇一、前言随着我国经济的快速发展,公路、铁路、城市桥梁等基础设施的建设规模不断扩大,桥梁抗震问题日益凸显。
为确保桥梁结构在地震作用下的安全性和耐久性,提高桥梁抗震性能,我单位在桥梁抗震工作中取得了一定的成绩。
现将本年度桥梁抗震工作总结如下:一、工作背景近年来,我国多地发生地震灾害,造成了严重的人员伤亡和财产损失。
桥梁作为交通运输的重要基础设施,其抗震性能直接关系到人民群众的生命财产安全。
为提高桥梁抗震性能,我国政府高度重视桥梁抗震工作,加大了抗震科研、设计、施工和检测等方面的投入。
二、工作目标1. 提高桥梁抗震设计水平,确保桥梁结构在地震作用下的安全性和耐久性。
2. 加强桥梁抗震施工管理,确保抗震施工质量。
3. 提升桥梁抗震检测技术水平,及时发现和处理桥梁抗震隐患。
4. 完善桥梁抗震应急预案,提高抗震应急响应能力。
三、工作措施1. 桥梁抗震设计(1)加强抗震设计规范研究,及时跟踪国际桥梁抗震设计最新动态。
(2)提高桥梁抗震设计人员素质,定期组织培训,提升设计水平。
(3)推广应用抗震新技术、新材料,提高桥梁抗震性能。
(4)加强抗震设计审查,确保设计质量。
2. 桥梁抗震施工(1)严格执行抗震施工规范,确保抗震施工质量。
(2)加强施工现场管理,确保施工安全。
(3)推广应用抗震新技术、新材料,提高抗震施工效率。
(4)加强施工过程中的监测,及时发现和处理问题。
3. 桥梁抗震检测(1)提高桥梁抗震检测人员素质,定期组织培训,提升检测水平。
(2)推广应用先进的桥梁抗震检测技术,提高检测精度。
(3)加强桥梁抗震检测工作,及时发现和处理桥梁抗震隐患。
(4)建立桥梁抗震检测数据库,为桥梁抗震工作提供数据支持。
4. 桥梁抗震应急预案(1)完善桥梁抗震应急预案,明确抗震应急响应程序。
(2)加强抗震应急演练,提高抗震应急响应能力。
(3)加强抗震应急物资储备,确保抗震应急工作顺利进行。
四、工作成果1. 桥梁抗震设计水平得到提高,桥梁抗震性能显著提升。
桥梁抗震设计与施工措施

桥梁抗震设计与施工措施桥梁是连接两岸的重要交通枢纽,在日常生活中扮演着重要的角色。
然而,面对地震等自然灾害,桥梁的抗震设计和施工措施显得尤为重要。
本文将着重探讨桥梁抗震设计与施工措施,以确保桥梁在面对地震时能够安全可靠地运行。
一、抗震设计1. 设计要素桥梁的抗震设计首先需要考虑周边地质情况,选择适合的基础结构形式,以确保桥梁在地震发生时不会因地基沉降或滑动而受损。
同时,结构设计应尽可能减小桥梁的振动幅度,采用减震措施来降低地震对桥梁的冲击。
2. 建设材料在桥梁的抗震设计中,建设材料的选择非常关键。
高强度的混凝土、钢材等材料可以有效提高桥梁的抗震性能,同时在设计中考虑结构的柔韧度,以增加桥梁在地震发生时的变形能力。
3. 结构形式桥梁的结构形式也是抗震设计的重要考虑因素。
多跨悬索桥、斜拉桥等结构形式相对于梁桥、板桥等传统结构形式在抗震性能上更具优势,可以有效减小桥梁结构在地震中的应力和变形,提高桥梁的整体承载能力。
二、施工措施1. 施工工艺在桥梁的施工过程中,要严格按照设计要求进行施工,合理控制建设材料的质量,避免在施工过程中产生质量缺陷。
同时,施工过程中要注意减小地震对桥梁的影响,避免因施工不当导致桥梁结构弱化,影响桥梁的整体抗震性能。
2. 合理安排施工周期在桥梁的建设过程中,合理安排施工周期也是确保桥梁抗震性能的重要措施。
通过合理安排施工计划,避免在地震多发期进行大规模施工,减小地震对桥梁的影响,确保桥梁在建设过程中具有足够的抗震性能。
3. 施工质量监督在桥梁施工过程中,质量监督也是确保桥梁抗震性能的重要保障。
加强施工现场监督,及时发现和处理施工中的质量问题,以确保桥梁在施工完成后具有良好的抗震性能,保障桥梁在地震中的安全运行。
综上所述,桥梁的抗震设计与施工措施对于确保桥梁在地震中的安全运行具有至关重要的作用。
设计人员和施工人员应加强技术研究和实践经验积累,不断提升桥梁的抗震性能,为人们在生活中提供更加安全、高效的交通运输服务。
地震作用下桥梁结构的抗震设计

地震作用下桥梁结构的抗震设计桥梁作为交通运输的重要枢纽,在地震作用下的安全性至关重要。
地震可能导致桥梁结构的损坏甚至倒塌,严重影响救援和灾后重建工作。
