平面直角坐标系导学案
《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
平面直角坐标系1导学案

课题平面直角坐标系(1)(导学案)
【教学目标】
知识与技能:1、了解平面直角坐标系的概念,知道平面上的点与有序实数对一一对应。
2、能画出平面直角坐标系,写出平面内点的坐标,并能根据点的坐标找点。
过程与方法:3、经历画坐标系,由点找坐标、由坐标找点等过程,在实际情境中感受有序
实数对和直角坐标系的作用。
情感态度与价值观:4、让学生进一步感受“数形结合”的数学思想,感受“类比”和“坐标”的思想,体验将实际问题数学化的过程与方法。
【教学重点】平面直角坐标系及其相关概念。
【教学难点】对点的坐标的理解。
【教学过程】
小组讨论,派代
表上台展示。
⑴对于坐标平面内的任一点,都有唯一的一对有序实数与它
⑵在直角坐标系内,原点的坐标是0.()
四个象限的点的坐标有什么特征?。
平面直角坐标系(第3课时)导学案

2.2 平面直角坐标系( 3)学习目标:1、关于给定图形,会选择适合的平面直角坐标系,写出它的顶点坐标 , 领会能够用坐标刻画一个简单图形;2、会经过成立适合的平面直角坐标系,确立实质问题中物体的地点,形成数形联合意识;3、在运用数学表述和解决问题的过程中,认识数学拥有抽象、谨慎和应用宽泛的特色,领会数学价值,形成谨慎务实的科学态度。
课前准备: A4 纸一张,等边三角形纸板温故而知新1、请在右图所示平面直角坐标系中描出以下各点:A(3,0),B(-2,0),C(0,3),D(0,-4),E(3,2),F(3,-3),G(-2,2)H(4,4),M(-5,-5)2、你能将以上点进行适合的分类吗?说说你的想法。
3、如图,边长为 3 的正方形 ABCD, 请成立适合的平面直角坐标系,并写出各极点的坐标。
B A解:以为原点,分别以、所在直线为 x 轴,y 轴,C D 成立直角坐标系,此时各极点的坐标分别是(提示:平面直角坐标系离不开原点、X 轴、 Y 轴,所以在题目中要说明)讲堂研究:活动 1:聚焦目标一★小试牛刀我能行:1、你还能够如何成立平面直角坐标系?看看哪个小组的方法多?A A AB B BC D C D C D2、对照不一样的成立平面直角坐标系的方法,你更喜爱哪一种 ?说说你的见解 .★八仙过海我会做4.如图,长方形形ABCD 中,AB 是 4,BC 是 6,成立适合的平面直角坐标系,并直接写出各个极点的坐标。
ABC D★贯通融会我会讲5.(1) 关于边长为 4 的正△ ABC ,成立适合的平面直角坐标系,写出各个极点的坐标 .(提示:平面直角坐标系中点的坐标确实定方法)(2)如图 Rt △ABC 中, AC=BC=2 ,成立适合的平面直角坐标系,并直接写出 A、B、 C 三个点的坐标。
活动 2:聚焦目标二、三★火眼金睛我会用A CB6、我班甲、乙两女同学都参加了学校组织的啦啦操活动,甲同学站在大院里当时跳啦啦操的地点,对你说,假如将我的地点看作原点,那乙同学的地点就是(-3 ,-2),你能找见乙同学当时跳舞的地点吗?甲●7、在一次“寻宝”游戏中,寻宝人已经找到了坐标为(-2,1)和(2,1)的两个标记物 A,B ,而且知道藏宝地址的坐标( 1,-1),除别的不知道其余信息。
平面直角坐标系导学案

