旅行商问题数学建模
数学建模遗传算法例题

数学建模遗传算法例题数学建模中,遗传算法是一种基于进化思想的优化算法,可以应用于复杂的优化问题中。
本文将介绍一些遗传算法的例题,帮助读者更好地理解遗传算法的应用。
例题一:背包问题有一个体积为V的背包和n个物品,第i个物品的体积为vi,价值为wi。
求这个背包最多能装多少价值的物品。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在背包问题中,适应度函数可以定义为:背包中物品的总价值。
交叉操作可以选择单点交叉或多点交叉,变异操作可以选择随机变异或非随机变异。
例题二:旅行商问题有n个城市,旅行商需要依次经过这些城市,每个城市之间的距离已知。
求旅行商经过所有城市的最短路径。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群,每个个体代表一种旅行路线。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在旅行商问题中,适应度函数可以定义为:旅行商经过所有城市的总距离。
交叉操作可以选择顺序交叉或部分映射交叉,变异操作可以选择交换或反转基因序列。
总结:遗传算法是一种强大的优化算法,可以应用于多种复杂的优化问题中。
在数学建模中,遗传算法的应用也越来越广泛。
本文介绍了背包问题和旅行商问题的遗传算法解决步骤,希望对读者有所帮助。
旅行商问题

3,具有哈密尔顿回路的图称为哈密尔顿图,简称H图.
4,总长最小的哈密尔顿回路称为最优哈密尔顿回路; 总长最小的旅行商回路称为最优旅行商回路.
定理1:任意一个完全图 K n 必是H图.
算法:分支定界法
当旅行商问题数学模型 去掉一个条件(1.7)后,就是 一个指派问题,根据指 派问题的算法,得到旅 行商问题 的分支定界法.
1,定界 (1)任意选取一条 H 回路作为上界的初始值 ; ( 2 )每一行每一列减去本行 本列的最小值,得到距 离 矩阵 W = ( w ij )的简化形式,简化总量 构成原问题的一 下界,当简化矩阵中的 零元素构成一条哈密尔 顿回路 时,得到原问题的最优 解. (3)若不然,分支.
大多数情况下,最优旅行商问题可归结为最优哈 密尔顿回路问题,但迄今还无有效算法
旅行商问题(TSP,traveling salesman problem) 管梅谷教授1960年首先提出,国际上称之 为中国邮递员问题. 问题描述:一商人去n个城市销货,所有 城市走一遍再回到起点,使所走路程最 短.
数学模型: min ∑ dij xij
�
第六节 旅行商问题
问题:商人从某驻地出发,经所要去的城市至 少一次,然后返回原地,应如何安排其旅行路 线,使总的旅行路线最短? 应用:流水线作业生产线顺序安排问题,机组 人员轮班安排问题,教师任课班级负荷分配问 题等等. 问题实质:在赋权图中寻找一通过每个顶点至 少一次的回路问题
一,定义
1,旅行商回路:在一个无 向图G (V , E )中,经过每个 顶点至少一次的回路.
பைடு நூலகம்
旅行商问题(TSP)

iS jS
除起点和终点外,各边不构成圈
xij
0, 1
(7 1) (7 2) (7 3)
5
0 8 5 9 12 14 12 16 17 22
8
0
9 15 17
8
11
18
14
22
5 9 0 7 9 11 7 12 12 17
9 15 7 0
lingo解决旅行商问题 model: sets: city/1..6/:u; link(city,city):dist,x; endsets data: dist=99999,702,454,842,2396,1196,
702,99999,324,1093,2136,764, 454,324,99999,1137,2180,798, 842,1093,1137,99999,1616,1857, 2396,2136,2180,1616,99999,2900, 1196,764,798,1857,2900,99999; enddata
C=v1,v2,…,vi,vj,…,vj-1,vi+1,vj+1,…,vm,v1 (3)C0C,重复步骤(2),直到条件不满足为止,最后得 到的C即为所求。
例对下图的K6,用二边逐次修正法求较优H圈.
