旅行商问题数学建模

合集下载

数学建模遗传算法例题

数学建模遗传算法例题

数学建模遗传算法例题数学建模中,遗传算法是一种基于进化思想的优化算法,可以应用于复杂的优化问题中。

本文将介绍一些遗传算法的例题,帮助读者更好地理解遗传算法的应用。

例题一:背包问题有一个体积为V的背包和n个物品,第i个物品的体积为vi,价值为wi。

求这个背包最多能装多少价值的物品。

遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群。

2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。

3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。

4. 交叉:对被选中的个体进行交叉操作,生成新的个体。

5. 变异:对新的个体进行变异操作,引入新的基因。

6. 重复以上步骤,直到符合终止条件。

在背包问题中,适应度函数可以定义为:背包中物品的总价值。

交叉操作可以选择单点交叉或多点交叉,变异操作可以选择随机变异或非随机变异。

例题二:旅行商问题有n个城市,旅行商需要依次经过这些城市,每个城市之间的距离已知。

求旅行商经过所有城市的最短路径。

遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群,每个个体代表一种旅行路线。

2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。

3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。

4. 交叉:对被选中的个体进行交叉操作,生成新的个体。

5. 变异:对新的个体进行变异操作,引入新的基因。

6. 重复以上步骤,直到符合终止条件。

在旅行商问题中,适应度函数可以定义为:旅行商经过所有城市的总距离。

交叉操作可以选择顺序交叉或部分映射交叉,变异操作可以选择交换或反转基因序列。

总结:遗传算法是一种强大的优化算法,可以应用于多种复杂的优化问题中。

在数学建模中,遗传算法的应用也越来越广泛。

本文介绍了背包问题和旅行商问题的遗传算法解决步骤,希望对读者有所帮助。

旅行商问题

旅行商问题
2,哈密尔顿道路(回路 ):在一个无向图 G (V , E )中, 经过每个顶点一次且仅 一次的道路(回路), 简称H回路.
3,具有哈密尔顿回路的图称为哈密尔顿图,简称H图.
4,总长最小的哈密尔顿回路称为最优哈密尔顿回路; 总长最小的旅行商回路称为最优旅行商回路.
定理1:任意一个完全图 K n 必是H图.
算法:分支定界法
当旅行商问题数学模型 去掉一个条件(1.7)后,就是 一个指派问题,根据指 派问题的算法,得到旅 行商问题 的分支定界法.
1,定界 (1)任意选取一条 H 回路作为上界的初始值 ; ( 2 )每一行每一列减去本行 本列的最小值,得到距 离 矩阵 W = ( w ij )的简化形式,简化总量 构成原问题的一 下界,当简化矩阵中的 零元素构成一条哈密尔 顿回路 时,得到原问题的最优 解. (3)若不然,分支.
大多数情况下,最优旅行商问题可归结为最优哈 密尔顿回路问题,但迄今还无有效算法
旅行商问题(TSP,traveling salesman problem) 管梅谷教授1960年首先提出,国际上称之 为中国邮递员问题. 问题描述:一商人去n个城市销货,所有 城市走一遍再回到起点,使所走路程最 短.
数学模型: min ∑ dij xij

第六节 旅行商问题
问题:商人从某驻地出发,经所要去的城市至 少一次,然后返回原地,应如何安排其旅行路 线,使总的旅行路线最短? 应用:流水线作业生产线顺序安排问题,机组 人员轮班安排问题,教师任课班级负荷分配问 题等等. 问题实质:在赋权图中寻找一通过每个顶点至 少一次的回路问题
一,定义
1,旅行商回路:在一个无 向图G (V , E )中,经过每个 顶点至少一次的回路.
பைடு நூலகம்

旅行商问题(TSP)