平面直角坐标系导学案一、知识点导学:1.数轴:规定了和的直线叫数轴。
数轴上的一个点可以用一个数表示,这个数叫该点在数轴上的坐标。
如图所示,A点在数轴上的坐标是-2,B点在数轴上的坐标是0,C点在数轴上的坐标是1, D点在数轴上的坐标是3。
同一数轴上两点间的距离,等于这两点在数轴上的坐标的差的绝对值。
如:AC=21--=3或AC=1(2)--=3,CD=13-=2或CD=31-=2。
2.平面直角坐标系:平面内有原点且互相的两条构成平面直角坐标系平面直角坐标系也叫坐标系。
水平的数轴叫做轴或轴或 ,取向右为正方向。
铅直的数轴叫做轴或轴或,取竖直向上为正方向。
两条数轴的交点叫 ,一般用字母表示,建立坐标系的平面叫。
x轴和y轴将坐标平面分成四部分,每一部分叫一个象限,如图,按___________方向编号为第一、二、三、四象限。
坐标原点,x轴,y轴不属于任何象限,在平面直角坐标系中,由组成的,顺序是横坐标在前纵坐标在后,中间用“,”分开,如:点(-2,3)的横坐标是-2纵坐标是3,位置不能颠倒,(-2,3)与(3,-2)是指两个不同点的坐标。
x轴将坐标平面分为两部分,x轴上方,点的坐标为正数,x轴下方,点的纵坐标为数。
第______象限及y轴正半轴上,点的纵坐标为_____数,第象限及y轴负半轴上,点的纵坐标为_____数。
若点P(a,b)在x轴上方,则b____0,若P(a,b)在x轴下方,则b____0,y轴将坐标平面分为两部分,y轴侧,点的横坐标为负数,y轴右侧,点的横坐标为数,第______象限和x轴负半轴上,点的标为负数,第______象限和x轴正半轴上,点的_____坐标为正数,若点P(a,b)在y轴左侧,则a____0,若P(a,b)在y轴右侧,则a____0,规定坐标原点的坐标是。
各个象限内,点的坐标的符号规律如表一。
坐标轴上,点的坐标的符号规律如表二。
3.⑴由点的坐标的符号可以确定点的位置,如:横坐标为0的点在轴上,横坐标为0纵坐标小于0的点在y轴上。
平面直角坐标系(一)

平面直角坐标系(1)导学案审核人:时间:学习目标:1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2.认识并能画出平面直角坐标系;3.能在给定的直角坐标系中,由点的位置写出它的坐标。
教学重点:1.理解平面直角坐标系的有关知识;2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究;2.坐标轴上点的坐标有什么特点的总结。
学习过程:一自主学习自主学习活动一认识并平面直角坐标系;自学指导:1 自学内容:P152---153内容2自学时间:10分钟3 自学要求:通过自学完成以下问题(1)___________________________________________________________叫平面直角坐标系;____________________________叫X轴或横轴,_______________________叫Y轴或纵轴,____________________________称为平面直角坐标系的原点。
(2)平面直角坐标系象限的划分(填写在图18-4)(3)对于平面内任意一点p,过点p分别向X轴、Y轴作垂线,垂足在X轴、Y轴上对应的数a,b分别叫做点p的______ 、________,有序数对 __________叫做点p的坐标。
自主学习活动二自学指导:1 自学内容:P153例12自学时间:10分钟3 自学要求:通过自学完成以下问题(1)写出图中的多边形ABCDEF各顶点的坐标。
(2)完成想一想1.点B 与点C 的纵坐标相同,线段BC 的位置有什么特点?2.线段CE 位置有什么特点?3.坐标轴上点的坐标有什么特点?自学检测:1.在下图中,确定A ,B ,C ,D ,E ,F ,G 的坐标。
(第1题) (第2题)2.如右图,求出A ,B ,C ,D ,E ,F 的坐标。
《平面直角坐标系中的基本公式》 导学案

《平面直角坐标系中的基本公式》导学案一、学习目标1、理解并掌握平面直角坐标系中两点间的距离公式。
2、能够运用两点间的距离公式解决相关问题。
3、理解并掌握平面直角坐标系中中点坐标公式。
4、会运用中点坐标公式解决相关问题。
二、学习重难点1、重点(1)两点间的距离公式及其应用。
(2)中点坐标公式及其应用。
2、难点(1)两点间距离公式的推导。
(2)距离公式和中点坐标公式的综合应用。
三、知识链接1、平面直角坐标系的概念在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
水平的数轴叫做 x 轴或横轴,取向右为正方向;竖直的数轴叫做 y 轴或纵轴,取向上为正方向;两轴的交点 O 为坐标原点。
2、点的坐标对于平面内任意一点 P,过点 P 分别向 x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数 a、b 分别叫做点 P 的横坐标、纵坐标,有序数对(a, b) 叫做点 P 的坐标。
四、学习过程(一)两点间的距离公式1、思考:在平面直角坐标系中,已知点 A(x₁, y₁),B(x₂, y₂),如何求 A、B 两点之间的距离?2、推导过点 A 向 x 轴作垂线,垂足为 M(x₁, 0);过点 B 向 x 轴作垂线,垂足为 N(x₂, 0)。
则 AM =|y₁|,BN =|y₂|,MN =|x₂ x₁|。
在 Rt△ABN 中,根据勾股定理:AB²= AN²+ BN²AN =|y₂ y₁|所以 AB²=(x₂ x₁)²+(y₂ y₁)²则 A、B 两点间的距离公式为:AB =√(x₂ x₁)²+(y₂ y₁)²3、示例已知点 A(1, 2),B(4, 6),求 AB 的距离。
解:根据两点间的距离公式,可得:AB =√(4 1)²+(6 2)²=√(9 + 16) = 5(二)中点坐标公式1、思考:在平面直角坐标系中,已知点 A(x₁, y₁),B(x₂, y₂),则线段 AB 的中点坐标是什么?2、推导设线段 AB 的中点为 M(x, y)。
第五章平面直角坐标系 导学案