因此,对桥梁结构进行科学合理的抗震设计是保障桥梁安全的关键。
一、地震对桥梁结构的影响地震是一种突发的自然灾害,其释放的能量以地震波的形式传播。
当地震波到达桥梁所在地时,会对桥梁结构产生多种影响。
首先是水平地震力的作用。
水平地震力会使桥梁产生水平位移和加速度,导致桥墩、桥台等构件承受较大的弯矩和剪力。
如果这些构件的强度和刚度不足,就可能发生开裂、屈服甚至破坏。
其次是竖向地震力的影响。
虽然竖向地震力通常比水平地震力小,但在某些情况下,如近断层地震或大跨径桥梁中,竖向地震力也不可忽视。
它可能导致桥梁支座脱空、梁体与墩台的碰撞等问题。
此外,地震还可能引起地基土的液化、滑坡等现象,削弱桥梁基础的承载能力,导致桥梁整体失稳。
二、桥梁结构抗震设计的原则为了确保桥梁在地震作用下的安全性,抗震设计应遵循以下原则:1、多道防线原则在桥梁结构中设置多个抗震防线,当第一道防线失效后,后续的防线能够继续发挥作用,从而提高桥梁的抗震能力。
例如,墩柱可以作为第一道防线,当墩柱破坏后,支座、伸缩缝等构件能够起到一定的耗能作用。
2、能力设计原则通过合理的设计,使桥梁结构的各个构件在地震作用下能够按照预定的方式屈服和破坏,避免出现脆性破坏和不合理的破坏模式。
例如,应确保桥墩的塑性铰出现在预期的位置,并且具有足够的变形能力。
3、整体性原则注重桥梁结构的整体性,使各个构件之间能够协同工作,共同抵抗地震作用。
例如,通过合理设置系梁、盖梁等构件,增强桥墩之间的连接,提高桥梁的整体刚度和稳定性。
三、桥梁结构抗震设计的方法1、静力法静力法是一种简单的抗震设计方法,它将地震作用等效为一个静态的水平力,作用在桥梁结构上。
这种方法适用于规则、简单的桥梁结构,但对于复杂的桥梁结构,其计算结果可能不够准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥梁抗震设计的相关问题目录摘要--------------------------------------------------------2 引言--------------------------------------------------------2 地震的形成------------------------------------------------2 桥梁震害分析---------------------------------------------3 桥梁节点抗震解析---------------------------------------6 桥梁抗震的设计原则--------------------------------------8 桥梁抗震设计注意事项------------------------------------9 关于桥梁抗震设计的建议-------------------------------10 结语--------------------------------------------------------10摘要目前桥梁工程抗震的研究问题是当今热点问题,本文在分析桥梁结构地震破坏的主要形式基础上,阐述了桥梁抗震设计原则,最后对于桥梁抗震设计方法进行分析,重点探讨了桥梁抗震概念设计、桥梁延性抗震设计、地震响应分析及设计方法的改变以及多阶段设计方法等内容。
关键词:地震破坏桥梁结构抗震设计抗震措施引言桥梁工程又是中的重中之重,桥梁工程抗震研究的重要性不言而喻。
抗震概念设计是指根据地震灾害和工程经验等获得的基本设计原则和设计思想,正确地解决结构总体方案、材料使用和细部构造,以达到合理抗震设计的目的。
合理的抗震设计,要求设计出来的结构在强度、刚度和延性等指标上有最佳的组合,使结构能够地实现抗震设防的目标。
本文主要探讨了桥梁工程抗震设计相关问题,为今后桥梁设计起到借鉴作用。
桥梁是交通生命线工程中的重要组成部分,震区桥梁的破坏不仅直接阻碍了及时救灾行动,使得次生灾害加重,导致生命财产以及间接经济损失巨大,而且给灾后的恢复与重建带来困难。
在近30年的国内外大地震中,桥梁破坏均十分严重,桥梁震害及其带来的次生灾害均给桥梁抗震设计以深刻的启示。
