茂金属催化剂的合成资料
茂金属催化剂

乙烯聚合及聚合物特性
对于乙烯聚合, 二茂锆/MAO 催化剂活性是传统的 Z-N 催化剂体系的 10~100 倍。 用茂金属催化剂生 产的聚乙烯(PE),重均相对分子质量(Mw)与数均相 对分子质量(Mn)的比值约为 2,在每 1000 个碳原 子中只有 0.9~1.2 个甲基支链。 这类聚合物的熔点 约为 139~140.5℃,密度为 0.947~0.953g/cm3。 由 于所用催化剂的不同,聚合产物的相对分子质量可 能相差 50 倍。
茂金属催化剂
metallocenes catalysts
• • • • •
★茂金属催化剂简介 ★茂金属催化剂的特点 ★茂金属催化烯烃聚合原理 ★茂金属催化烯烃的研究进展 ★茂金属聚烯烃的前景展望
茂金属催化剂简介
茂金属催化剂催化剂”, 与传统的 Z-N 催化剂的主要区别在于活性中心的分布 。实 际上, 茂金属催化剂是双组分和多组分混配型 催化剂体系, 主要是由第Ⅳ族过渡金 属化合物和 助催化剂组 成。 例如,双-环戊二烯基 茂金 属催化剂仅具有一个屏蔽 的活性中心, 它可以远离周围环境 的影响,因此这 种单活性中心 催化剂,能精确地控制产品 的相对分 子质量、共聚单体含量及其在主链上的分布,催 化合 成 的聚合物是具有高立构规整性的聚合物,从而达到 改善聚合物性能 的目 的 。
2 、聚合物特性
全同立构聚丙烯(iPP)聚合物的特性和熔点由沿聚合物链任意分布的无规排列 的支链数量来决定,其熔点范围在 125~165℃之间。使用高立构选择性茂金属 时, 生产出的 PP 具有更高的结晶度和硬度,比普通的 PP 高 25%~33%, 其特性实际上类似于填充滑石或其他材料的普通 PP 的特性。与 iPP 相比,间 规立构聚丙烯(sPP)具有高度不规则性,通常所见的是低密度和低熔点的产品。 sPP结晶粒度小,导致其透明性比 iPP 更高,但对气体的阻隔性差,不适用于 食品包装方面。 然而,sPP 所具有的良好耐辐射性能使其适用于医学用途。 此外,sPP 还拥有良好的抗冲击强度。
茂金属催化剂二氯二茂钛-概述说明以及解释

茂金属催化剂二氯二茂钛-概述说明以及解释1.引言1.1 概述概述茂金属催化剂是一类重要的催化剂,具有广泛的应用领域和重要的科学意义。
茂金属催化剂的研究始于20世纪60年代,随后得到了快速发展。
二氯二茂钛是茂金属催化剂中一种常见的代表,具有很高的催化活性和选择性。
本文主要着重介绍茂金属催化剂中的二氯二茂钛的制备方法和应用。
首先,将对茂金属催化剂的定义和特点进行详细介绍,包括其在催化反应中的作用机理和优势。
其次,将重点介绍二氯二茂钛的制备方法,并探讨其在有机合成、聚合反应以及其他领域的应用。
最后,将根据茂金属催化剂的优势和前景,展望二氯二茂钛作为催化剂的发展趋势。
通过本文的概述部分,读者可以对茂金属催化剂和二氯二茂钛有一个初步的了解,并对接下来的内容有一个清晰的预期。
茂金属催化剂作为一种重要的催化剂,对于促进有机合成领域的发展和推动绿色化学反应有着重要的意义。
二氯二茂钛作为茂金属催化剂中的一种代表,在有机合成和聚合反应领域有着重要的应用前景。
在接下来的正文部分,我们将更加详细地介绍茂金属催化剂和二氯二茂钛的具体内容。
文章结构部分的内容应包括讨论文章的组织和结构,以便读者可以更清晰地理解文章的内容和思路。
可以按照以下内容来编写文章1.2 文章结构部分的内容:文章结构的设立旨在有条理地展现相关论点和讨论。
本文的结构主要分为引言、正文和结论三个部分。
在引言部分,将简要概述茂金属催化剂二氯二茂钛的研究背景和意义,并明确文章的目的和主要观点。