平面直角坐标系导学案上课时间:编写教师:审核人:教学目标:知识与技能:了解平面着急交坐标系的概念并会运用平面直角坐标系.过程与方法:在平面坐标系中由点的位置确定坐标或由坐标确定点的位置情感、态度与价值观:学生感受数形结合的数学思想重点:掌握点与坐标的一一对应关系难点:根据坐标找点或由点求得坐标一、知识梳理、自主学习(一)、学前准备1、①规定了、、的直线叫做数轴。
2、在平面内画两条_____________、_____________的数轴,组成_____________________. 水平的数轴称为_________或_________,习惯上取向_____为正方向;竖直的数轴称为_________或________,习惯上取向______为正方向;两坐标轴的交点为平面直角坐标系的__________.3、坐标平面被两条坐标轴分成________________,分别叫______________________________,坐标轴上的点__________任何象限.二、课堂合作探究知识点一平面直角坐标系和点的坐标1、写出图中点A、B、C、D、E、F、G、H、I的坐标。
2、在平面直角坐标系中,描出下列各点:P(4,3),Q(-2,3),M(1,-4)N(-3,-4)3、讨论:(1)原点O的坐标是什么?(2)x轴和y轴上的点的坐标有什么特点?(3)任一点P(a,b)到x轴、y轴的距离可用它的坐标如何表示?1、指出下列各点所在的象限或坐标轴.A (4,5)B (-2,3)C (-4,-1)D (2,-2)E (0,-4)F ( 3,0)G (0,0) 2、在平面直角坐标系中,满足下列条件的点在哪个象限: (1)点P (x,y )的坐标满足xy>0; (2)点P (x,y )的坐标满足xy<0;3、已知点A 的坐标()b a ,,若0,0><+ab b a ,则点A 在第______象限。
7.1.2平面直角坐标系导学案(最新整理)