旅行商问题(TSP)

iS jS
除起点和终点外,各边不构成圈

xij

0, 1


(7 1) (7 2) (7 3)
5
0 8 5 9 12 14 12 16 17 22
8
0
9 15 17
8
11
18
14
22

5 9 0 7 9 11 7 12 12 17
9 15 7 0
lingo解决旅行商问题 model: sets: city/1..6/:u; link(city,city):dist,x; endsets data: dist=99999,702,454,842,2396,1196,
702,99999,324,1093,2136,764, 454,324,99999,1137,2180,798, 842,1093,1137,99999,1616,1857, 2396,2136,2180,1616,99999,2900, 1196,764,798,1857,2900,99999; enddata
C=v1,v2,…,vi,vj,…,vj-1,vi+1,vj+1,…,vm,v1 (3)C0C,重复步骤(2),直到条件不满足为止,最后得 到的C即为所求。
例对下图的K6,用二边逐次修正法求较优H圈.
较优H圈: 其权为W(C3)=192
分析: 这个解的近似程度可用最优H圈的权的下界与
其比较而得出.即利用最小生成树可得最优H圈的一个下界.
设C是G的一个最优H圈,则对G的任一顶点v, C-v是
G-v的生成树.如果T是G-v的最小生成树,且e1是e2与v关联
的边中权最小的两条边,则w(T)+w(e1)+w(e2)将是w(C)

2022年数学建模算法与应用-图与网络模型着色问题和旅行商问题

2022年数学建模算法与应用-图与网络模型着色问题和旅行商问题

{'赵','刘','孙'};{'张','王','孙'};{'李','刘','王'}};
n = length(s); w = zeros(n);
for i = 1:n-1
for j =i+1:n
if ~isempty(intersect(s{i},s{j}))
w(i,j)=1;
end
end
end
[ni,nj] = find(w); %边的顶点编号
航空基础学院数学第教8研页室
数学建模算法与应用
第4章 图与网络模型及方法
v1
v5
v6
v3
v2
v4
图 4.14 部门之间关系图
航空基础学院数学第教9研页室
数学建模算法与应用
第4章 图与网络模型及方法
构造图G (V , E),其中V {v1,v2 , ,v6 },这里 v1,v2 , ,v6分别表示部门 1,部门 2,…,部门 6; E 为边集,两个顶点之间有一条边当且仅当它们代表的 委员会成员中有共同的人,如图 4.14 所示,该图可以 用 4 种颜色着色,可以看出至少要用 4 种颜色,v1,v2 ,v3 构成一个三角形,必须用 3 种颜色,v6和这 3 个顶点 都相邻,必须再用一种颜色。
w = w + w'; %计算完整的邻接矩阵
deg = sum(w); K = max(deg) %顶点的最大度
prob = optimproblem;
数学建模算法与应用
第4章 图与网络模型及方法
已知图G (V , E),对图G 的所有顶点进行着色时, 要求相邻的两顶点的颜色不一样,问至少需要几种颜 色?这就是所谓的顶点着色问题。