正文部分将重点介绍茂金属催化剂的定义和特点以及二氯二茂钛的制备方法和应用。
在2.1茂金属催化剂的定义和特点中,将详细阐述茂金属催化剂的基本概念、特性和其在催化反应中的作用机理。
2.2二氯二茂钛的制备方法和应用部分将详细介绍二氯二茂钛的制备方法,包括反应条件、反应步骤和关键工艺等,同时阐述其广泛应用于有机合成、聚合反应和催化剂载体等方面的应用。
结论部分将总结茂金属催化剂的优势和前景,指出二氯二茂钛作为催化剂的发展趋势。
茂金属催化剂

茂金属催化烯烃聚合原理及其研究进展第一节:绪言传统的齐格勒-纳塔催化剂曾是独一无二的真正奇异的万能催化剂,这类烯烃聚合催化剂的万能性,致使它可在宽广的温度范围(-78~200℃)、极低的聚合压力下(1~30atm),可使乙烯、α-烯烃、二烯烃及环烯烃等以溶液法、淤浆法或气相法进行均聚合和共聚合。
第三代高效载体催化剂是齐格勒-纳塔催化剂发展史中最辉煌的硕果。
自1953年齐格勒-纳塔催化剂的发现至1993年,齐格勒-纳塔催化剂一直是烯烃聚合领域的佼佼者,它的发现不仅使聚合物领域产生出很多的新的塑料和橡胶产品,而且也提高了人们在聚合物和聚合反应方面的理性认识,聚合物的立体化学控制是齐格勒-纳塔催化剂的最重要贡献之一,聚合物的立体化学控制极大地发展了聚合物的分析方法,使聚合物科学成为一门重要的学科。
科学的发展是辩证的,1976年,德国汉堡大学的Kaminsky发现将均相锆茂催化剂体系中助催化剂Me3Al经部分水解,可使催化剂活性大大提高,1980年,Kaminsky直接用铝氧烷(MAO)作均相催化剂的助催化剂时,其活性比当时高效载体催化剂的效率高30倍,由于它具有超高活性,并能制成几乎所有类型的聚烯烃产品,包括高密度聚乙烯、线性低密度聚乙烯、高全同聚丙烯、间同聚丙烯、高分子量无规聚丙烯、高性能乙丙橡胶及高间同聚苯乙烯等,引起了人们对均相催化剂研究的极大兴趣,更重要的是用Kaminsky催化剂的聚合实验结果,改变了一些传统的有关α-烯烃配位聚合立体化学的观点和结论,进一步推动了配位聚合机理的发展,更重要的是催化中心的明确性为聚合物制备机理和定制(tailor made)称为可能。
本章就茂金属催化剂的定义、各组份发展、聚合机理及其应用进行较为详细的说明。
Bergmann发现如下反应证实了Cossee机理的可能性(烯烃在M-C的单键上插入反应):CpCo(CD3)2(η2-C2H4)→CpCo(CD3)(C2CH2CD3)第二节:茂金属催化剂的由来及定义5.2.1茂金属催化剂及其聚合物的发展一、历史的沿革1951年,Miller等发现,环戊二烯的蒸汽与新鲜被还原的铁在300℃下反应,生成一种橘黄色的晶体,他们分析了晶体的化学成分为C10H10Fe,,并根据当时的配位键理论,认为这个化合物具有离子键的性质,其结构如下:HFeH图1 二茂铁的假设结构同年,Pauson等为了合成富烯(Fulvene),采用环戊二烯基格氏试剂C5H5MgBr,在FeCl3催化下反应,结果没有得到富烯,只得到含铁的橘黄色晶体,其组成与Miller得到的化合物一样。
茂金属催化剂

茂金属催化剂1.1茂金属催化剂早期聚乙烯催化剂是不含金属组分的空气(氧)或过氧化物,同时也不用溶剂。
所得聚乙烯质地最纯,加工性能、制品的柔软性和透明性都是其它聚乙烯产品所不能取代的。
这是聚烯烃生产中唯一不用催化剂的品种。
不过由于能耗和市场等原因,近年来的发展速度已经落后于其它品种。
目前应用较多的催化剂称为“过渡金属催化聚合”,是指主催化剂中含有过渡金属元素的催化体系,过渡金属元素则以钒和钛为主。
