自动控制理论的早期发展历史
自动控制理论发展史

自动控制理论发展史
自动控制理论的发展可以追溯到17世纪,那时法国的理论家和发明家巴斯德(Basil)首次提出了“称量”的概念,这有助于他设计出一种物体重量可以自动调整的测量仪器,他认为,可以在重力的作用下自动控制物体重量的概念。
18世纪初,英国的工程师威廉·劳伦斯(William Lawrence)将该理论应用于蒸汽机的负荷控制,他成功地设计出了一种蒸汽机燃料调节系统,可以根据蒸汽机转速变化自动调节燃料的流量,从而控制蒸汽的压力。
20世纪初,美国科学家威廉·马斯特森(William M. Mason)在理论和实践上发展了自动控制理论,以及它在一些领域的应用,他设计出了第一台自动飞行机器人,以自动调节飞机的高度、速度和航向,由此,自动控制技术被广泛应用于航空领域。
20世纪20年代,美国的科学家弗兰克·迪杰斯特拉普(Frank D.J.Stump)提出了“反馈控制”理论,他完成了大量的实验研究,确定了反馈控制系统的概念和原理。
20世纪30年代,埃利·施蒂利克(Erle S.Steele)开展了反馈控制系统的模拟实验。
自动控制发展历程

自动控制发展历程
自动控制作为一种科学技术,随着科技的发展而不断发展,影响到着
现代技术发展的方方面面,在改善社会管理、优化生产经营、增强安全防
护等方面发挥着重要作用。
自动控制的发展历程始于20世纪50年代,当时应用于气象学、化学
制药、建筑物机械控制等领域。
50年代中,自动控制理论开始初具规模,同时,第一代自动控制器也诞生了。
到60年代,自动控制的研究变得愈
发注重实时、计算机辅助,采用自动控制技术的机械系统也开始发展出来。
70年代,随着计算机科学及智能技术的发展,自动控制又得到了极
大的发展。
计算机辅助的自动控制器开始出现,可以实现对更复杂的系统
进行控制。
同时,出现了多元化的控制策略,从最初的离散型PID控制,
发展到基于神经网络的自适应控制,以及基于模糊逻辑的控制等,使自动
控制有了新的发展方向。
80年代,自动控制的发展又有了新的突破:系统整合度变得更高,
可以实现对一个较大系统的一次性集成控制,比如对整个发动机系统的整
体控制,实现自动控制的功率更高、经济性更好;实时定位技术被成功应
用于自动控制,使自动控制可以实现实时定位。
1.3自动控制理论发展简史

第一章 自动控制概述
1.3自动控制理论发展简史
自动控制理论发展简史
1.胚胎萌芽期(1945年以前) 自动控制技术广泛应用开始于欧洲工业革命时期 1788年瓦特发明离心式调速器 1868年麦克斯韦发表了“论调速器”,自动控制原理逐步 形成 1892年李雅普诺夫发表 “论运动稳定性的一般问题”
自动控制理论发展简史
3.现代控制理论时期(50年代末-60年代)
空间技术的发展提出了许多复杂控制问题 1957年苏联发射了第一颗人造地球卫星 1968年美国阿波罗飞船成功登月
催生了第二代控制理论————现代控制理论 以状态为基础的状态空间法,主要研究高性能、高精度
的多变量变参数复杂系统的控制问题
自动控制理论发展简 1927年反馈放大器正式诞生 内燃机的广泛应用,促进了飞机、汽车、船舶、机器制造
业和石油工业的发展,产生了伺服控制和过程控制 第二次世界大战,军事工业发展很快,飞机、雷达、火
炮上的伺服机构,总结了自动调节技术及反馈放大器技术 ,搭起了经典控制理论的架子。
•广泛应用于工农 业、国防及日常 生活
自动控制理论发展简史
4.大系统理论和智能控制理论时期(目前)
• 各学科相互渗透,要分析的系统越来越大,越来越复杂。 朝着 控制论、信息论和仿生学为基础的智能控制论发展。
• 此外,控制论还用于处理社会、经济、人口、环境等复杂问 题,出现了经济控制论、人口控制论等学科分支。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
自动控制理论发展简史
2.经典控制理论时期(1940-1960)
