抛物线上的点到准线的公式

合集下载

抛物线基础知识

抛物线基础知识

抛物线
1.抛物线的概念
平面内与一定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线。

定点F 叫做抛物线的焦点,定直线l叫做抛物线的准线。

6.直线与抛物线的位置关系
当a=0时,直线与抛物线对称轴平行(重合),有一个公共点,是相交
练习:
1. 2(0)y ax a =≠的焦点坐标是
2. 24y x =的焦点坐标是 准线方程是
3. 顶点在原点,焦点为(0,-2)的抛物线的方程为
4. 抛物线22(0)y px p =>点()23-,到其焦点的距离是5,则p=_______ 5.根据下列条件写出抛物线的标准方程
(1) 焦点是F (3,0)
(2) 准线方程是1
4
x =-
(3) 焦点到准线距离是2
6.求顶点在原点,对称轴为坐标轴,过点(2,-8)的抛物线方程,并指出焦点和准线。

7.垂直于x 轴的直线交抛物线24y x =点A,B,且⎜AB ⎜=AB 的方程
8.抛物线的顶点在原点,焦点在直线240x y --=上,求抛物线的标准方程
9.过抛物线2
20y x =的焦点作倾角为
34
π
的弦,此弦的长度是
10.已知动点M 到定点A (1,0)与定直线x=3的距离之和等于4,求点M 的轨迹方程。

高中抛物线数学公式有哪些

高中抛物线数学公式有哪些

高中抛物线数学公式有哪些高中抛物线数学公式有哪些高中抛物线数学公式1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。

