高二数学数系的扩充与复数的概念1

合集下载

数系的扩充与复数的概念 课件

数系的扩充与复数的概念 课件

复数的分类 m 取何实数时,复数 z=m2m-+m3-6+(m2-2m-
15)i. (1)是实数? (2)是虚数? (3)是纯虚数? [分析] 在本题是复数的标准形式下,即 z=a+bi(a,b∈
R),根据复数的概念,只要对实部和虚部分别计算,总体整合 即可.
[解析] (1)由条件得mm+2-32≠m0-,15=0, ∴mm= ≠5-或3m. =-3, ∴当 m=5 时,z 是实数. (2)由条件得mm+2-32≠m0-. 15≠0, ∴mm≠ ≠5-且3m. ≠-3, , ∴当 m≠5 且 m≠-3 时,z 是虚数.
3.复数的定义:形如a+bi(a、b∈R)的数叫做复数,其中 i叫做虚数单位,满足i2=___-__1___.
这一表示形式叫做复数的代数形式,a与b分别叫做复数z的 __复__数_集___与__虚_部_____.全体复数构成的集合叫做 实部
复数的相等与复数的分类
4.复数相等的充要条件
设a、b、c、d都是实数,那么a+bi=c+ di⇔a_=__c且__b_=_d_______.
数系的扩充与复数的概念
数系的扩充与复数的概念
我们认识数的过程是先认识了自然数,又扩充到整数集,再扩充到有 理数(分数、有限小数和无限循环小数),再扩充无理数到实数集,但 在实数集中,我们已知一元二次方程ax2+bx+c=0(a≠0),当Δ= b2-4ac<0时无实数解,我们能否设想一种方法使得Δ<0时方程也有 解呢?
1.数系扩充的原因、脉络、原则
脉 络 : 自 然 数 系 → 整 数 系 → 有 理 数 系 → 实 数 系 → _ _ _ _复_ _数_系_
原因:数系的每一次扩充都与实际需求密切相关,实际需求与 数学内部的矛盾在数系扩充中起了主导作用.

( 人教A版)数系的扩充和复数的概念课件 (共29张PPT)

( 人教A版)数系的扩充和复数的概念课件 (共29张PPT)

(3)要使 z 为纯虚数,必须有 m2-4≠0, m2-3m+2=0. 所以mm≠ =-1或2m且=m≠ 2,2, 所以 m=1,即 m=1 时,z 为纯虚数.
探究三 复数相等
[典例 3] 根据下列条件,分别求实数 x,y 的值. (1)x2-y2+2xyi=2i; (2)(2x-1)+i=y-(3-y)i. [解析] (1)∵x2-y2+2xyi=2i,x,y∈R, ∴2xx2-y=y22=,0, 解得xy==11,, 或xy==--11., (2)∵(2x-1)+i=y-(3-y)i,且 x,y∈R,
-2i. 答案:A
3.下列命题: ①若 a∈R,则(a+1)i 是纯虚数; ②若(x2-1)+(x2+3x+2)i(x∈R)是纯虚数,则 x=±1; ③两个虚数不能比较大小. 其中正确命题的序号是________. 解析:当 a=-1 时,(a+1)i=0,故①错误;两个虚数不能比较大小,故③对; 若(x2-1)+(x2+3x+2)i 是纯虚数,则xx22- +13= x+0, 2≠0, 即 x=1,故②错. 答案:③
解析:复数 z=a+bi(a,b∈R)的虚部为 b,故选 B.
答案:B
2.下列复数中,和复数-1+i 相等的复数为( )
A.-1-i
B.1-i
C.1+i
D.i2+i
解析:∵i2=-1,∴i2+i=-1+i,故选 D.
答案:D
3.z=(m2-1)+(m-1)i(m∈R)是纯虚数,则有( )
A.m=±1
A.0
B.1
C.
D.3
解析:27i,(1- 3)i 是纯虚数,2+ 7,0,0.618 是实数,8+5i 是虚数. 答案:C
2.以- 5+2i 的虚部为实部,以 5i+2i2 的实部为虚部的复数是( )

01-第一节 复数的概念-课时1 数系的扩充和复数的概念高中数学必修第二册人教版

01-第一节 复数的概念-课时1 数系的扩充和复数的概念高中数学必修第二册人教版
2
6
2
2
2
2.设i是虚数单位,若复数 = 3 + 2 + (2 − 3)i的实部与虚部互为相反数,
则实数 =( A )
A.5
B.−5
C.3
D.−3
【解析】 因为复数 = 3 + 2 + (2 − 3)i的实部与虚部互为相反数,所
以3 + 2 = −(2 − 3),解得 = 5.
Hale Waihona Puke 1 = 2 ⇔ = 且 = .
D.−3
8.[2024安徽安庆名校联考]若i − 2i2 = + 2i,, ∈ ,则复数 + i等
于( B
A.−2 + i
)
B.4 + 2i
C.1 − 2i
D.1 + 2i
【解析】 由i2 = −1,得i − 2i2 = 2 + i,则2 + i = + 2i,根据复数相等
所以 = 5时,复数为实数.
(2)为纯虚数;
【解析】
2 −−6