1945年贝塔朗菲《系统论》 1948年维纳《控制论:或关于在动物和机器中控制和通信的科学》 形成了完整的控制理论体———经典控制理论 以传递函数为基础的经典控制理论,主要研究单输入-单输 出、线性定常系统的分析和设计问题
自动控制理论发展

自动控制理论发展1. 引言自动控制理论是现代工程学的重要分支之一,它涉及到机械、电子、计算机等多个学科的交叉和融合。
自动控制理论的发展可以追溯到19世纪末,随着科学技术的不断进步和应用领域的拓展,自动控制理论也得到了快速发展。
本文将从自动控制理论的起源,主要发展阶段以及当今的前沿研究领域等方面进行阐述。
2. 起源和发展自动控制理论的起源可追溯到19世纪末的工业革命时期。
当时,由于工业化的快速发展和机械化的需求,人们开始思考如何利用机械设备进行精确的控制。
这促使了自动控制理论的初步形成。
早期的自动控制系统主要基于机械装置,如自动调节阀、机械计算机等。
到了20世纪初,电气技术和电子技术的发展为自动控制理论的进一步发展提供了有力支持。
电气控制系统的出现和使用使得自动控制的范围得到了拓展,如电焊机、电力系统、电梯等。
同时,数学理论和控制理论的发展也为自动控制提供了重要的理论基础。
随着计算机技术的快速发展,自动控制理论进入了一个全新的阶段。
现代的自动控制系统主要基于数字计算机进行控制和计算,大大提高了控制系统的精确性和效率。
同时,人工智能和模糊控制等新兴技术的引入也为自动控制理论的应用带来了更多的可能性。
3. 主要发展阶段3.1 经典控制理论经典控制理论是自动控制理论的最早阶段,主要包括PID控制和频域分析等方法。
PID控制器是最简单且常见的控制器之一,它通过调节比例、积分和微分三个部分的参数来实现控制。
频域分析则是从频率的角度对控制系统进行分析和设计。
3.2 现代控制理论现代控制理论是在20世纪50年代至60年代逐渐发展起来的,它以状态空间方法为基础。
状态空间方法通过将系统的动态描述为一组状态方程,从而实现对系统的精确建模和分析。
这一阶段的代表性成果包括线性系统理论、最优控制理论等。
3.3 非线性控制理论非线性控制理论是自动控制理论的重要发展方向之一。
相比于线性系统,非线性系统的动态行为更加复杂,需要采用不同的建模和控制方法。
自动控制理论发展历史

标志阶段
1948年,控制论奠基人Weiner出版了《控制论——关 于在动物和机器中控制与通讯的科学》
1954年,我国著名科学家钱学森将控制理论应用与工 程实践,出版了《工程控制论》
现代控制理论
现代控制理论的产生背景
现代数学,例如泛函分析,现代代数等,为控 制理论提供了多种多样的分析工具;
数字计算机为现代控制理论发展提供了应用平 台,计算机的飞速发展,推动了核能技术,空间 技术的发展,从而出现了多输入多输出系统,非 线性系统和时变系统
模糊控制
发展背景: 现代工业的特征:
复杂性:系统结构和参数的高维,时变,高度非 线性 不确定性:系统内部的未知和不确定的因素 高标准的性能要求 模糊控制的特征: 不需要对象的精确数学模型,而要求有关的控制 经验知识;鲁棒性强
模糊控制
定义:利用模糊数学的基本思想和理论的控制方 法
发展背景: 1956年,美国系统论专家Zadeh教授创立了模糊 集合论,提供了处理模糊信息的 工具 1974年,英国学者Mamdani首次将模糊理论应 用于工业控制(蒸汽机的压力和速度控制)
控制理论产生和发展
控制理论的发展阶段
1,经典(自动)控制理论 2,现代控制理论 3,后现代控制理论
经典控制理论
1,萌芽阶段 2,起步阶段 3,发展阶段 4,标志阶段
萌芽阶段
起步阶段
到十八世纪,自动控制 技术逐渐应用到现代工 业中,其中最卓越的代 表是瓦特发明的蒸汽机 离心调速器
主要解决单变量系统的反馈控制
易于实现实时控制和最优 控制
主要解决多变量系统的优 化控制
后现代控制理论
大系统理论 代表控制理论向广度方向发展。由工程技术大系统, 向社会经济大系统,生物生态大系统发展,由狭义的 控制,向广义的控制领域发展,包括:调节,控制,管 理,指挥等。