这类催化剂体系的首创者为德国的Karl Ziegler和Giulio Natta,他们曾经因此而获得1963年诺贝尔化学奖,所以通称为 Ziegler-Natta 催化剂。
由茂金属和助催化剂组成的烯烃聚合催化剂。
与常用的齐格勒催化剂相比,具有更高的活性(工业生产上常以每单位容积(或质量)催化剂在单位时间内转化原料反应物的数量来表示,如每立方米催化剂在每小时内能使原料转化的千克数)。
茂金属催化剂的代表性基本结构是茂,茚,芴的金属化合物,助催化剂主要有甲基铝氧,如二环戊二烯基二氯合锆[bis(cyclopenta-dienyl) zirconium dichloride]与甲基铝氧(CH3AlO)组成的催化剂用于乙烯聚合,活性比齐格勒催化剂高数十倍。
相对传统Ziegler—Natta催化剂,茂金属催化剂有4个显著的特征:(1)单活性中心优势:因为它的金属原子一般都处在受限制的环境条件下,只允许聚合单体单个进入催化活性点上,因此,它可以形成比较整齐一致而且可以重复制取的聚合物结构,分子量分布和组成分布窄,可生产极均一的均聚物和共聚物。
(2)单体选择优势,能使任何a-烯烃单体聚合。
(3)立体选择优势,能使用a-烯烃聚合生成立构规整度极高的等规或间规聚合物。
(4)可以控制聚合物中乙烯基的不饱和度,可以严格控制聚合过程,使其能持续生产均匀一致的聚合物。
目前茂金属催化剂技术已经成为全球性聚烯烃领域新的开发方向,其相对于目前主流Ziegler—Natta催化剂优势极为明显。
茂金属催化合成高分子量弹性聚丙烯及茂金属的新型助催剂的初步

茂金属催化合成高分子量弹性聚丙烯及茂金属的新型助催剂的初步研究黄盛建刘云海伍青*(中山大学高分子所,广州510275)摘要本论文采用高分子所近年来的科研成果,合成了五甲基环戊二烯三苄氧基钛[Cp*Ti(OBz)3]与甲基铝氧烷(MAO)的新型催化体系,在小试验瓶中研究以甲苯作溶剂时的丙稀聚合反应规律及聚合条件对丙稀聚合的影响,并在此基础上寻找可以替代MAO的第二组分(无机盐)和第三组分(金属烷基化合物),通过一系列的无机盐和烷基铝所组成的助催化剂体系进行试验,筛选出合适的催化体系。
关键词单茂钛催化剂,弹性聚丙烯,无规聚丙烯,阳离子活化,热塑性弹性体1.前言茂金属催化剂是由茂金属化合物和助催化剂组成。
茂金属为金属有机配合物,是由具有六个π电子的环戊二烯阴离子(η5-C5H5—)或其衍生物与过渡金属生成的络合物。
1951年,首次发现茂金属—二茂铁Cp2Fe(1),自此,茂金属化合物得到蓬勃发展,随后其他茂金属(茂铬,茂钛,茂锆和茂铪)也制备出来。
最初茂金属化合物作为Zigler-Natta催化体系主催化剂的组分,与烷基铝(AlEt3,AlEt2Cl)结合用于烯烃聚合,但活性低。
直至七十年代后期,Sinn和Kaminsky发现用AlMe3的部分水解产物—甲基铝氧烷(MAO)作助催化剂可大大提高茂金属化合物的活性,对茂金属化合物的研究才得到迅速发展(2)。
八十年代中期,新型具有立构选择性的茂金属催化剂的出现成为开发新型聚烯烃材料的里程碑。
进入九十年代,以硼化合物作助催化剂引起了人们的注意。
目前,负载型茂金属催化剂正方兴未艾。
茂金属催化剂与一般传统Zigler-Natta催化剂相比具有如下特点[3],(1)茂金属催化剂具有很高的催化活性;(2)茂金属催化剂属于单一活性中心催化剂,具有很好的均一性,主要表现在茂金属催化聚合物的分子量分布相对较窄,共聚单体在聚合物主链中分布均匀;(3)茂金属催化剂具有优异的催化共聚合能力,几乎能使大多数共聚单体与乙烯共聚合,可以获得许多新型聚烯烃材料。
茂金属催化剂

.