建模旅行售货员问题

建模旅行售货员问题

旅行售货员(TSP),Hamilton回路的lingo程序方法一model:sets:city / 1..6/: u;! 定义6个城市;link( city, city):dist, ! 距离矩阵;x; !决策变量;endsetsn = @size( city);data: !距离矩阵;dist =0 2 100 4 100 22 0 8 100 4 100100 8 0 5 8 74 1005 06 100100 4 8 6 0 42 100 7 100 4 0 ;!这里可改为你要解决的问题的数据;enddata!目标函数;min = @sum( link: dist * x);@FOR( city( K):!进入城市K;@sum( city( I)| I #ne# K: x( I, K)) = 1;!离开城市K;@sum( city( J)| J #ne# K: x( K, J)) = 1;);!保证不出现子圈;@for(city(I)|I #gt# 1:@for( city( J)| J#gt#1 #and# I #ne# J:u(I)-u(J)+n*x(I,J)<=n-1););!限制u的范围以加速模型的求解,保证所加限制并不排除掉TSP问题的最优解;@for(city(I) : u(I)<=n-1 );@for( link: @bin( x));!定义X为0\1变量;end部分结果有:Global optimal solution found.Objective value: 26.00000Objective bound: 26.00000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 179V ariable V alue Reduced CostN 6.000000 0.000000U( 1) 5.000000 0.000000U( 2) 0.000000 0.000000U( 3) 3.000000 0.000000U( 4) 5.000000 0.000000U( 5) 1.000000 0.000000U( 6) 2.000000 0.000000注意,这里有两个u(1)=U(4)=5说明:(1)红色部分语句1)保证不会有某一边来回的情况假如有某(i,j)来回,则x(i,j)=x(j,i)=1,对这两个x(i,j)=x(j,i)=1分别用一次上述for语句,得到:u(i)-u(j)+n*x(i,j)<=n-1u(j)-u(i)+n*x(j,i)<=n-1将这两个不等式两边相加,则得到矛盾2n<=2(n-1)2)保证不出现子圈假如有某个子圈i->j->k->i产生,那么一定同时会有一个不包含起点1的子圈产生,所以不妨设子圈i->j->k->i不包含起点1,则有x(i,j)=x(j,k)=x(k,i)=1,但x(j,i)=x(k,j)=x(i,k)=0,对上述3个x(i,j)=x(j,k)=x(k,i)=1分别用三次上面的for语句得到:u(i)-u(j)+n*x(i,j)<=n-1u(j)-u(k)+n*x(j,k)<=n-1u(k)-u(i)+n*x(k,i)<=n-1将三个不等式相加,得到矛盾3n<=3(n-1),所以可不能产生子圈。

数学建模经典问题——旅行商问题

数学建模经典问题——旅行商问题
的另一个结点的编号(其中一个结点编号为i); node_ base(i)= dmin_j(i, 1)+ dmin_j(i, 2):表示与i点关联边中长
度最短的两条边之和; C*(T):最优回路长度;
25
于是,dmin(i, 1)代表与第i个结点关联的所有边 中最长边的长度,dmin_j(i, 1) 代表与第i个结点关联 的所有边中次长边的另一个结点编号(其中一个结点 编号为i),第i结点的dmin(i, k)和dmin_j(i, k)可由距 离矩阵w轻易求得。
20
当然,用该方法有时会找不到TSP的最优解, 因为很可能在进行了几轮迭代后,却找不到新的不 等式。Padborg与Hong曾计算了74个TSP,其中54 个得到了最优解,其余的虽未得到最优解,却得到 了很好的下界,如果与近似方法配合,可以估计近 似解的精确程度。如,他们解过一个有313个城市的 TSP,获得一个下界41236.46,而用近似方法能得 到一条长为41349的路线,于是可估计出所得近似解 与最优解的误差不超过0.26%。
14
早在1954年,Dantzig等人就曾提出过一种方 法(非多项式算法),并且求出了一个42城市的 TSP最优解。到了1960年代,不少人用分支定界法 解决了许多有几十个城市的TSP。还有人提出了一 些近似方法,也解决了许多有几十个城市甚至上百 个城市的TSP(有时找到的仅是近似解)。更值得 注意的是,从1970年代中期开始,Grotschel与 Padberg等人深入研究了TS多面体的最大面 (facet),并从所得结果出发获得了一种解TSP的 新算法,可以解决一些有100多个城市的TSP,且都 在不长的时间内找到了最优解。
一、数学模型 1. 标准TSP 旅行商问题(简称TSP),也称货郎担问题或 旅行推销员问题,是运筹学中一个著名的问题,其 一般提法为:有一个旅行商从城市1出发,需要到城 市2、3、…、n去推销货物,最后返回城市1,若任 意两个城市间的距离已知,则该旅行商应如何选择 其最佳行走路线