较优H圈: 其权为W(C3)=192
分析: 这个解的近似程度可用最优H圈的权的下界与
其比较而得出.即利用最小生成树可得最优H圈的一个下界.
设C是G的一个最优H圈,则对G的任一顶点v, C-v是
G-v的生成树.如果T是G-v的最小生成树,且e1是e2与v关联
的边中权最小的两条边,则w(T)+w(e1)+w(e2)将是w(C)
关于旅行商问题的数学模型

关于旅行商问题的数学模型旅行商问题(TravelingSalesmanProblem,TSP)是著名的组合优化问题,它的目标是找到一条路径,使得一个旅行商可以经过所有给定的城市,路径总长度最短。
这个问题在实际生活中有着广泛的应用,例如物流配送、电路板布线、DNA序列比对等领域。
本文将介绍旅行商问题的数学模型和解法。
1. 问题描述假设有n个城市,它们的位置分别为(xi,yi),i=1,2,...,n。
旅行商要从一个城市出发,经过所有城市恰好一次,最后回到出发城市。
城市之间的距离可以用欧几里得距离表示:d(i,j) = sqrt((xi-xj)^2 + (yi-yj)^2)旅行商问题的目标是找到一条路径,使得路径总长度最短。
2. 数学模型2.1 定义变量我们定义变量xij表示从城市i到城市j的路径是否被选择,如果被选择则xij=1,否则xij=0。
例如,x12表示从城市1到城市2的路径是否被选择。
2.2 目标函数旅行商问题的目标是找到一条路径,使得路径总长度最短。
因此,我们可以定义目标函数为:minimize ∑i∑j d(i,j)xij其中,i,j表示城市的编号,d(i,j)表示城市i和城市j之间的距离,xij表示从城市i到城市j的路径是否被选择。
2.3 约束条件旅行商需要经过所有城市恰好一次,因此我们需要添加以下约束条件:1. 每个城市只能被经过一次:∑j xij = 1, i=1,2,...,n2. 每个城市离开后只能到达一个城市:∑i xij = 1, j=1,2,...,n3. 不能出现子回路:∑i∈S ∑j∈S xij ≤ |S|-1, S{1,2,...,n}, |S|≥2其中,第一个约束条件表示每个城市只能被经过一次,第二个约束条件表示每个城市离开后只能到达一个城市,第三个约束条件表示不能出现子回路。
3. 解法旅行商问题是一个NP难问题,没有多项式时间算法可以求解。
因此,我们需要使用一些启发式算法来求解这个问题。
北交大LINGO考试2 旅行商问题,最大流问题等

《物流软件》实验报告实验编号:实验2学号:序号:姓名:班级:2015年10月一、旅行商问题(1)数学模型设di是两点i与j之间的距离,Xij=0或1(1表示连接,0表示不连接)则有Min∑∈VjXij dij*s.t. ∑∈VjXij=1 ,(每个点只有一条边出去),i∈V∑∈VjXji=1,(每个点只有一条边进入),i∈V(除起点与重点外,个边不构成圈)(2)L INGO程序MODEL:SETS:CENTERS/1..8/:LEVEL;LINK(CENTERS,CENTERS):DISTANCE,X;ENDSETSDATA:DISTANCE = 0 3 2 3 4 3 5 63 0 2 3 2 3 1 42 2 0 1 43 2 53 3 1 0 1 14 3 44 2 4 1 0 2 2 33 3 3 14 2 0 8 45 1 2 3 2 8 0 36 4 5 4 3 4 3 0;ENDDATAN=@SIZE(CENTERS);MIN=@SUM(LINK(I,J)|i #ne# j :distance(i,j)*x(i,j));@for(centers(i):@sum(centers(j)|j #ne# i:x(j,i))=1;@SUM(CENTERS(J)|J #NE# I:X(I,J)) = 1;@FOR(CENTERS(j)|J #GT# 1 #AND# J #NE# I :LEVEL(J)>=LEVEL(I)+X(I,J)-(N-2)*(1-X(i,J))+(N-3)*X(J,I););); @FOR(LINK:@BIN(X));@FOR(CENTERS(I)|I #GT# 1:LEVEL(I)<=N-1-(N-2)*X(1,I);LEVEL(I)>=1+(N-2)*X(I,1););ENDCENTERS/1..8/是基本集合名字,元素为1到8。
LEVEL 为其元素。
图算法--旅行商问题

图算法--旅⾏商问题旅⾏商问题的描述试想⼀下,⼀个业务员因⼯作需要必须访问多个城市。
他的⽬标是每个城市只访问⼀次,并且尽可能地缩短旅⾏的距离,最终返回到他开始旅⾏的地点,这就是旅⾏商问题的主要思想。
在⼀幅图中,访问每个顶点⼀次,并最终返回起始顶点,这个访问的轨迹称为哈密顿圈。
要解决旅⾏商问题,需要⽤图G=(V,E)作为模型,寻找图中最短的哈密顿圈。