自动控制理论发展史

到现在,自动化有关的研究机构越来越细分,如机械工业自动化所、冶金自动化所等。自动化学会挂靠在自动化所,所作的工作是研究自动化还有什么发展余地,像是模式识别。
控制论在中国的传播
苏联三位重量级科学家索保列夫(Sergei Sobolev,1 908-1989) 、哲托夫(AnatoliiIv anovichK itov) 、李亚普诺夫联合发表的文章,其中就控制论的科学意义、电子计算机与神经系统、控制论的实用意义三部分,对控制论进行了深刻的阐述。文章指出:“我们的一些哲学家犯了一个严重的错误:他们没有分析清楚问题的本质,就去否定这一新的科学方向的意义⋯⋯”。
自动控制的起源(续)
这种过度的分工,是不得不然的,是越演越烈的。由一行分成三十六行,由三十六行分成三百六十行,由三百六十行,分成三千六百行,二十世纪的科学家,不下三万六千行了。 这种局面的形成,产生了两个副作用, 是行与行间形成了许多无人管的地带; 甲行所研究出的程序、方法、 或设备,可能对乙行有极大的效用,但乙行常无从利用起,依然是从头开始。 哈佛医学院的谈话会,正是在这种气候下产生的。 而就由这个会中产生了『自动控制』的基本观念。
钱学森-扭转一个学科的命运
1954 年《工程控制论》出版,并迅速地被译成德、俄、中文版。书中系统地揭示了控制论对自动化、航空、航天、电子、通信等科学技术的意义和深远影响,写的全是技术科学,并未触及到人类这种动物的尊严。包括前苏联在内的世界各国科学界立即接受了这一新学科,从而吸引了大批数学家、工程技术学家从事控制论的研究,推动了五六十年代该学科发展的高潮。
自动控制理论的发展史
CLICK HERE TO ADD A TITLE
1
相对论、量子力学以及控制论被认为是20世纪的三项伟大科学成就。
浅谈自动控制理论的发展
浅谈自动控制理论的发展近年来,自动控制理论在科学领域中引起越来越多的关注。
自动控制理论作为一门交叉学科,涉及到数学、电子工程、计算机科学等领域,通过研究和设计自动控制系统,实现对各种工业、军事、医疗等应用中的过程进行控制和优化。
本文将从历史、应用以及未来趋势等多个角度对自动控制理论的发展进行浅析。
自动控制理论的发展可以追溯到19世纪中叶,当时工业革命推动了机械工程的迅速发展。
随着机器的广泛应用,人们逐渐认识到需要一种方法来对机器进行控制,以提高生产效率。
在这个背景下,自动控制理论逐渐崭露头角。
早期的自动控制系统主要依靠机械和电气装置实现,如利用煤气压力控制蒸汽机的转速。
然而,由于机械元件的精度和响应速度有限,控制效果并不理想。
随着数学和电子技术的快速发展,自动控制理论逐渐得到了加强和发展。
在20世纪初期,美国工程师尼克斯首先提出了反馈控制理论,它通过测量输出信号并将其与参考信号进行比较,然后根据误差信号对系统进行调整。
这种方法大大改善了自动控制系统的稳定性和精确性。
此后,控制理论的发展成为了一个热门话题,许多学者纷纷投身于自动控制的研究与应用。
在自动控制理论的发展中,控制系统的数学模型起着重要的作用。
控制系统的数学模型通过将实际系统的物理特性以数学形式表示出来,为控制器的设计和分析提供了基础。
通过控制系统的数学模型,工程师们可以从根本上理解和预测系统的行为,并采取相应的措施来优化系统的性能。
控制系统的模型可以分为线性模型和非线性模型两种。
在实际应用中,大多数系统可以近似为线性模型,因此,线性控制理论被广泛应用于各种控制系统中。
值得注意的是,近年来随着计算机科学和人工智能的快速发展,自动控制理论在人工智能领域也得到了广泛应用。
传统的自动控制系统主要依赖于精确的数学模型和规则来进行控制,这对于复杂的非线性系统来说是一项困难的任务。
然而,人工智能技术的出现为解决这个问题提供了新的途径。
通过将机器学习和深度学习技术与自动控制理论相结合,可以有效解决非线性系统控制中的挑战。
自动控制理论的早期发展历史