+3
= 0且 + 3 ≠ 0且2 − 2 − 15 ≠ 0时,复数为纯
虚数,
解得 = 3或 = −2,
所以 = 3或 = −2时,复数为纯虚数.
(3)为虚数.
【解析】 当 + 3 ≠ 0且2 − 2 − 15 ≠ 0时,复数为虚数,解得
第七章 复数
第一节 复数的概念
课时1 数系的扩充和复数的概念
过基础 教材必备知识精练
知识点1 数系的扩充和复数的概念
1.复数 =
1
A.−
2
【解析】
1

(完整word版)数系的扩充和复数的概念全面版

(完整word版)数系的扩充和复数的概念全面版

数系的扩充和复数的概念教学目标重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等。

复数在现代科学技术中以及在数学学科中的地位和作用.难点:虚数单位i 的引进以及对复数概念的理解.知识点:了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、实部、虚部、实数、虚数、纯虚数、复数相等);理解虚数单位i 及i 与实数的运算规律能力点:探寻复数的形成过程,体会引入虚数单位i 和复数形式的合理性,以及等价转化思想、方程思想、分类讨论数学思想的运用。

教育点:通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,经历由实数系扩充到复数系的研究过程,感受人类理性思维的作用以及数与现实世界的联系.自主探究点:如何运用实数与虚数单位i 的加、乘运算得到复数代数形式及探索复数相等的充要条件. 考试点:用复数的基本概念解决简单的数学问题。

易错易混点:对复数代数形式的认识,及复数分类的把握。

拓展点:如何利用复数代数形式解题,理解复数的几何意义.一、 引入新课求下列方程的解:(1)24x = 2(2)40x -= (3)310x -= 2(4)20x -= 2(5)10x +=.学生分析各题的解:(1)2x =;(2)22x x ==-或;1(3)3x =;(4)22x x ==-或;(5)实数集内无解. 通过以上五题解的探讨,学生会发现方程(5)在实数集中遇到了无解现象.如何使方程(5)有解呢?类比引进2,就可以解决方程220x -=在有理数中无解的问题,就有必要扩充数集,今天我们来与大家一起学习“数系的扩充”。

【设计意图】通过类比,易引发学生的学习兴趣.使学生了解扩充数系要从引入新数开始,引出本课题.二、探究新知1.复习已学过的数系问题1:数,是数学中的基本概念。

到目前为止,我们学习了哪些数集?用符号如何表示?它们之间有怎样的包含关系?用图示法可以如何表示?答:自然数集、整数集、有理数集、实数集,符号分别表示为N ,Z ,Q ,R ; 其中它们之间的关系式:N Z Q R ; 用文氏图表示N ,Z ,Q ,R 的关系【设计意图】数集及其之间关系的回顾,特别是“图示法”的直观表示,旨在帮助学生对“数系的扩充”有个初步感受.我们将一个数集连同相应的运算及结构叫做一个数系。

数系的扩充和复数的概念 课件(1)-人教A版高中数学必修第二册(共19张PPT)

数系的扩充和复数的概念 课件(1)-人教A版高中数学必修第二册(共19张PPT)
第七章来自人教2019A版必修 第二册
复数
7.1.1 数系的扩充和复数的概念
一、引入新课
回顾数系的扩充过程
①分

分数 数
然 数
②整
负数 数
有理数
③ 实数 无理数
①10÷3=? ②3–5 = ? ③正方形的面积是2,求该正方形的边长a。 ④求方程x2+1=0的解。
现在我们就引入这样一个新数 i ,并且规定:
思考:根据上述几个例子,复数z= a+bi可以是实数吗? 满足什么条件?
(三)复数的分类
实数 ( b 0 )
复数 Z=a+bi
纯虚数 ( a 0, b 0 )
虚数 ( b 0 ) 非纯虚数
( a 0, b 0 )
思考:复数集、实数集、虚数集、纯虚数集之间有什么关系?
复数 集
虚数集 实数 纯虚数集 集
例1: 实数m取什么值时,复数 z=m+1+(m-1)i
是(1)实数;(2)虚数;(3)纯虚数。
解: (1)当 m 1 0 ,即 m 1时,复数z 是实数。
(2)当 m 1 0 ,即 m 1时,复数z 是虚数。
(3)当
m m
1 1
0 0
,即 m
纯虚数。
时1 ,复数z

练习:当m为何实数时,复数 z=m2+m-2+(m2-1)i
全体复数所成的集合叫做复数集,一般用字母 C表示 。
(二)复数的代数形式 复数通常用字母 z表示,即
z a bi (a、bR)
i 实部 虚部 其中 称为虚数单位。
练习:把下列式子化为 a+bi(a、bR)的形式,并分别指出它 们的实部和虚部。 2 -i = 2+(-1)i ;-2i = 0+(-2)i ;5= 5+0i ;0= 0+0i .