TSP问题分析

TSP问题分析

太 原
南 昌
呼 和 浩 特
最短路程路线
为了得到任意两城市之间的路程,需 要34个城市的地理坐标,经纬度;
得到了,经纬度,知道了地球半径, 通过球面距离公式:
Dis(i,j)=2Rarcsin{sin[ Lat(i) Lat( j)]2 2
+sin[
Lon(i)
Lon(
j)
]2
1
cos[Lat(j)cos(Lat(j))]}2
5.End Do 6. 输出当前最优解,计算结束
1)产生一个初始路径X=randperm(34)
23 14 ........ 19 18 34 26 1;
2)计算初始路径总长D(X);
3)设置始末温度T0,Te ,降温率Decay; 4)对初始路径经行局部扰动,得到新路径Xn ,
计算D(Xn); 5)T=T0 * Decay Te ,如果T<= Te ,继续循环,
2
算出任意两个城市之间的球面距离
最经济路线
价格来源: ,中国票价网 价格组合: 全部乘火车、全部乘飞机、火车飞机两种混 合
模型的假设
假设两个城市间的旅行距离就为两个目标点 的球面距离; 假设选最短路线时,在前一阶段决策路线时 不受下一阶 段距离的影响,两者相互独立; 假设交通工具的票价在周先生旅行的近三个 月间保持不变。
LINGO求解:
决策变量是 xij 0 或1(0表示不连接,1表示连接)
目标函数与约束条件:
min s
D1(i , j ) xij
i , jV
xij 1
jV
s.t
xij 1iVຫໍສະໝຸດ (i V ), (i V ),
xi
,

旅行商问题数学建模

旅行商问题数学建模

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载旅行商问题数学建模地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容黄石理工学院数学建模大型作业2011—2012 学年第1学期目录一.摘要二.旅行问题问题描述符号说明模型设计建模求解模型分析三.建模过程及心得体会四.参考文件一.摘要本文是一个围绕旅行商问题和背包问题这两个经典问题的论文。

问题一,是一个依赖与每个城市去一次且仅去一次的路线确定问题,问题二类似于问题一。

问题三是一个依赖于可背重量限制的背包问题。

关键词:HAMILTON回路 LINGO 最优旅行路线 0-1模型二.旅行问题问题描述某人要在假期内从城市A出发,乘火车或飞机到城市B,C,D,E,F旅游购物。

他计划走遍这些城市各一次且仅一次,最后返回城市A。

已知城市间的路费数据见附表1,请你设计一条旅行路线使得他的总路费最少。

如果临行他因故只能去4个城市,该怎样修订旅行路线?在城市间旅游时他计划购买照相机,衣服,书籍,摄像机,渔具,白酒,食品,而受航空行李重量的限制以及个人体力所限,所买物品的总重量不能超过15kg,各种物品的价格见附表2.请你为他决策买哪些物品,使所买物品价值最大。

附表1:附表2模型设计首先给出一个定义:设v1,v2,......,vn是图G中的n个顶点,若有一条从某一顶点v1出发,经过各节点一次且仅一次,最后返回出发点v1的回路,则称此回路为HAMILTON回路。

问题1.分析:这个优化问题的目标是使旅行的总费用最少,要做的决策是如何设定旅行路线,决策受的约束条件:每个城市都必须去,但仅能去一次。

按题目所给,将决定变量,目标函数和约束条件用数学符号及式子表示出来,就可得一下模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄石理工学院数学建模大型作业2011—2012 学年第1学期目录一.摘要二.旅行问题1.问题描述2.符号说明3.模型设计4.建模求解5.模型分析6.三.建模过程及心得体会四.参考文件一.摘要本文是一个围绕旅行商问题和背包问题这两个经典问题的论文。