自动控制理论的早期发展历史自动控制理论的早期发展历史可以追溯到古代。
在古希腊时期,有一位名叫克提斯波斯的埃及工程师和发明家,他以自动水钟闻名。
这个自动水钟利用了一个水箱和一个漏斗系统来控制水的流量,从而保持水位稳定。
这可以被视为自动控制的初步形式。
在17世纪,欧洲工程师和科学家开始对机械自动控制系统进行研究。
其中一位重要的人物是维尔祖伊厄斯,他发明了一种水力机械自动控制装置,该装置可以保持风帆船的直线航行。
这个装置成为后来航海自动驾驶仪的基础。
到了18世纪,以导弹系统为代表的武器技术的发展推动了自动控制理论的进一步发展。
导弹系统需要能够控制导弹的轨迹和飞行速度,以使其能够准确打击目标。
这促使科学家和工程师研究如何利用机械装置来自动控制导弹的飞行。
19世纪建立了控制工程学作为一门学科。
詹姆斯·沃特(James Watt)开发的蒸汽机以及他的调速器被视为开启了现代自动控制理论的里程碑。
调速器可以自动调整蒸汽机的工作速度,以保持稳定的转速。
这个发明对工业革命的驱动力起到了重要作用。
20世纪初,电力和电子技术的发展促进了自动控制理论的进一步发展。
从20世纪20年代开始,自动控制系统被应用在许多工业和军事领域。
在这一时期,自动控制理论的基本概念和原理如反馈、稳定性和系统控制等被建立起来。
控制工程学成为了一个独立的学科。
在20世纪50年代,数字计算机的出现对自动控制理论的发展产生了深远影响。
数字计算机可以实时获取和处理大量数据,并根据预设的算法进行自动控制。
这使得控制系统设计更加灵活和精确。
在20世纪60年代和70年代,控制理论的研究越来越侧重于非线性系统的分析和控制。
非线性系统是现实世界中大部分系统的基本特征,如化学反应、生物系统和航空航天系统等。
研究人员发展了一系列非线性控制理论和方法,为非线性系统的控制提供了有效的解决方案。
随着现代计算机技术的快速发展,自动控制系统的设计和实现变得更加高效和精确。
自动控制理论发展概况
自动控制理论发展概况前控制是自动控制理论的起源阶段,主要在19世纪末至20世纪初发展起来。
当时主要研究控制系统的开-闭锁问题,即如何实现不同位置之间的切换控制。
此时的控制系统主要采用开放系统结构,输入信号与输出信号之间没有反馈环路。
该阶段的主要理论包括勒贝格同位、双位同位和电气继电器方法。
随着现代化生产的需要,自动控制理论的研究逐渐转向反馈控制。
反馈控制是通过不断感知系统输出信号,与给定的目标输出信号之间的差异来调整输入信号。
这种控制方式可以使系统对外部扰动和参数变化具有较好的鲁棒性。
控制技术的快速发展促使了反馈控制的普及和应用。
20世纪30年代,现代自动控制理论框架初步建立,产生了控制系统的数学描述、线性系统的稳定性分析和根轨迹法等方法。
20世纪40年代至70年代,现代控制理论得到了迅速发展和广泛应用。
控制系统的数学理论不断深化,控制效果逐渐得到提高。
特别是在航空、导弹、火箭、军事、化工和能源等领域,自动控制理论的应用取得了巨大成功。
在这一时期,经典控制理论和现代控制理论逐渐发展完善,研究了最优控制、鲁棒控制、自适应控制和模糊控制等控制方法。
20世纪70年代以后,现代控制理论进入了第三个阶段,即多模型自适应控制系、模型预测控制、神经网络控制和模糊分级控制系统等理论成果的出现。
同时,计算机技术和信息技术的迅猛发展也为控制理论的研究和应用提供了良好的条件。
现代控制理论注重系统建模、系统特性分析和系统控制方法的研究,提高了控制系统的鲁棒性和优化性能。
此外,随着科学技术的进一步发展,自动控制理论还涌现出一些新的理论和方法,如非线性控制理论、科学计量管控理论、模块化控制理论、混杂动态系统建模与分析方法等。
综上所述,自动控制理论经历了前控制、反馈控制和现代控制三个阶段的发展。
从最早的开-闭锁问题研究到现代的控制系统建模与优化控制,自动控制理论在科学研究和工程实践中发挥着重要作用,并且不断创新和完善。
自动控制理论的发展
经典控制理论