数系的扩充和复数的概念

数系的扩充和复数的概念
3、4、5、…正整数是现实世界最基本的数量,是全部
数学的发源地.
古代印度人最早使用了“0” 公元5世纪时,“0”已经传入罗马。
但罗马教皇凶残而且守旧。他不允许任 何使用“0”。有一位罗马学者在笔记中 记载了关于使用“0”的一些好处和说明, 就被教皇召去,砍去了双手
2021/2/4
1
3
数系的扩充 SHUXI DI KUOCHONG
复数的代数形式 复数的实部 、虚部
虚数、纯虚数
复数相等
2021/2/4
1
29
谢谢观赏!
2020/11/5
30
(3)全体复数所形成的集合叫做复数 集,一般用字母 C 表示.
2021/2/4
1
19
C RQZ N
2021/2/4
1
20
数系的扩充 SHUXI DI KUOCHONG
1.新数 i 叫做虚数单位,并规定: (1)i 2 1; (2)实数可以与 i 进行四则运算,在进
行四则运算时,原有的加法与乘法 的运算律仍然成立.
2021/2/4
1
21
例题讲解
例1.写出下列复数的实部与虚部.
4 , 23i, 0 , 1 4 i,
5 2i, 6i 2 3
解: 4的实部为 4 ,虚部为 0 ;
2-3i的实部为 2 ,虚部为 -3 ;
0的实部为 0 ,虚部为 0 ;
1 2
4i 3
的实部为
1
2 ,虚部为
4
3;
5 2i的实部为 5 ,虚部为 2 ;
中国是世界上最早认识应用负数的
国家.早在2000多年前的《九章算术》 中,就有正数和负数的记载.公元3世纪,
刘徽在注解“九章算术”时,明确定义了正 负数:“两算得失相反,要令正负以名之”. 不仅如此,刘徽还给出了正负数的加减法 运算法则.千年之后,负数概念才经由阿 拉伯传人欧洲。负数的引入, 解决了在自然 数集中不够减的矛盾

第五章复数(讲义+典型例题)(原卷板)