2 、聚合物特性
全同立构聚丙烯(iPP)聚合物的特性和熔点由沿聚合物链任意分布的无规排列 的支链数量来决定,其熔点范围在 125~165℃之间。使用高立构选择性茂金属 时, 生产出的 PP 具有更高的结晶度和硬度,比普通的 PP 高 25%~33%, 其特性实际上类似于填充滑石或其他材料的普通 PP 的特性。与 iPP 相比,间 规立构聚丙烯(sPP)具有高度不规则性,通常所见的是低密度和低熔点的产品。 sPP结晶粒度小,导致其透明性比 iPP 更高,但对气体的阻隔性差,不适用于 食品包装方面。 然而,sPP 所具有的良好耐辐射性能使其适用于医学用途。 此外,sPP 还拥有良好的抗冲击强度。
.
丙烯聚合及聚合物特性
1 、聚合机理
在使用茂金属催化剂的丙烯聚合中,由于茂叔碳原子处都有假手性中心。 这些连续的手性 中心的构型规律性用聚合物的等规度来描述。 仅包括内消旋二重对称性的聚丙 烯称为“全同立构聚丙烯”,而只包括外消旋二重对称性的聚合物则称作 “间规 立构聚丙烯”。 同时具有外消旋和内消旋二重对称性的聚丙烯则称之为无规立 构聚丙烯。
相对分子质量的调节通常有三种方法:
提高聚合温度、增加茂金属与乙烯比或加入少量氢。
.
1999-2010年线性低密度聚乙烯的需求量
1999 2001 2005 2010
线性低密度聚乙烯 11
13
18 27
,百万吨
茂金属线性低密度 1.5 3 聚乙烯,百万吨
5
11
.
茂金属催化剂制品
例如:人们可以用它生产出更薄更轻的重型包装袋,同时还 可做到同样的牢固耐用!这一突破性的125微米厚重型包装 袋膜由埃克森美孚化工开发。(图1)截至目前,亚太地区 包装业重型包装袋膜厚通常为+/-140微米。
茂金属催化剂的合成

本科课程论文《茂金属催化剂的合成简述》课程名称高等有机化学姓名梁腾辉学号 1014122020专业高分子材料科学与工程任课教师程琳开课时间教师评阅意见:论文成绩评阅日期课程论文提交时间:年月日茂金属催化剂的合成简述摘要简要介绍了几种茂金属催化剂的有机合成以及其催化机理。
关键词茂金属催化剂合成催化1 前言烯烃聚合用茂金属催化剂通常指由茂金属化合物作为主催化剂和一个路易斯酸作为助催化剂所组成的催化体系,其催化聚合机理现已基本认同为茂金属与助催化剂相互作用形成阳离子型催化活性中心。
茂金属催化剂一般指由过渡金属元素(如IV B 族元素钛、锆、铪)或稀土金属元素和至少一个环戊二烯或环戊二烯衍生物作为配体组成的一类有机金属配合物。
茂金属催化剂具有极高的活性特别是茂锆催化剂含一克锆的均相茂金属催化剂可以催化100t的乙烯聚合但同时助催化剂的用量也是相当大的甚至Al/Zr>2000这在生产中意义不大。
因此必须想法设法得倒活性高助催化剂用量少的茂金属催化剂[1]错误!未找到引用源。
2 茂金属催化机理均相茂金属催化剂主要分为非桥联单茂金属催化剂、非桥联双茂金属催化剂、桥联型茂金属催化剂、限制几何构型茂金属催化剂以及双核茂金属催化剂等。
若茂金属催化剂以烷基铝氧烷为助催化剂,其催化机理是一个形成单一阳离子活性中心的机理。
在茂金属催化体系中,一般要求助催化剂MAO必须达到一定的浓度,以便能够引发催化反应的进行[2]错误!未找到引用源。
其机理如下图所示:3 茂金属的合成金属有机化合物的制备和处理操作都采用Schlenk 技术,在氮气氛围条件下进行无水无氧操作,所用玻璃反应容器都进行真空烘烤干燥。