G是⼀个完整的、⽆⽅向的带权图,其中V代表将要访问的顶点的集合,E为连接这些顶点的边的集合。
E中每条边的权值由顶点之间的距离决定。
由于G中⼀个完整的、⽆⽅向的图,因此E包含V(V-1)/2条边。
事实上,旅⾏商问题是⼀种特殊的⾮多项式时间问题,称为NP完全问题。
NP完全问题是指那些多项式时间算法未知,倘没有证据证明没有解决的可能性的问题。
考虑到这种思想,通常⽤⼀种近似算法来解决旅⾏商问题。
最近邻点法的应⽤⼀种近似的计算旅⾏商路线的⽅法就是使⽤最近邻点法。
其运算过程如下:从⼀条仅包含起始顶点的路线开始,将此顶点涂⿊。
其他顶点为⽩⾊,在将其他顶点加⼊此路线中后,再将相应顶点涂⿊。
接着,对于每个不在路线中的顶点v,要为最后加⼊路线的顶点u与v之间的边计算权值。
在旅⾏商问题中,u与v之间边的权值就是u到v 之间的距离。
这个距离可以⽤每个顶点的坐标计算得到。
两个点(x1,y1)与(x2,y2)之间距离的计算公式如下:r = √(x2 - x1)2 + (y2 - y1)2 (注意是求和的平⽅根)利⽤这个公式,选择最接近u的顶点,将其涂⿊,同时将其加⼊路线中。
接着重复这个过程,直到所有的顶点都涂成⿊⾊。
此时再将起始顶点加⼊路线中,从⽽形成⼀个完整的回路。
下图展⽰了使⽤最近邻点法来解决旅⾏商问题的⽅法。
通常,在为旅⾏商问题构造⼀个图时,每个顶点之间相连的边不会显⽰表⽰出来,因为这种表⽰会让图不清晰了,也没有必要。
在图中,每个顶点旁边都显⽰其坐标值,虚线表⽰在此阶段需要⽐较距离的边。
2022年数学建模算法与应用-图与网络模型着色问题和旅行商问题

{'赵','刘','孙'};{'张','王','孙'};{'李','刘','王'}};
n = length(s); w = zeros(n);
for i = 1:n-1
for j =i+1:n
if ~isempty(intersect(s{i},s{j}))
w(i,j)=1;
end
end
end
[ni,nj] = find(w); %边的顶点编号
航空基础学院数学第教8研页室
数学建模算法与应用
第4章 图与网络模型及方法
v1
v5
v6
v3
v2
v4
图 4.14 部门之间关系图
航空基础学院数学第教9研页室
数学建模算法与应用
第4章 图与网络模型及方法
构造图G (V , E),其中V {v1,v2 , ,v6 },这里 v1,v2 , ,v6分别表示部门 1,部门 2,…,部门 6; E 为边集,两个顶点之间有一条边当且仅当它们代表的 委员会成员中有共同的人,如图 4.14 所示,该图可以 用 4 种颜色着色,可以看出至少要用 4 种颜色,v1,v2 ,v3 构成一个三角形,必须用 3 种颜色,v6和这 3 个顶点 都相邻,必须再用一种颜色。
w = w + w'; %计算完整的邻接矩阵
deg = sum(w); K = max(deg) %顶点的最大度
prob = optimproblem;
数学建模算法与应用
第4章 图与网络模型及方法
已知图G (V , E),对图G 的所有顶点进行着色时, 要求相邻的两顶点的颜色不一样,问至少需要几种颜 色?这就是所谓的顶点着色问题。
数学建模经典问题——旅行商问题

度最短的两条边之和; C*(T):最优回路长度;
25
于是,dmin(i, 1)代表与第i个结点关联的所有边 中最长边的长度,dmin_j(i, 1) 代表与第i个结点关联 的所有边中次长边的另一个结点编号(其中一个结点 编号为i),第i结点的dmin(i, k)和dmin_j(i, k)可由距 离矩阵w轻易求得。
20
当然,用该方法有时会找不到TSP的最优解, 因为很可能在进行了几轮迭代后,却找不到新的不 等式。Padborg与Hong曾计算了74个TSP,其中54 个得到了最优解,其余的虽未得到最优解,却得到 了很好的下界,如果与近似方法配合,可以估计近 似解的精确程度。如,他们解过一个有313个城市的 TSP,获得一个下界41236.46,而用近似方法能得 到一条长为41349的路线,于是可估计出所得近似解 与最优解的误差不超过0.26%。
14
早在1954年,Dantzig等人就曾提出过一种方 法(非多项式算法),并且求出了一个42城市的 TSP最优解。到了1960年代,不少人用分支定界法 解决了许多有几十个城市的TSP。还有人提出了一 些近似方法,也解决了许多有几十个城市甚至上百 个城市的TSP(有时找到的仅是近似解)。更值得 注意的是,从1970年代中期开始,Grotschel与 Padberg等人深入研究了TS多面体的最大面 (facet),并从所得结果出发获得了一种解TSP的 新算法,可以解决一些有100多个城市的TSP,且都 在不长的时间内找到了最优解。