第五章复数(讲义+典型例题)一.数系的扩充和复数的概念1.复数的定义:设i 为方程21x =-的根,i 称为虚数单位,形如()a bi a b R +∈、的数,称为复数.所有复数构成的集合称复数集,通常用C 来表示.a 为实部,b 为虚部2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩例1(1).(2021·浙江·绍兴市柯桥区教师发展中心模拟预测)已知a ∈R ,若复数2i z a a a =++(i 是虚数单位)是纯虚数,则=a ( )A .0B .1C .1-D .2(2).(2021·全国·模拟预测)设i 是虚数单位,则下列是虚数的是( ) A .fB .gC .hD .i举一反三(1).(2021·广东佛山·模拟预测)在复数范围内方程230x +=的解为( ) A .3i -B 3iC .3i ±D .3(2).(2021·福建泉州·一模)已知i 是虚数单位,则“i a =”是“21a =-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二.复数的几何意义1. 复平面在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴.2.复数的坐标表示 点(,)Z a b3.复数的向量表示 向量OZ .4.复数的模在复平面内,复数i z a b =+对应点(,)Z a b ,点Z 到原点的距离OZ 叫做复数z 的模,记作z .由定义知,22z a b =+.例2(1).(2021·四川自贡·一模(理))复数(3)i z a a =+-(a ∈R ,i 为虚数单位),在复平面内所对应的点在2y x =上,则||z =( ) A .3B .5C .7D .10(2).(2021·全国·模拟预测)已知i 是虚数单位,复数3i2iz -=+的共轭复数在复平面中对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限举一反三(1).(山东省大教育联盟学校2021-2022学年高三下学期收心考试(开学考试)数学试题)已知a ∈R ,若在复平面内复数185i z =+与24i z a =+对应的两点之间的距离为4,则=a ( ). A .4B .5C .6D .81(2).(2022·河南濮阳·高三开学考试(理))已知复数z 满足34i z z =+,则=z ( ) A .1B 5C 10D .5复数bia z +=复平面 内的点 Z (a,b )平面向量OZ(3).(2022·上海市崇明区横沙中学高一期末)若复数(2)(2)i,(R)z m m m =++-∈在复平面上对应的点在第四象限,则m 的取值范围是__.(4).(2022·江西上饶·高二期末(文))已知复数()()226832i z m m m m =-++-+,其中i 是虚数单位,m 为实数.(1)当复数z 为纯虚数时,求m 的值;(2)当复数i z ⋅在复平面内对应的点位于第三象限时,求m 的取值范围.三. 两个复数相等的定义:a bi c di a c +=+⇔=且b d =(其中a b c d R ∈,,,,)特别地,00a bi a b +=⇔==.例3(2022·浙江·模拟预测)设2,1i i a R a a ∈+=+(i 为虚数单位),则a =( ) A .-1B .0C .1D .1或-1举一反三(1).(2021江苏无锡·模拟预测)已知,x y R ∈,且32x i yi +=+,则,x y 的值分别为( ) A .21,3B .3,1C .2,13D .1,3(2)(2021·河南·模拟预测(文))已知a 、R b ∈,()()()12i 131i a a b -+=-+-,则( )A .2b a =-B .2b a =C .2a b =-D .2a b =四.共轭复数若两个复数的实部相等,而虚部是互为相反数时,这两个复数叫互为共轭复数;特别地,虚部不为0的两个共轭复数也叫做共轭虚数;【注:两个共轭复数之差是纯虚数.(×)[之差可能为零,此时两个复数是相等的]】若z=a+bi ,则z a bi =+的共轭复数记作z a bi =-;例4.(2019·全国·高考真题(理))设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限举一反三(1).(2021·浙江·模拟预测)复数1i +(i 为虚数单位)的共轭复数在复平面中对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限(2).(2021·黑龙江·哈九中模拟预测(理))满足条件34z i i -=+的复数z 的共轭复数在复平面上对应的点所在象限是( ) A .一B .二C .三D .四五.复数的加减运算 设111z a b i =+,222z a b i =+(1)加法:()()121212z z a a b b i +=+++,即实部与实部相加,虚部与虚部相加;几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z +对应的向量为12(,)OZ OZ a c b d +=++.因此复数的和可以在复平面上用平行四边形法则解释.例5(2020·上海普陀·三模)在复平面内,点()2,1A -对应的复数z ,则1z +=___________举一反三(1).(2022·全国·高一课时练习)已知复数1234i,34i z z =+=-,则12z z +等于( ) A .8i B .6 C .68i + D .68i -(2).(2022·全国·高一)如图所示,已知复数111i z a b =+,()2221122i ,,,z a b a b a b R =+∈所对应的向量()11,OA a b =,()22,OB a b =,它们的和为向量OC .请根据两个向量相加的运算写出对应的复数运算过程.(2)减法:()()121212z z a a b b i -=-+-,即实部与实部相减,虚部与虚部相减;几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z -对应的向量为1221(,)OZ OZ Z Z a c b d -==--.2212()()i ()()z z a c b d a c b d -=-+-=-+-表示1Z 、2Z 两点之间的距离,也等于向量12Z Z 的模.例6(1)(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -(2)(2022·四川省高县中学校模拟预测(文))在复平面内,O 为原点,四边形OABC 是复平面内的平行四边形,且A ,B ,C 三点对应的复数分别为z 1,z 2,z 3,若131,2i ==-+z z ,则z 2=( ) A .1+iB .1-iC .-1+iD .-1-i举一反三(1).(2022·河南·模拟预测(理))已知3225i z z -=-,则z =( ) A .2i - B .2i + C .2i --D .2i -+(2).(2021·山东章丘·模拟预测)复数z 1,z 2满足z 1∈R ,2121,2z i z z =+-z 1=( ) A .1B .2C .0或2D .1或2六、复数的乘除运算 设111z a b i =+,222z a b i =+(1)乘法:()()1212122112z z a a b b a b a b i ⋅=-++ , 特别22z z a b ⋅=+;例7(1).(2021·全国·高考真题)已知2i z =-,则()i z z +=( ) A .62i -B .42i -C .62i +D .42i +(2).(2019·北京·高考真题(理))已知复数z =2+i ,则z z ⋅= A 3B 5C .3D .5举一反三(1).(2022·浙江·模拟预测)复数()i 2i z =-(i 为虚数单位)的共扼复数在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限(2).(2022·山西临汾·一模(理))已知a ,R b ∈,i 是虚数单位.若i 3i a b +=-,则()2i b a -( ) A .106i +B .86i -+C .96i -D .86i -(3).(2022·四川攀枝花·二模(理))若复数()()2i 1i z b b R =+∈的实部与虚部相等,则b 的值为( ) A .2-B .1-C .1D .2(2)除法c diz a bi+=+(,a b 是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数,即分子分母同时乘以分母的共轭复数,然后再化简:()()22ac bd ad bc ic di c di a bi z a bi a bi a bi a b++-++-==⋅=++-+; (3四则运算的交换率、结合率;分配率都适合于复数的情况。

人教版数学 选修1-2 1 数系的扩充和复数的概念(共14张ppt)教育课件


: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。

高中数学《3.1.1数系的扩充和复数的概念》课件1 新人教A版选修1-2


【变式1】 已知下列命题:
①复数a+bi不是实数;
②当z∈C时,z2≥0; ③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2; ④若复数z=a+bi,则当且仅当b≠0时,z为虚数; ⑤若a、b、c、d∈C时,有a+bi=c+di,则a=c且b=d.
其中真命题的个数是________.
A.0 B.1 C.2 D.3
[思路探索] 只需根据复数的有关概念判断即可. 解析 ①由于x,y∈C,所以x+yi不一定是复数的代数形式,不符
合复数相等的充要条件,①是假命题.
②由于两个虚数不能比较大小,
∴②是假命题. ③当x=1,y=i时, x2+y2=0成立,∴③是假命题. 因为复数为纯虚数要求实部为零,虚部不为零,故④错;因为-1
题型二
复数相等的充要条件的应用
【例 2】 (1)已知 x2-y2+2xyi=2i,求实数 x、y 的值. a (2)关于 x 的方程 3x - x-1=(10-x-2x2)i 有实根,求实数 2
2
a 的值. [思路探索] 先确定“=”两边复数的实部和虚部,然后列方 程组求解.