在以往地震中城市高架桥或公路上梁桥的墩柱的屈曲、开裂、混凝土剥落、压溃、剪断、钢筋裸露断裂等震害,桥梁防震越来越受到各国工程师的重视。
地震形成地震,是地球内部发生的急剧破裂产生的震波,在一定范围内引起地面振动的现象。
地震(earthquake)就是地球表层的快速振动,在古代又称为地动。
它就像海啸、龙卷风、冰冻灾害一样,是地球上经常发生的一种自然灾害。
大地振动是地震最直观、最普遍的表现。
在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。
地震是极其频繁的,全球每年发生地震约550万次。
目前衡量地震规模的标准主要有震级和烈度两种。
同样大小的地震,造成的破坏不一定是相同的;同一次地震,在不同的地方造成的破坏也不一样。
为了衡量地震的破坏程度,科学家又“制作”了另一把“尺子”一一地震烈度。
在中国地震烈度表上,对人的感觉、一般房屋震害程度和其他现象作了描述,可以作为确定烈度的基本依据。
影响烈度的因素有震级、震源深度、距震源的远近、地面状况和地层构造等。
地震发生时,最基本的现象是地面的连续振动,主要特征是明显的晃动。
地震分为天然地震和人工地震两大类。
此外,某些特殊情况下也会产生地震,如大陨石冲击地面(陨石冲击地震)等。
引起地球表层振动的原因很多,根据地震的成因,可以把地震分为以下几种:1、构造地震由于地下深处岩石破裂、错动把长期积累起来的能量急剧释放出来,以地震波的形式向四面八方传播出去,到地面引起的房摇地动称为构造地震。
这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。
2、火山地震由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。
只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。
3、塌陷地震由于地下岩洞或矿井顶部塌陷而引起的地震称为塌陷地震。
这类地震的规模比较小,次数也很少,即使有,也往往发生在溶洞密布的石灰岩地区或大规模地下开采的矿区。
4、诱发地震由于水库蓄水、油田注水等活动而引发的地震称为诱发地震。
这类地震仅仅在某些特定的水库库区或油田地区发生。
5、人工地震地下核爆炸、炸药爆破等人为引起的地面振动称为人工地震。
人工地震是由人为活动引起的地震。
如工业爆破、地下核爆炸造成的振动;在深井中进行高压注水以及大水库蓄水后增加了地壳的压力,有时也会诱发地震。
桥梁震害分析桥梁上部结构由于受到墩台、支座等的隔离作用,在地震中直接受惯性力作用而破坏的实例较少,由于下部结构破坏而导致上部结构破坏则是桥梁结构破坏的主要形式,下部结构常见的破坏形式有以下几种:1 落梁破坏1.1 桥梁结构特点:采用板式橡胶支座,梁体直接搁置在支座上百华大桥位于岷江右岸,桥长495.55m,最大墩高30.87m。
上部采用4x25(钢筋砼连续梁)+5x25(钢筋砼连续梁)+50(简支T 梁)+3x25(钢筋砼连续梁)+5x20(钢筋砼连续梁)+2x20(钢筋砼连续梁),平面位于R=150m的圆曲线(左偏)、L=192.601的直线及R=66的圆曲线(右偏)上。
在汶川地震中,第5联即5-20米连续梁整体倾覆、落梁,完全破坏。
1.2 震害原因1) 支承连接部件失败:固定支座强度不足、活动支座位移量不够、橡胶支座梁底与支座底发生滑动,在地震力作用下支座破坏,致使梁体发生位移导致落梁。
2) 墩台支承宽度不满足防震要求,防落梁措施设计不合理,在地震力作用下,梁、墩台间出现较大相对位移,导致落梁现象的发生。
3) 伸缩缝、挡块强度不足,在地震力作用下伸缩缝碰撞破坏挤压破坏、挡块剪切破坏,都起不到应有作用,导致落梁。
1.3 抗震设计有效措施1) 采用板式橡胶支座的桥梁,盖梁挡块在地震中破坏,可以有效减少下部结构所受地震力,但对于这种类型的桥梁抗震设计的关键是怎样采用合理的梁体限位装置、设置足够的梁敦合理搭接长度使梁体位移控制在不发生落梁的范围内同时又不增加墩柱地震力。
2) 在高烈度地震区尽可能采用整体性和规则性较好的桥梁结构体系,结构的布置力求几何尺寸、质量和刚度均匀、对称、规则,避免突变的出现;从几何线性上看,尽量选用直线桥梁。