四氢呋喃、乙醚、甲苯,在氮气氛围下以钠、钾合金/二苯甲酮回流至溶液变成紫色,并在氮气保护下蒸出,封口备用。
二氯甲烷、正已烷、石油醚(60 ~ 90°C),在氮气保护下与CaH粉末混合,搅拌回流两天后,在氮气氛围下蒸入安瓶中封口备用[3]错误!未找到引用源。
茂金属催化剂及其烯烃聚合物

茂金属催化剂是一种用于合成烯烃聚合物的催化剂,它是由茂金属离子和配位体组成的催化剂体系。
茂金属离子通常是过渡金属离子,如铜、镍、钴等,配位体则是有机配体,如吡咯烷、咔唑等。
茂金属催化剂具有催化活性高、选择性好、反应条件温和等优点,因此在合成烯烃聚合物方面得到了广泛应用。
茂金属催化剂的催化机理主要包括两个步骤:首先,茂金属离子与烯烃发生配位作用形成过渡态,进而引发烯烃的加成反应;然后,过渡态分解,生成稳定的烯烃产物。
茂金属催化剂的选择性主要取决于配位体的结构和数量,以及催化剂的配位方式和负载量等因素。
烯烃聚合物是一种重要的高分子材料,广泛应用于塑料、橡胶、纤维、涂料等领域。
茂金属催化剂的出现为烯烃聚合物的合成提供了新的思路和方法,同时也促进了材料科学和化学工程的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科课程论文
《茂金属催化剂的合成简述》
课程名称高等有机化学
姓名梁腾辉
学号 1014122020
专业高分子材料科学与工程
任课教师程琳
开课时间
教师评阅意见:
论文成绩评阅日期
课程论文提交时间:年月日
茂金属催化剂的合成简述
摘要简要介绍了几种茂金属催化剂的有机合成以及其催化机理。
关键词茂金属催化剂合成催化
1 前言
烯烃聚合用茂金属催化剂通常指由茂金属化合物作为主催化剂和一个路易斯酸作为助催化剂所组成的催化体系,其催化聚合机理现已基本认同为茂金属与助催化剂相互作用形成阳离子型催化活性中心。
茂金属催化剂一般指由过渡金属元素(如IV B 族元素钛、锆、铪)或稀土金属元素和至少一个环戊二烯或环戊二烯衍生物作为配体组成的一类有机金属配合物。
茂金属催化剂具有极高的活性特别是茂锆催化剂含一克锆的均相茂金属催化剂可以催化100t的乙烯聚合但同时助催化剂的用量也是相当大的甚至Al/Zr>2000这在生产中意义不大。
因此必须想法设法得倒活性高助催化剂用量少的茂金属催化剂[1]错误!未找到引用源。
2 茂金属催化机理
均相茂金属催化剂主要分为非桥联单茂金属催化剂、非桥联双茂金属催化剂、桥联型茂金属催化剂、限制几何构型茂金属催化剂以及双核茂金属催化剂等。
若茂金属催化剂以烷基铝氧烷为助催化剂,其催化机理是一个形成单一阳离子活性中心的机理。
在茂金属催化体系中,一般要求助催化剂MAO必须达到一定的浓
度,以便能够引发催化反应的进行[2]错误!未找到引用源。
其机理如下图所示:3 茂金属的合成
金属有机化合物的制备和处理操作都采用Schlenk 技术,在氮气氛围条件下进行无水无氧操作,所用玻璃反应容器都进行真空烘烤干燥。
四氢呋喃、乙醚、甲苯,在氮气氛围下以钠、钾合金/二苯甲酮回流至溶液变成紫色,并在氮气保护下蒸出,封口备用。
二氯甲烷、正已烷、石油醚(60 ~ 90°C),在氮气保护下与CaH粉末混合,搅拌回流两天后,在氮气氛围下蒸入安瓶中封口备用[3]错误!未找到引用源。
3.1 非桥联五甲基环戊二烯水杨醛亚胺铬化合物的合成(非桥联单茂)