(1)∵x2-y2+2xyi=2i,
2x-1=-b, ∴ 1=b-3,
3 3 x=- , x=- , 2 2 解得 ∴ b=4. y=4i.
题型三 复数的分类 m2+m-6 【例 3】 当实数 m 为何值时,复数 z= +(m2-2m)i 为 m (1)实数; (2)虚数; (3)纯虚数.
[规范解答]
规律方法
(1)利用复数相等,我们可以把复数问题转化为实数问
题来解决.
(2)复系数方程有实根问题,实际上就是两个复数相等的问题.
【变式 2】 求适合等式(2x-1)+i=y+(y-3)i 的 x、y 值.其中 x ∈R,y 是纯虚数. 解 设 y=bi(b∈R 且 b≠0)代入等式得

高中数学选修2-2第三章数系的扩充和复数的引入3.1.1数系的扩充和复数的概念讲义

3.1.1 数系的扩充和复数的概念1.虚数单位i在实数集R 中添加新数i ,规定:(1)i 2=□01-1,其中i 叫做虚数单位;(2)i 可与实数进行□02四则运算,且原有的加、乘运算律仍然成立. 2.复数的相关概念集合C ={a +b i|a ∈R ,b ∈R }中的数,即形如a +b i(a ,b ∈R )的数叫做□03复数,其中i 叫做□04虚数单位.全体复数的集合C 叫做□05复数集. 复数通用字母z 表示,即z =a +b i(a ,b ∈R ),这一表示形式叫做□06复数的代数形式.其中的a 与b 分别叫做复数z 的□07实部与虚部. 3.复数的分类对于复数z =a +b i ,当且仅当□08b =0时,它是实数;当且仅当□09a =b =0时,它是实数10b≠0时,叫做虚数;当□11a=0,且b≠0时,叫做纯虚数.0;当且仅当□4.复数相等的充要条件在复数集C={a+b i|a,b∈R}中任取两个数a+b i,c+d i(a,b,c,d∈R),规定:a +b i与c+d i的充要条件是□12a=c且b=d(a,b,c,d∈R).复数相等的充要条件(1)两个复数相等的充要条件中,注意前提条件是a,b,c,d∈R,若忽略这一条件,则不能成立.因此解决复数相等问题时,一定要把复数的实部与虚部分离出来,再利用相等条件.(2)复数相等的条件是把复数问题转化为实数问题是重要依据,是复数问题实数化这一重要数学思想方法的体现.利用这一结论,可以把“复数相等”这一条件转化为两个实数等式,为应用方程思想提供了条件,这一思想在解决复数问题中非常重要.1.判一判(正确的打“√”,错误的打“×”)(1)若a,b为实数,则z=a+b i为虚数.( )(2)若z=m+n i(m,n∈C),则当且仅当m=0,n≠0时,z为纯虚数.( )(3)b i是纯虚数.( )(4)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( )答案(1)×(2)×(3)×(4)√2.做一做(1)若a+b i=0,则实数a=________,实数b=________.(2)(1+3)i的实部与虚部分别是________.(3)若复数(a+1)+(a2-1)i(a∈R)是实数,则a=________.答案(1)0 0 (2)0,1+ 3 (3)±1探究1复数的有关概念例1 给出下列四个命题:①两个复数不能比较大小;②若x,y∈C,则x+y i=1+i的充要条件是x=y=1;③若实数a与a i对应,则实数集与纯虚数集一一对应;④纯虚数集相对复数集的补集是虚数集.其中真命题的个数是________.[解析]①中当这两个复数都是实数时,可以比较大小;②由于x,y都是复数,故x+y i不一定是复数的代数形式,不符合复数相等的充要条件;③若a=0,则a i不是纯虚数;④由纯虚数集、虚数集、复数集之间的关系知,所求补集应是非纯虚数集与实数集的并集.[答案]0拓展提升数集从实数集扩充到复数集后,某些结论不再成立.如:两数大小的比较,某数的平方是非负数等.但i 与实数的运算及运算律仍成立. 【跟踪训练1】 下列命题中: ①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R 且a >b ,则a +i>b +i ;③若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x =±1; ④两个虚数不能比较大小. 其中,正确命题的序号是( ) A .① B .② C .③ D .④ 答案 D解析 对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时为纯虚数. 在①中,若a =-1,则(a +1)i 不是纯虚数,故①错误; 在②中,两个虚数不能比较大小,故②错误;在③中,若x =-1,x 2+3x +2≠0不成立,故③错误; ④正确.探究2 复数的分类例2 当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为:(1)实数?(2)虚数?(3)纯虚数?[解] (1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数;(2)当m 2-2m ≠0,即m ≠0且m ≠2时,复数z 是虚数;(3)当⎩⎪⎨⎪⎧m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.[条件探究] 是否存在实数m ,使z =(m 2-2m )+m 2+m -6mi 是纯虚数?[解] 由z =(m 2-2m )+m 2+m -6mi 是纯虚数,得⎩⎪⎨⎪⎧m 2-2m =0,m 2+m -6m≠0,解得m ∈∅.即不存在实数m ,使z =(m 2-2m )+m 2+m -6mi 是纯虚数.拓展提升利用复数的分类求参数的值或取值范围的一般步骤(1)判定复数是否为a +b i(a ,b ∈R )的形式,实部与虚部分别为哪些; (2)依据复数的有关概念将复数问题转化为实数问题; (3)解相应的方程(组)或不等式(组); (4)求出参数的值或取值范围. 【跟踪训练2】 已知m ∈R ,复数z =m m +2m -1+(m 2+2m -3)i ,当m 为何值时,(1)z 为实数? (2)z 为虚数? (3)z 为纯虚数?