3) 选择合理的连接形式对桥梁抗震性能十分重要。
对于高墩桥梁,建议采用上部结构与下部结构有选择性的刚性连接(固结方式);对于矮墩桥梁,上部结构和下部结构连接建议采用支座连接方式,并合理设置梁墩的搭接长度。
2 墩柱、节点及桥台破坏2.1 破坏形式:此类破坏多发生在墩柱塑性铰处、墩柱与盖梁连接处,墩柱与系梁连接处,地震力作用下桥墩纵向受力筋被剪断,直接导致桥梁的倾覆。
2.2 震害原因1) 墩柱延性不足(抗弯破坏),横向约束箍筋配置不足;构造缺陷:横向约束箍筋间距过大,搭接失效,纵筋过早切断,锚固长度不足;箍筋端部没有弯钩等2) 抗剪强度不足(剪切破坏):横向箍筋配置不足2.3抗震设计有效措施:延性抗震设计1) 结构延性定义:表示结构从屈服到破坏的后期变形能力,是结构能量耗散能力的主要度量。
2) 延性抗震设计的分类:a)上部、基础弹性,墩柱延性设计;b)墩柱、基础弹性,上部结构延性(钢桥);c)墩柱、基础、上部结构弹性,支座弹缩性——减隔震设计(在后节中介绍)3)墩柱结构构造措施墩柱潜在塑性铰区域内加密箍筋的配置:a) 加密区的长度:弯曲方向截面宽度的1.0倍,超过最大弯矩80%的范围;b) 加密箍筋的最大间距:10cm或6ds或b/4;c) 箍筋的直径不应小于:10mm;d) 螺旋式箍筋的接头必须采用对接,矩形箍筋应有135度的弯钩,并深入核心混凝土之内6cm以上;e) 加密区箍筋肢距:25cm;f) 墩柱的纵筋应尽可能延伸至盖梁或承台的另一侧面,塑性铰加密区域的箍筋应该延续到盖梁和承台内,延伸到盖梁和承台的距离不应小于墩柱长边尺寸的1/2,并不小于50cm。
3 基础破坏、桩身破坏3.1 破坏形式及震害原因桥位通过地震断裂破碎带,地震力作用下基础出现移位、沉降;桥位位于液化砂土地质中,基础出现不均匀沉降。
3.2 抗震设计有效措施基础尽可能建在岩石或坚硬冲积土上,软土和砂土易于放大结构的位移影响,且软土有震陷、饱和砂土有液化等地质地震灾害。
减隔震设计1.地震力的作用是巨大的,我们在桥梁抗震设计中一般会采用两种途径去减轻桥梁震害:传统抗震设计和减隔震设计。
传统抗震设计是增大构件断面及配筋致使结构刚度增大,达到减轻震害目的;而减隔震设计是采用柔性支承延长结构周期,减小结构地震反应;采用阻尼器装置耗散能量,限制结构位移;保证结构在正常使用荷载作用下具有足够的刚度,即俗称的以柔克刚。
2.减隔震技术随着科技的发展以及新材料的应用,越来越多的被应用在桥梁抗震设计中,但是只适用于以下条件:上部结构连续,下部结构刚度较大,结构基本振动周期比较短;桥梁下部结构高度变化不规则,刚度分配不均匀;场地条件比较好,预期地面运动特性具有较高的卓越频率。
支座中出现负反力的情况下则不宜采用减隔震设计。
3.减隔震装置经常采用如下几种:整体型减隔震装置:铅芯橡胶支座、高阻尼橡胶支座、摩擦摆隔震支座;分离型减隔震装置:橡胶支座+金属阻尼器、橡胶支座+粘性材。
桥梁节点抗震解析在桥梁结构中,节点构造形式与房屋框架结构中的节点相差较大,而且桥梁结构在横向地震作用下主要依靠墩柱的延性发生变形,而不是依靠盖梁的延性,因而不能套用房屋框架结构节点抗震设计。
但是毫无疑问的是,桥梁节点部位属于能力保护构件,在地震作用下需要保持较高的强度和刚度。
结合我国公路桥梁的特点,对影响极限强度的因素做了以下研究。
一、我国桥梁节点受力特点:节点的受力机理受到多种因素的影响,包括:混凝土强度,钢筋屈服强度,核心区内箍筋的构造以及梁柱主筋的锚固状况等。
在正常配筋的情况下,节点核心的受力过程,一般经历以下四个阶段:(一)初裂;当加载使核心区出现第一条斜裂缝时,称为核心区初裂阶段。
此时箍筋应力水平很低,节点可认为处于弹性工作阶段,节点剪力主要由混凝土承担。
(二)通裂;初裂后继续增加荷载,节点核心区中部陆续出现第二条、第三条斜裂缝,将核心区分割成若干小块,然后逐渐形成贯通节点核心对角线的主斜裂缝。
通裂时节点内箍筋应力很快增加至屈服应力,节点进入弹塑性阶段,刚度明显降低。
试验显示,通裂时的承载能力约为极限承载能力的80%左右。
(三)极限;通裂后外荷载还可以继续增加,核心区裂缝宽度越来越宽,结构变形明显加大,核心区剪切变形成倍增长。