问题一,是一个依赖与每个城市去一次且仅去一次的路线确定问题,问题二类似于问题一。

问题三是一个依赖于可背重量限制的背包问题。

关键词:HAMILTON回路LINGO 最优旅行路线0-1模型二.旅行问题问题描述某人要在假期内从城市A出发,乘火车或飞机到城市B,C,D,E,F 旅游购物。

他计划走遍这些城市各一次且仅一次,最后返回城市A。

已知城市间的路费数据见附表1,请你设计一条旅行路线使得他的总路费最少。

如果临行他因故只能去4个城市,该怎样修订旅行路线?在城市间旅游时他计划购买照相机,衣服,书籍,摄像机,渔具,白酒,食品,而受航空行李重量的限制以及个人体力所限,所买物品的总重量不能超过15kg,各种物品的价格见附表2.请你为他决策买哪些物品,使所买物品价值最大。

模型设计首先给出一个定义:设v1,v2,......,vn 是图G 中的n 个顶点,若有一条从某一顶点v1出发,经过各节点一次且仅一次,最后返回出发点v1的回路,则称此回路为HAMILTON 回路。

问题1.分析:这个优化问题的目标是使旅行的总费用最少,要做的决策是如何设定旅行路线,决策受的约束条件:每个城市都必须去,但仅能去一次。

按题目所给,将决定变量,目标函数和约束条件用数学符号及式子表示出来,就可得一下模型。

模型建立:对于6个城市的旅行问题设A,B,C,D,E,F 六个城市分别对应v1,v2,v3,v4,v5,v6。

假设ij d 表示从城市i 到城市j 的费用。

定义0-1整数型变量ij x =1表示从城市i 旅行到城市j ,否则ij x =0。

则旅行问题的数学模型可表示为一个整数规划问题。

min z=661ij iji jdx =∑∑ (i ≠j)s.t.61iji x=∑=1 (i ≠j ;j=1,2, (6)61ijj x=∑=1 (i ≠j ;i=1,2, (6)1i j ij u u nx n -+≤- (i ≠j;i=2,3,……,6;j=2,3,……6)其中辅助变量i u (i=2,3,……,6)可以是连续变化的,虽然这些变量在最优解中取普通的整数值(从而在约束条件中,可以限定这些变量为整数)。

事实上,在最优解中,i u =访问城市的顺序数。

模型求解运用LINGO ,输入程序:MODEL :!Traveling Sales Problem for the cities of six city; SETS :CITY / 1..6/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 250 330 210 150120 0 98 350 225 300250 98 0 520 430 280330 350 520 0 270 185210 225 430 270 0 420150 300 280 185 420 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K)););@FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用为1163路线:A-B-C-F-D-E-A问题2.临时因故只能去4个城市,那么应该怎样安排旅行路线。

分析:在B,C,D,E,F五个城市中选4个城市,显然有5种可能,按照问题一中的模型,将费用矩阵稍作修改,运用LINGO分别解除5种可能的费用,进行比较,即得结果。

(1)选取B,D,E,F,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city;SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 330 210 150120 0 350 225 300330 350 0 270 185210 225 270 0 420150 300 185 420 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K));); @FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:950路线:A-B-E-D-F-A(2)选取B,C,E,F,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city; SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 250 210 150120 0 98 225 300250 98 0 430 280210 225 430 0 420150 300 280 420 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K));); @FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:963路线:A-E-B-C-F-A(3)选取B,C,D,F,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city; SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 250 330 150120 0 98 350 300250 98 0 520 280330 350 520 0 185150 300 280 185 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K));); @FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:1013路线:A-B-C-F-D-A(4)选取路线:B,C,D,E,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city; SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 250 330 210120 0 98 350 225250 98 0 520 430330 350 520 0 270210 225 430 270 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K));); @FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:1173路线:A-C-B-E-D-A(5)选取C,D,E,F,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city;SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 250 330 210 150250 0 520 430 280330 520 0 270 185210 430 270 0 420150 280 185 420 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K)););@FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:1195路线:A-C-F-D-E-A因此,总结以上(1),(2),(3),(4),(5)五种情况可得:应该选用路线:A-B-E-D-F-A。

相关文档
最新文档