解 (1)要使z 为实数,需满足m 2+2m -3=0,且m m +2m -1有意义,即m -1≠0,解得m=-3.(2)要使z 为虚数,需满足m 2+2m -3≠0,且m m +2m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 为纯虚数,需满足m m +2m -1=0,且m 2+2m -3≠0,解得m =0或m =-2.探究3 复数相等例3 已知M ={1,(m 2-2m )+(m 2+m -2)i},P ={-1,1,4i},若M ∪P =P ,求实数m 的值.[解] ∵M ∪P =P ,∴M ⊆P ,即(m 2-2m )+(m 2+m -2)i =-1或(m 2-2m )+(m 2+m -2)i =4i. 由(m 2-2m )+(m 2+m -2)i =-1,得⎩⎪⎨⎪⎧ m 2-2m =-1,m 2+m -2=0,解得m =1.由(m 2-2m )+(m 2+m -2)i =4i ,得⎩⎪⎨⎪⎧m 2-2m =0,m 2+m -2=4,解得m =2.∴实数m 的值为1或2.拓展提升复数相等的充要条件是实部相等且虚部相等.复数问题实数化多用来求参数,其步骤是:分别确定两个复数的实部和虚部,利用实部与实部、虚部与虚部分别相等,列方程组.【跟踪训练3】 已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解 由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),∴⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0.解得⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1,∴a =-1.故实数a 的值为-1.1.在复数a +b i 中,a ,b 必须是实数,否则不是复数的代数形式.2.复数的虚部是实数而不是虚数,即为“b ”,不是“b i”,更不是“i”.3.当且仅当b ≠0且a =0时,复数a +b i 才是纯虚数,解题时不能只注意a =0而忽视了b ≠0的限制.4.复数相等的充要条件是把复数问题转化为实数问题的重要依据,是复数问题实数化这一重要数学思想的体现.1.“a =0”是“复数a +b i(a ,b ∈R )是纯虚数”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 A解析 因为复数a +b i(a ,b ∈R )是纯虚数⇔a =0且b ≠0,所以“a =0”是“复数a +b i(a ,b ∈R )是纯虚数”的必要不充分条件.2.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2i D.2+2i答案 A解析 3i -2的虚部为3,3i 2+2i 的实部为-3,所以所求复数为3-3i.3.已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是________. 答案 ±2,5解析 由题意得:a 2=2,-(2-b )=3,所以a =±2,b =5. 4.设复数z =1m +5+(m 2+2m -15)i 为实数,则实数m 的值是________. 答案 3解析 依题意有⎩⎪⎨⎪⎧m 2+2m -15=0,m +5≠0,解得m =3.5.如果log 12(m +n )-(m 2-3m )i≥-1,求自然数m ,n 的值.解 ∵log 12 (m +n )-(m 2-3m )i≥-1,∴⎩⎪⎨⎪⎧log 12 m +n ≥-1,-m 2-3m =0.∴⎩⎪⎨⎪⎧0<m +n ≤2,m =0或m =3.∵m ,n ∈N ,∴m =0,n =1或n =2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考6:对于复数z=a+bi(a,b∈R) 当b≠0时,z叫做虚数,当a=0且b≠0时, z叫做纯虚数,那么虚数集与纯虚数集之 间如何? 纯虚数集是虚数集的真子集.
思考7:复数集、实数集、虚数集、纯虚 数集之间的关系用韦恩图怎样表示?
复数 纯虚数 实数
虚数
思考8:两个实数可以比较大小,一个实 数与一个虚数或两个虚数可以比较大小 吗? 虚数不能比较大小.
思考3:复数通常用字母z表示,即 z=a+bi(a,b∈R),这一表示形式叫 做复数的代数形式,其中a与b分别叫做 复数z的实部与虚部,那么复数 z= 2-3i的实部和虚部分别是什么? 实部为 2 ,虚部为-3.
思考4:两个实数可以相等,两个复数也 可以相等,并且规定:a+bi=c+di(a, b,c,d∈R)的充要条件是a=c且b=d, 那么a+bi=0的充要条件是什么? a= b = 0 思考5:对于复数z=a+bi(a,b∈R) 当b=0时,z为什么数?由此说明实数集 与复数集的关系如何? 当b=0时z为实数. 实数集R是复数集C的真子集.
第三,新数系能解决旧数系中的矛盾.
1 1 2 x + 2 = (x + ) - 2 = - 1. x x
2
1 2.若 x + = 1 ,则 x
对此你有什么困惑?
3.唯物辨证法认为,事物是发展变 化的,事物内部的矛盾运动是推动事物 向前发展的根本动力.由于实数的局限性, 导致某些数学问题出现矛盾的结果,数 学家们预测,在实数范围外还有一类新 数存在,还有比实数集更大的数系.
第三章
数系的扩充与复数的引入
3.1
数系的扩充和复数的概念
3.1.1 数系的扩充和复数的概念
问题提出
1 5730 p 2
t
1.数的概念产生和发展的历史进程: N 正分数 Q+ 正无理数 R+ 零和负数 R 数系每次扩充的基本原则: 第一,增加新元素; 第二,原有的运算性质仍然成立;
探究(一):虚数单位的引入
1 1 2 思考1:由 x + = 1 得 x + 2 = - 1, x x 1 2
这与 x +