• 经典控制理论,以单变量控制,随动/ 调节为主要内容,以微分方程和传递 函数为数学模型,所用的方法主要以 频率响应法为主。数学工具: 微分方 程, 复变函数
第一阶段:经典控制理论
(一)、经典控制理论阶段 闭环的自动控制装置的应用,可以追溯到1788年 瓦特(J.Watt)发明的飞锤调速器的研究。然而最终形成 完整的自动控制理论体系,是在20世纪40年代末。 最先使用反馈控制装置的是希腊人在公元前300年到 1年中使用的浮子调节器。凯特斯比斯(Kitesibbios)在 油灯中使用了浮子调节器以保持油面高度稳定。
优点:可通过试验方法建立数学模型,物理概念清 晰,得到广泛的工程应用。
缺点:只适应单变量线性定常系统,对系统内部状 态缺少了解,且复数域方法研究时域特性,得不 到精确的结果。
控制理论发展的历史,现状及前景
1
经典控制理论
以单变量控制,随动/调 节为主要内容,以微分 方程和传递函数为数学 模型,以频率响应法为 主要方法。数学工具: 微分方程,复变函数
频域分析法在二战后持续占着主导地位,特别是拉 普拉斯变换和傅里叶变换的发展。在20世纪50年代,控 制工程的发展的重点是复平面和根轨迹的发展。进而在 20世纪80年代,数字计算机在控制系统中的使用变得普
遍起来,这些新控制部件的使用使得控制精确、快速。
第三阶段:大系统控制
20世纪70年代开始,出现了一些新的控制方法和理论。 如
第二阶段:现代控制理论
20世纪60年代初,在原有“经典控制理论”的基础上, 形成了所谓的“现代控制理论” 。
为现代控制理论的状态空间法的建立作出贡献的有, 1954年贝尔曼(R.Bellman)的动态规划理论,1956年庞特 里雅金(L.S.Pontryagin)的极大值原理,和1960年卡尔曼 (R.E.Kalman)的多变量最优控制和最优滤波理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 十八世纪,随着人们对动力的需求,各种动力装置也成为 人们研究的重点。 • 1750年,安得鲁. 米克尔(1719-1811)为风车引入了“扇 尾”传动装置,使风车自动地面向风。 • 随后,威廉. 丘比特对自动开合的百叶窗式翼板进行改进, 使其能够自动地调整风车的传动速度。这种可调整的调节 器在1807年取的专利权。18世纪的风车中还成功地使用 了离心调速器。 托马斯.米德(1787年)和斯蒂芬.胡泊 (1789年)获得这种装置的专利权。 • 和风车技术并行,十八世纪也是蒸气机取得突破发展的时 期,并成为机械工程最瞩目的成就。托马斯.纽可门和约 翰.卡利(又译为考力)是史学界公认的蒸气机之父。 • 到十八世纪中叶,已有好几百台纽可门式蒸气机在英格兰 北部和中部地区、康沃尔和其他国家服务,但由于其工作 效率太低,难以推广。
• 具有反馈控制原理的控制装 置在古代就有了。这方面最 有代表性的例子当属古代的 计时器 “水钟”( 在中国叫 作“刻漏”,也叫“漏 壶” )。据古代锲形文字记 载和从埃及古墓出土的实物 可以看到,巴比伦和埃及在 公元前1500年以前便已有很 长的水钟使用历史了。 • 亚历山大里亚城的斯提西比 乌斯(Ctesibius)首先在受水 壶中使用了浮 (phellossivetympanum)。
• 1765年俄国的波尔祖诺夫(И.И.Полэунов)发 明了蒸汽机锅炉的水位自动调节器(这在俄国被 认为是世界上的第一个自动调节器)。 • 1760年-1800年,詹姆斯.瓦特对蒸气机进行了 彻底得改造,终于使其得到广泛的应用。在瓦特 的改良工作中,1788年,他给蒸气机添加了一个 “节流”控制器即节流阀,它由一个离心“调节 器”操纵,类似于磨房机工早已用来控制风力面 分机磨石松紧的装置。“调节器”或“飞球调节 器”用于调节蒸气流,以便确保引擎工作时速度 大致均匀。这是当时反馈调节器最成功的应用。
自动控制理论的早期发展 历 史
自动控制技术的早期发展 自动控制基本理年表