一、数学模型 1. 标准TSP 旅行商问题(简称TSP),也称货郎担问题或 旅行推销员问题,是运筹学中一个著名的问题,其 一般提法为:有一个旅行商从城市1出发,需要到城 市2、3、…、n去推销货物,最后返回城市1,若任 意两个城市间的距离已知,则该旅行商应如何选择 其最佳行走路线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄石理工学院数学建模大型作业2011—2012 学年第1学期目录一.摘要二.旅行问题1.问题描述2.符号说明3.模型设计4.建模求解5.模型分析6.三.建模过程及心得体会四.参考文件一.摘要本文是一个围绕旅行商问题和背包问题这两个经典问题的论文。
问题一,是一个依赖与每个城市去一次且仅去一次的路线确定问题,问题二类似于问题一。
问题三是一个依赖于可背重量限制的背包问题。
关键词:HAMILTON回路 LINGO 最优旅行路线 0-1模型二.旅行问题问题描述某人要在假期内从城市A出发,乘火车或飞机到城市B,C,D,E,F 旅游购物。
他计划走遍这些城市各一次且仅一次,最后返回城市A。
已知城市间的路费数据见附表1,请你设计一条旅行路线使得他的总路费最少。
如果临行他因故只能去4个城市,该怎样修订旅行路线?在城市间旅游时他计划购买照相机,衣服,书籍,摄像机,渔具,白酒,食品,而受航空行李重量的限制以及个人体力所限,所买物品的总重量不能超过15kg,各种物品的价格见附表2.请你为他决策买哪些物品,使所买物品价值最大。
模型设计首先给出一个定义:设v1,v2,......,vn 是图G 中的n 个顶点,若有一条从某一顶点v1出发,经过各节点一次且仅一次,最后返回出发点v1的回路,则称此回路为HAMILTON 回路。
问题1.分析:这个优化问题的目标是使旅行的总费用最少,要做的决策是如何设定旅行路线,决策受的约束条件:每个城市都必须去,但仅能去一次。
按题目所给,将决定变量,目标函数和约束条件用数学符号及式子表示出来,就可得一下模型。
模型建立:对于6个城市的旅行问题设A,B,C,D,E,F 六个城市分别对应v1,v2,v3,v4,v5,v6。
假设ij d 表示从城市i 到城市j 的费用。
定义0-1整数型变量ij x =1表示从城市i 旅行到城市j ,否则ij x =0。
则旅行问题的数学模型可表示为一个整数规划问题。
min z=661ij iji jdx =∑∑ (i ≠j)s.t.61iji x=∑=1 (i ≠j ;j=1,2, (6)61ijj x=∑=1 (i ≠j ;i=1,2, (6)1i j ij u u nx n -+≤- (i ≠j;i=2,3,……,6;j=2,3,……6)其中辅助变量i u (i=2,3,……,6)可以是连续变化的,虽然这些变量在最优解中取普通的整数值(从而在约束条件中,可以限定这些变量为整数)。
事实上,在最优解中,i u =访问城市的顺序数。
模型求解运用LINGO ,输入程序:MODEL :!Traveling Sales Problem for the cities of six city; SETS :CITY / 1..6/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 250 330 210 150120 0 98 350 225 300250 98 0 520 430 280330 350 520 0 270 185210 225 430 270 0 420150 300 280 185 420 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K)););@FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用为1163路线:A-B-C-F-D-E-A问题2.临时因故只能去4个城市,那么应该怎样安排旅行路线。
分析:在B,C,D,E,F五个城市中选4个城市,显然有5种可能,按照问题一中的模型,将费用矩阵稍作修改,运用LINGO分别解除5种可能的费用,进行比较,即得结果。
(1)选取B,D,E,F,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city;SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 330 210 150120 0 350 225 300330 350 0 270 185210 225 270 0 420150 300 185 420 