x 方程x2-x+1=0无实根
2
> 0 矛盾的原因是什么?
思考2:方程x2-x+1=0无实根的根本 原因是什么?
-1不能开平方
思考3:我们设想引入一个新数,用字 母i表示,使这个数是-1的平方根,即 i2=-1,那么方程x2-x+1=0的根是 什么?
1.将实数系扩充到复数系是源于解方 程的需要,到十九世纪中叶已建立了一 套完整的复数理论,形成一个独立的数 学分支. 2.虚数单位i的引入解决了负数不能 开平方的矛盾,并将实数集扩充到了复 数集,它使得任何一个复数都可以写成 a+bi(a,b∈R)的形式.
3.复数包括了实数和虚数,实数的某 些性质在复数集中不成立,如x2≥0; 若x-y>0,则x>y等,今后在数学解题 中,如果没有特殊说明,一般都在实数 集内解决问题.
a+ i= i+a
a ?i
3 2
i ?a
-i
a ?( i ) = - ai
i = i ?i
1 i = 2 = -i i i
探究(二):复数的有关概念
思考1:虚数单位i与实数进行四则运算, 可以形成哪种一般形式的数?
a+bi(a,b∈R) 思考2:把形如a+bi(a,b∈R)的数叫 做复数,全体复数所成的集合叫做复数 集,记作C,那么复数集如何用描述法表 示? C={a+bi|a,b∈R}
1 3 ± i 2 2
思考4:若x4=1,利用i2=-1,则x等于 什么? 1,-1,i,-i.
思考5:满足i2=-1的新数i显然不是实 数,称为虚数单位,根据数系的扩充原 则,应规定虚数单位i和实数之间的运算 满足哪些运算律?
乘法和加法都满足交换律、结合律,乘 法对加法满足分配律.
思考6:设a∈R,下列运算正确吗?
作业:
P104练习:1,2,3. P106习题3.1A组:1,2.
; 陀螺快讯 区块链资讯 https:///kuaixun/ 陀螺快讯 区块链资讯 ;
十分の迅猛/冰豹抪弱/可确定它碰到の对手确定马开和晴文婷/注定它们只有败亡の壹条路可走/ 手指舞动/两人舞动着炽火/灼烧炼化冰豹/到它们面前出现咯壹团水滴/ 水滴确定和之前の晶莹色抪同/这壹次化作の水滴居然确定绿色の/ "运气抪错/绿色の古水/对我们也有用/" 晴文婷说话之间/手指壹点/这些古水随着她の身体渗透到身体中/她那张绝美清秀の脸上/有着壹缕潮红/美艳至极/如同鲜花绽放/撩人至极/ 晴文婷无疑确定壹佫美人/娇躯曼妙/体态纤柔/曲线凹凸有致十分吸引人の眼神/加上她の气质/都人间仙子/此刻脸上浮现の娇红/给予她增 添咯无穷の魅力/ "着我干什么/晴文婷见马开望着她/翻咯翻白眼/随即手指壹点/绿色の古水冲向马开/渗透到马开の身体中/ 马开顿时感觉壹股热流冲击它の身体/热流确定恐怖の天地元气所化/天地元气滂湃/奔流抪息如同大海/冲向马开/马开の气海条条河流瞬间鼓荡抪息/马开 の精气神瞬间恢复到巅峰/ "感觉怎么样/晴文婷问着马开/ "天地元气太浓厚/对精气神都有帮助/要确定普通修行者の话/得到古水帮助/实力定然翻倍の成长/可确定我们已经走到极限咯/即使此刻滂湃如同山河の力量也无法让我们增加半分/倒确定可惜咯/"马开叹息道/ 马开说话 之间/把另外壹团古水渗透到身体中/果然达到饱满の气海/无法再容纳壹滴壹毫の古水/古水化作の暖流到流淌壹变/驱除马开の寒意之后/就开始散失/ 感受到壹股股暖流到体内消失/马开觉得可惜/ "你有没有可能借着古水再次极限升华壹次/晴文婷问着马开/ 马开翻咯翻白眼道/ 你以为极限升华这么容易啊/成就咯少年至尊/就确定把自己推到咯极限/而且到这之前/我已经升华过壹次咯/要抪然凭借着少年至尊の层次/要想败天子极难/你到少年至尊还升华咯壹次/晴文婷呆滞の着马开/觉得有些难以置信/她虽然没有达到少年至尊の层次/但也只差壹线/就这 壹线/都让它=她费经心思想要升华壹次/可每次都以失败告终/她都如此/那马开已经达到少年至尊/想要升华壹次何其难做到/但马开居然做到咯/ 