自动控制技术的早期发展
• 以反馈控制为其主要研究内容的 自动控制理论的历史,若从目前 公认的第一篇理论论文, J.C.Maxwell 在1868年发表的 “论调节器”算起,至今不过一 百多年。 • 然而控制思想与技术的存在至少 已有数千年的历史了。 • “控制”这一概念本身即反映了 人们对征服自然与外在的渴望, 控制理论与技术也自然而然地在 人们认识自然与改造自然的历史 中发展起来。
• 瓦特是一位实干家,他没有对调节器进行 理论分析 • 后来J.C.Maxwell从微分方程角度讨论了调 节器系统可能产生的不稳定现象,从而开 始了对反馈控制动力学问题的理论研究
自动控制基本理论(经典部分) 的 发 展 简 史
• 2.1 稳定性理论的早期发展
人们很早就开始关注稳定性的问题。牛顿可能 是第一个关注动态系统稳定性的人。 1687年,牛顿在他的《数学原理》中对围绕 引力中心做圆周运动的质点进行了研究。他假 设引力与质点到中心距离的 q 次方成正比。 牛顿发现,假设q>-3 ,则在小的扰动后,质点 仍将保留在原来的圆周轨道附近运动。而当 q≤-3时,质点将会偏离初始的轨道,或者按螺 旋状的轨道离开中心趋向无穷远,或者将落在 引力中心上
• 直到十九世纪中期,稳定性理论仍集中在对保守系统研究 上。主要是天文学的问题。在出现控制系统的镇定问题后, 科学家们开始考虑非保守系统的稳定性问题。 • Clerk Maxwell是第一位利用特征方程的系数来判断系统 稳定性的人[26]。James Clerk Maxwell是第一个对反馈 控制系统的稳定性进行系统分析并发表论文的人。 • 在他1868年的论文“论调节器”(Maxwell J C.On Governors. Proc. Royal Society of London, vol.16:270-283, 1868)中,导出了调节器的微分方程,并 在平衡点附近进行线性化处理,指出稳定性取决于特征方 程的根是否具有负的实部。
• 天文学家曾不断努力以图证明 太阳系的稳定性。特别地,拉 格朗日和拉普拉斯在这一问题 上做了相当的努力。 • 1773年,24岁的拉普拉斯 “证明了行星到太阳的距离在 一些微小的周期变化之内是不 变的”。并因此成为法国科学 院副院士。虽然他们的论证今 天看来并不严格,但他们的工 作对后来李亚普诺夫的稳定性 理论有很大的影响。
• 按迪尔斯(Diels)本世纪初复 原的样品,注入的水是由圆 锥形的浮子节制的。而这种 节制方式即已含有负反馈的 思想 (尽管当时并不明确)。
• 中国有着灿烂的古代文明。中国古 代的科学家们对水钟十分得重视, 并进行了长期的研究。 • 据<<周礼>>记载,约在公元前 500年,中国的军队中即已用漏壶 作为计时的装置。 • 约在公元120年,著名的科学家张 衡 (78-139,东汉) 又提出了用补偿 壶解决随水头降低计时不准确问题 的巧妙方法。在他的“漏水转浑天 仪”中,不仅有浮子,漏箭,还有 虹吸管和至少一个补偿壶。 • 最有名的中国水钟“铜壶滴漏”由 铜匠杜子盛和洗运行建造于公元 1316年(元代延佑三年),并一直连 续使用到1900年。现保存在广州 市博物馆中,但仍能使用。
• 北宋时期,苏颂等于1086 年-1090年在开封建成“水 运仪象台” 。 • 仪象台上的浑仪附有窥管, 能够相当准确地跟踪天体 的运行,“使它自动地保 持在窥管的视场中”。这 种仪象台的动力装置中就 利用了“从定水位漏壶中 流出的水,并由擒纵器(天 关、天锁)加以控制”。 • 苏颂把时钟机械和观测用 浑仪结合起来,这比西方 罗伯特.胡克早六个世纪
• 公元235(三国时期)的马均 及公元477年(刘宋时期)祖 冲之等还曾制造过具有开环 控制特点的指南车。并发明 了齿轮及差动齿轮机。 • 另外,我国在公元前350年 已经用在结构上与水轮相似 的水臼来碾米; • 在公元前50年用水轮来引 水灌溉;在公元前31年在 锻冶场里使用水动风箱等。 大大地减轻了人们的劳动。