七年级数学下册 7.1.2平面直角坐标系导学案第一课时学习目标1、会画平面直角坐标系,了解平面直角坐标系的有关概念;2、了解点与坐标的对应关系,理解横纵坐标的意义。
【学习过程】一、知识储备1、数轴的三要素是:、和;2、指出数轴上A、B、C、D、E各点分别表示什么数:A点表示______,B点表示______,C点表示______,D点表示______,E点表示______.【坐标的概念】数轴上的都可以用一个来表示,这个叫做这个的_______ ;二、问题导学假如有一天你参加了“保钓”行动,你需要考虑(1)你是怎样确定钓鱼岛位置的?(2)“钓鱼岛”在“深圳市102中学”东、南各多少个方格?“台北”在“深圳市102中学”东、南各多少个格?(3)如果以“深圳市102中学”为原点做两条互相垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“台北”的位置吗?“钓鱼岛”的位置呢?_______________________________三、探究新知阅读P126回答下列问题:1、平面直角坐标系:在平面内画两条相互、的数轴,组成;2、相关概念:水平的数轴称为或,取为正方向;竖直的数轴称为或,取为正方向;两条数轴的交点为,一般用大写字母表示。
有了平面直角坐标系,平面内的点就可以用一个来表示,叫做点的坐标。
巩固训练:在下边方格上建立一个坐标系,并谈谈在建立平面直角坐标系时应注意什么.统称为3.【观察思考】在下面的平面直角坐标系中,如何确定点A的位置?由点A向x轴做,垂足在上的坐标是,我们说点A的横坐标是;由点A向y轴做,垂足在上的坐标是,我们说点A的是;则,这样我们就可以利用有序数对来表示点A的位置,且这组有序数对叫做点A的坐标;记作;【练一练】仿照确定点A坐标的方法,写出下列各点的坐标:A ;B ;C ;D ;E ;F ;G ;H ;M ;N ;O ;【归纳】原点O的坐标是;x轴上的点的坐标的特点是;y轴上的点的坐标的特点是;四、课后作业P68“练习”第1题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1.2 平面直角坐标系
学习目标 1、 认识平面直角坐标系, 理解平面内点的横坐标和纵坐标的意义。
2、在给定的直角坐标系中,会根据坐标描出点的位置,有点的位置写出它 的坐标。
并知道各象限内点的坐标特征。
●学习重难点 重点:平面直角坐标系和点的坐标 难点:正确画坐标和找对应点 课中导学 ●阅读感知 1、什么叫坐标?(在书上做相应记号) 2、什么叫平面直角坐标系?坐标轴上的点的坐标有何特点? 3、坐标轴分平面为四个部分,分别叫什么? 4、 各个象限内的点的坐标有何特点? ●合作探究 探究一:探索数轴上的点——规定了 、 、 的直线叫数轴。
如图 2 所示的数轴上的点
说一说: A 在数轴上的坐标是______,_________的坐标是-3 写一写:点 A 在数轴的________半轴,点 B 在数轴的________半轴. 试一试:如果要确定平面内的一个点的位置,你将采用什么方法? 探究二:建立平面直角坐标系确定平面内的点 填一填:在平面内画两条互相 _,原点重合的数轴,组成__ ___. 水平的数轴称为__ ____, 习惯上取______为正方向; 竖直的数轴称为__ ____,取______为正方向;两坐标轴的交点为平面直角坐标系的___ _ __. 探一探:图 2 中,3 叫做点 M 的_ ____,2 叫做点 M 的___ __,合起 来叫做点___ ___,M 在平面的坐标,记做 M(______)通常是横坐标 写在纵坐标的______,中间用,号隔开。
图2 图 3
做一做: 1.如图 3,A、B 表示的有序数对依次为( (A)(2,3);(-2,3) (C)(2,-3);(-2,-3) -3) 2.横纵坐标都是负数的点是 ___。
). (B)(-2,-3);(2,3) (D)(2,3);(-2,
3.在如图所示的平面直角坐标系中描出 F(2,-3),G(-3,-2),H(4,1) 三点, 想一想:所有 x 轴上的点的纵坐标都为__ ____。
y 轴上的点的横坐标都 为___ __ _。
原点的坐标为__ ____。
(x 轴和 y 轴上的点的坐标的 特点) 探究三:探索建立平面直角坐标系内的四个象限 填一填:平面直角坐标系中的 x 轴与 y 轴将平面平均划分成四个区域,从两条 数轴的正方向的夹角开始,将这四部分逆时依次叫做第___________象限,第 ___________象限,第___________象限,第___________象限。
2、在平面直角坐标系中描出下列各点,并指出它们所在的坐标轴或象限, A(3,0) B(0,-2) C(-3,2) D(4,-1) E(-2,-3)
y
F(1,3)
x
归一归:平面直角坐标系中各个象限橫纵坐标的符号特征如下表: 点的位置 在第一象限 在第二象限 在第三象限 在第四象限 在 x 轴上 在 y 轴上 在正半轴上 在负半轴上 在正半轴上 在负半轴上 横坐标符号 纵坐标符号
在原点上 练一练:在平面直角坐标系中,点(2,-4)所在的象限是___________。
温馨提示:x 轴上的任何一点或 y 轴上的任何一点不属于任何一个象限 ●练习巩固 1.在平面直角坐标系中,点(-1, (A)第一象限 ●反思感悟 平面直角坐标系将坐标平面分为___________个象限,橫坐标与纵坐标都是正 数的点在第_____象限;橫坐标与纵坐标都是负数的点在第_____象限;橫坐标 是正数纵坐标是负数的点在第______象限;橫坐标是负数纵坐标是正数的点在 第________象限。
●课后巩固 1. 点(3,-2)在第_____象限;点(-1.5,-1)在第_______象限;点(0,3) 在____轴上; 2..已知点 A 在第二象限,试写出一个符合条件的点 A 的坐标为________.
y
+1)一定在(
) (D)第四象限
(B)第二象限
(C)第三象限
3.在平面直角坐标系中,如果 mn>0, 那么点(m,|n| )一定在( )。
(A)第一象限或第二象限 (B)第一象限或第三象限 (C)第二象限或第四象限 (D)第三象限或第四象限
4.写出图中点 A、B、C、D、E、F 的坐标。
。