晴文婷原本还指望马开借助古水/再次极限升华壹次/但现到来确定抪太可能咯/壹次都已经逆天咯/再想壹次确定绝对抪可能の/ "可惜 咯古水啊/到你身上居然没有太大效果咯/"晴文婷叹息壹声道/ "那也未必/要确定有你这佫层次の生灵化作の古水/就有大用/要确定确定少年至尊の古水/谁能保证就壹定抪能升华/ 晴文婷摇摇头道/抪可能咯/就算有少年至尊级の古水/都无法让你升华咯/要确定第壹次の话有戏/ 但你确定第二次/这就极难咯/除非你真の依靠自己和古水同时逆天/" 马开听晴文婷说の如此肯定/耸耸肩也没有继续这佫话题/信手斩咯壹些生灵/这些生灵都抪弱/对马开和晴文婷都有辅助/要确定单单当做确定天地灵气补充の话/确定圣品/ 马开吸收咯这些古水/感受到它们の消 散/身体の酥麻让马开心中突然壹跳/ "我虽然元灵和气海难以再次升华咯/那能抪能把这些力量封印淬炼到自己の肉身血脉之中/马开突然想到壹种办法/要确定确定别人难以做到/可确定它修行咯巫体诀/可以尝试/ 想到这点/马开真の开始吸收古水/把古水渗透到肌肉之中/抪让其 流淌到经络中/更抪让其涌入气海/ 晴文婷见马开吸收古水无用还浪费/忍抪住骂咯壹句败家子/这种东西放到外面/有很多人高价会买/而且就算抪卖/也可以放到身上傍身/力竭の时候完全可以当做补充天地元气の圣药/ 但马开却吸收着股股古水/让晴文婷觉得可惜/ 古水化作の异 力渗透到马开の肌肉血液之中/马开施展秘法/元灵震动/以妙术把力量封印淬炼到肉身中/马开感觉自己の肉身都要炸裂开来/有着撕心裂肺の疼痛/ 身体都裂开/真の要因为古水冲击の力量而撕裂/因为这力量太强咯/如同确定壹佫玄华境壹击直接冲击到血肉之中/即使有元灵の调 理/都难受万分/ 晴文婷见到马开手臂突然裂开/面色大变/马开/你怎么咯?出什么事咯/ 这确定禁地/出现什么样の情况都可能/尽管之前马开壹直很好/但突然就如此/谁知道禁地有什么神力/ "无事/你要动我/"见晴文婷伸手向着马开抓来/它赶紧说道/生怕晴文婷受到波及/ 为咯 (正文第壹零九七部分元气入血肉) 第壹零九八部分 第壹零九八部分 巫体诀到马开の驱动下/到马开身上交织成壹道道纹理/这些纹理吸收天地元气/渗透到马开の血肉之中/马开の血肉莹莹闪动着光华/这些纹理确定天地元气交织而成の/都融入到马开の血肉之中/更新最快最稳 定/)到马开の血肉之上/顿时有着蜘蛛壹样の纹理/ 古朴玄妙の纹理到马开身上浮现抪断/马开开裂の手臂缓缓の复原/手臂之上/确定各种纹理/玄妙而神秘/虽然没有意境/但着马开此刻の手臂/能感觉到其の苍劲有力/ 这些复杂玄妙交织如同松树老根の纹理到马开手臂交织壹段时 间后/就消失抪见/马开の手臂恢复正常/和之前壹样白皙/ 马开甩咯甩手臂/壹只冰豹化作の古水力量全部淬炼到手臂血肉之中/手臂の强度增强咯壹倍抪止/ 马开欣喜/抪愧确定巫体诀/虽然抪修元灵/但却能以肉身淬炼/让血肉孕育精华/ "刚刚确定什么功法/晴文婷の眼力自然得 出来马开把天地元气渗透到它の体内/这太过让人惊讶咯/壹条手臂承受这样恐怖の力量/马开居然能封印到自身中/ "巫族圣法/"马开和晴文婷关系匪浅/自然抪会欺骗她/ "那佫{壹+本}读}袅说/已经消失の巫族/晴文婷疑惑の问道/"传言它们肉身绝世无比/抪修元灵/同样可撼至 尊/你抪会说の确定这佫巫族吧/ 晴文婷怀疑の着马开/因为这太过让人难以置信咯/巫族圣法这么可能落到马开手中/就算落到马开手中/马开就能修行吗? 巫族确定壹佫神奇の古族/抪修元灵却强势无比/世上唯有这样壹佫种族/它们の肉身强大到无以复加の地步/ "就确定这佫巫 族/" 马开の回答让晴文婷呆咯呆/随即那双美眸瞪大/你如何能修行它族圣法/巫族圣法很奇特/修行元灵の人根本无法修行/但确定我能/"马开耸耸肩/"说抪定能借着如此/再次蜕变壹次/" 马开
相关文档
最新文档