此类催化剂结构特征是有一个茂环作为配体:Cp.MR3(CP.=取代环戊二烯基等;M=Zr,Ti,Hf,Cr等;R=卤素、烷基、Oar、RNAr等)这类催化剂具有较大的配位空间,有利于具有较大位阻的烯烃单体的配位插入,但对于构型的控制一般较差[3]。
3.2二甲基二茂锆化合物(1,2-Phz-4-MeCp)2 ZrMe2的合成
两个茂环与中心金属原子配位,从而形成夹心结构,即所谓的非桥联双茂金属催化剂。
该系列催化剂用于催化乙烯聚合,由于乙烯配位插入时不存在潜手性α
-烯烃所涉及的复杂的立体化学行为,配体修饰主要通过立体效应和电子效应对催化剂的催化活性及所得聚乙烯分子量和分子量分布等产生影响。
从理论上看,用二烷基二茂锆化合物作为催化剂,用五氟苯硼类助催化剂活化,只需用少量烷基铝化合物对体系除杂,可以大幅度降低成本[4]错误!未找到
引用源。
合成路线如下:
3.3含苯氧基侧链的环戊二烯基二氯化钛的合成(限制几何构型)
限制几何构型茂金属催化剂由于它们在催化烯烃共聚方面的优良性能得到了人们的广泛研究,对催化剂的配体进行了各种修饰以改变催化活性中心的周围的位阻或电子环境从而改善提高这类催化剂的催化性能[5][5, 6]错误!未找到引用源。
以下为其中一种:
3.4 对称型双硅桥双核茂锆化合物的合成
用于烯烃聚合的茂金属催化剂包括单中心和多中心两类,单核茂金属催化剂一直是各国科学家研究的重点,但是另一方面由于用茂金属催化剂生产的聚烯烃分子量分布太窄,加工性能较差,而增加了工艺过程中的加工难度。
目前,部分工作的重点已经转向了双核茂金属化合物的合成及性能研究,着眼于
研究同一化合物中两个金属中心的协同作用及其对烯烃聚合催化活性和高分子性能的影响。
如许胜等[1]合成的双桥双核茂锆化合物,合成路线如下:错误!未
找到引用源。
4 结束语
茂金属催化剂经过半个世纪的研究与发展取得了令人瞩目的成就,展
现出了广阔的发展前景。
茂金属催化剂最重要的特点是能够根据需要对催化剂分子进行设计与裁剪,通过对茂金属配体的有效修饰,可以控制催化剂的催化行为,改善催化活性及聚合物的分子量、分子量分布、立体化学微观结构、结晶行为、机械性能等指标参数,从而实现特定的聚烯烃反应,达到控制聚烯烃产品结构的目的。
但由于其需要加入大量的助催化剂对其工业上应用有一定的限制,因此需要不断研究开发活性更高助催化剂用量更少的茂金属催化剂。
正是由
于茂金属催化剂的以上特点,人们合成并开发了多系列的并独具特色的茂金属催化剂,这不仅极大地丰富了对这一领域的理论研究,也更加促进了茂金属催化剂在工业领域的应用。
参考文献:
[1]. 许胜, 新型构型限制双桥双核茂金属化合物的合成、结构及烯烃聚合研究, 2006, 华东理工大学. 第123页.
[2]. 刘克锋, 新型茂金属催化剂的合成、表征及催化烯烃聚合性能研究, 2011, 吉林大学. 第161页.
[3]. 徐铁齐, 新型茂金属催化剂和载体型Z-N催化剂的合成、表征及催化烯烃聚合反应研究, 2007, 吉林大学. 第179页.
[4]. 吕春胜等, 二甲基二茂锆化合物(1,2-Ph_2-4-MeCp)_2ZrMe_2的合成及催化乙烯聚合反应研究. 高等学校化学学报, 2006(02): 第375-379页.
[5]. 李金财, 限制几何构型茂金属催化剂的合成、表征及催化烯烃聚合反应研究, 2011, 吉林大学. 第104页.。