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K));); @FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:950路线:A-B-E-D-F-A(2)选取B,C,E,F,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city; SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 250 210 150120 0 98 225 300250 98 0 430 280210 225 430 0 420150 300 280 420 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K));); @FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:963路线:A-E-B-C-F-A(3)选取B,C,D,F,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city; SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 250 330 150120 0 98 350 300250 98 0 520 280330 350 520 0 185150 300 280 185 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K)););@FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:1013路线:A-B-C-F-D-A(4)选取路线:B,C,D,E,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city; SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 120 250 330 210120 0 98 350 225250 98 0 520 430330 350 520 0 270210 225 430 270 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K));); @FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:1173路线:A-C-B-E-D-A(5)选取C,D,E,F,计算旅行费用:MODEL:!Traveling Sales Problem for the cities of six city;SETS:CITY / 1..5/: U; ! U( I) = sequence no. of city;LINK( CITY, CITY): COST, ! The cost matrix;X; ! X( I, J) = 1 if we use link I, J;ENDSETSDATA: !Cost matrix, it need not be symmetric;COST= 0 250 330 210 150250 0 520 430 280330 520 0 270 185210 430 270 0 420150 280 185 420 0 ;ENDDATAN= @SIZE( CITY);MIN= @SUM( LINK: COST * X);@FOR( CITY( K): !It must be entered;@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;! It must be departed;@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;!Weak form of the subtour breaking constrains;!These are not very powerful for large problems;@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:U(J)>=U(K)+X(K,J)-(N-2)*(1-X(K,J))+(N-3)*X(J,K)););@FOR( LINK: @BIN( X)); !Make the X's 0/1;! For the first and last stop we know...;@FOR( CITY( K)| K #GT# 1:U( K) <= N - 1 - (N - 2) * X( 1, K);U( K) >= 1 + ( N - 2) * X( K, 1));END得到结果:总费用:1195路线:A-C-F-D-E-A因此,总结以上(1),(2),(3),(4),(5)五种情况可得:应该选用路线:A-B-E-D-F-A。