a0时,抛物线开口向上;a0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

2、顶点式y=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p__^2=2pyx^2=-2py。

高考数学冲刺策略1、拓实基础,强化通性通法。

高考对基础知识的考查既全面又突出重点。

抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。

2、抓住重点内容,注重能力培养。

高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。

象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。

3、细心审题、耐心答题,规范准确,减少失误。

计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。

可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。

并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。

所以我们在数学复习时,除抓好知识、题型、方法等方面的教学外,还应通过各种方式、机会提高和规范学生的运算能力和逻辑推理能力。

4、定期重复巩固。

即使是复习过的数学内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。

抛物线及其标准方程

抛物线及其标准方程

抛物线1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.其数学表达式:|MF |=d (其中d 为点M 到准线的距离).2.抛物线的标准方程与几何性质1(1)定点不在定直线上.(2)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线.2.抛物线的方程特点方程y =ax 2(a ≠0)可化为x 2=1ay ,是焦点在y 轴上的抛物线.3.结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则:(1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AF |=p 1-cos α,|BF |=p 1+cos α,弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角),S △OAB =p 22sin α;(3)1|FA |+1|FB |=2p;(4)以弦AB 为直径的圆与准线相切;(5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.(7)过抛物线y 2=2px (p >0)的顶点O (0,0)作互相垂直的两条射线且都与抛物线相交,交点为A ,B (如图).则直线AB 过定点M (2p,0);反之,若过点M (2p,0)的直线l 与抛物线y 2=2px (p >0),交于两点A ,B ,则必有OA ⊥OB .1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.()(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.()(3)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎪⎭⎫⎝⎛0,4a,准线方程是x =-a 4.()(4)抛物线既是中心对称图形,又是轴对称图形.()2.抛物线y =14x 2的准线方程是()A .y =-1B .y =-2C .x =-1D .x =-23.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =()A .2B .3C .4D .84.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.如果x 1+x 2=6,那么|AB |=()A .6B .8C .9D .105.已知抛物线C 1:x 2=2py (p >0)的准线与抛物线C 2:x 2=-2py (p >0)交于A ,B 两点,C 1的焦点为F ,若△FAB 的面积等于1,则C 1的方程是()A .x 2=2y B .x 2=2y C .x 2=yD .x 2=22y 6.(教材改编)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.7.焦点在直线2x +y +2=0上的抛物线的标准方程为_______________抛物线的定义及应用例:1.动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是()A .直线B .椭圆C .双曲线D .抛物线(2)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(3)若点P 到点F(0,2)的距离比它到直线y +4=0的距离小2,则P 的轨迹方程为()A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y(4)在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是()A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)(5).已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.(6).已知椭圆x 24+y 23=1的右焦点F 为抛物线y 2=2px (p >0)的焦点,点P 的坐标为(3,2).若点M 为该抛物线上的动点,则|MP |+|MF |的最小值为__________.(7).若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为()A .(0,0)B .⎪⎭⎫⎝⎛121C .(1,2)D .(2,2)(8).已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是___________.(9).已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是()A .3B .5C .2D .5-1(10).已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=______.抛物线的标准方程例:(1)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(2)(2021·山西吕梁二模)如图,过抛物线x 2=2py (p >0)的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C ,若|BC |=2|BF |,且|AF |=2,则p =()A .1 B.2C .2D .2-2(3).顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是()A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8y(4).如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x(5).已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线的方程为()A .x 2=32yB .x 2=6yC .x 2=-3yD .x 2=3y(6).抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为()A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x(7).抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为__________.抛物线的几何性质例:(1)(2020·全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A .⎪⎭⎫⎝⎛041,B .⎪⎭⎫⎝⎛021,C .(1,0)D .(2,0)(2)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为()A .x =1B .x =2C .x =-1D .x =-2(3)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为______________.(4).若双曲线C :2x 2-y 2=m (m >0)与抛物线y 2=16x 的准线交于A ,B 两点,且|AB |=43,则m 的值是____________.(5).在平面直角坐标系xOy 中有一定点A (4,2),若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是_____________(6).已知抛物线y 2=4x 的焦点F ,准线l 与x 轴的交点为K ,P 是抛物线上一点,若|PF |=5,则△PKF 的面积为()A .4B .5C .8D .10(7)(2021·新高考Ⅰ卷)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为__________________.(8).过抛物线:y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,若直线l 与抛物线在第一象限的交点为A ,并且点A 也在双曲线:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线上,则双曲线的离心率为()A.213B.13C.233D.5(9).如图,已知抛物线y 2=4x 的焦点为F ,过点F 且斜率为1的直线依次交抛物线及圆(x -1)2+y 2=14于A ,B ,C ,D 四点,则|AB |+|CD |的值是()A .6B .7C .8D .9直观想象、数学运算——抛物线中最值问题的求解方法与抛物线有关的最值问题是历年高考的一个热点,由于所涉及的知识面广,题目多变,一般需要通过数形结合或利用函数思想来求最值,因此相当一部分同学对这类问题感到束手无策.下面就抛物线最值问题的求法作一归纳.1.定义转换法【典例1】(2021·上海虹口区一模)已知点M(20,40),抛物线y2=2px(p>0)的焦点为F.若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于________.2.平移直线法【典例2】抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是________.[切入点]解法一:求出与已知直线平行且与抛物线相切的直线方程,从而求两平行线间的距离.解法二:求出与已知直线平行且与抛物线相切的直线与抛物线的切点坐标,从而求切点到已知直线的距离.3.函数法【典例3】若点P在抛物线y2=x上,点Q在圆(x-3)2+y2=1上,则|PQ|的最小值为________.[切入点]P、Q都是动点,转化为圆心与点P的最值.1.(2021·东北三省四市二模)若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.12C.14D.182.(2021·云南省高三统一检测)设P,Q分别为圆x2+y2-8x+15=0和抛物线y2=4x上的点,则P,Q两点间的最小距离是________.直线与抛物线的位置关系1.直线与抛物线的位置关系2=2px,=kx+m,得k2x2+2(mk-p)x+m2=0.(1)相切:k2≠0,Δ=0.(2)相交:k2≠0,Δ>0.(3)相离:k2≠0,Δ<0.2.焦点弦的重要结论抛物线y2=2px(p>0)的焦点为F,过F的焦点弦AB的倾斜角为θ,则有下列性质:(1)y1y2=-p2,x1x2=p24.(2)|AF|=x1+p2=p1-cosθ;|BF|=x2+p2=p1+cosθ;|AB|=x1+x2+p=2psin2θ.(3)抛物线的通径长为2p,通径是最短的焦点弦.(4)S△AOB=p22sinθ.(5)1|AF|+1|BF|为定值2p.(6)以AB为直径的圆与抛物线的准线相切.(7)以AF(或BF)为直径的圆与y轴相切.(8)过焦点弦的端点的切线互相垂直且交点在准线上.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线与抛物线有且仅有1个公共点,则它们相切.()(2)所有的焦点弦中,以通径的长为最短.()(3)直线l过(2p,0),与抛物线y2=2px交于A、B两点,O为原点,则OA⊥OB.()(4)过准线上一点P作抛物线的切线,A、B为切点,则直线AB过抛物线焦点.() 2.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有() A.1条B.2条C.3条D.4条3.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=()A .9B .8C .7D .64.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为__________.直线与抛物线的位置关系【例1】(1)过点(0,3)的直线l 与抛物线y 2=4x 只有一个公共点,则直线l 的方程为__________.(2)已知抛物线C :x 2=2py ,直线l :y =-p2,M 是l 上任意一点,过M 作C 的两条切线l 1,l 2,其斜率为k 1,k 2,则k 1k 2=________.焦点弦问题【例2】(1)(2021·石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于()A .1∶2B .1∶3C .1∶2D .1∶3(2)(2021·湖南五市十校摸底)过抛物线C :y 2=2px (p >0)的焦点F 的直线l 与抛物线交于M 、N 两点(其中M 点在第一象限),若MN →=3FN →,则直线l 的斜率为________.(3)过抛物线y 2=4x 焦点F 的直线交抛物线于A 、B 两点,交其准线于点C ,且A 、C 位于x 轴同侧,若|AC |=2|AF |,则|BF |等于()A .2B .3C .4D .5(2020·山东卷)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.直线与抛物线的综合问题例题1:已知以F 为焦点的抛物线C :y 2=2px (p >0)过点P (1,-2),直线l 与C 交于A ,B 两点,M 为AB 的中点,O 为坐标原点,且OM →+OP →=λOF →.(1)当λ=3,求点M 的坐标;(2)当OA →·OB →=12时,求直线l 的方程.例题2:设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .例题3:已知抛物线P :y 2=2px (p >0)上的点⎪⎭⎫ ⎝⎛a ,43到其焦点的距离为1.(1)求p 和a 的值;(2)求直线l :y =x +m 交抛物线P 于A ,B 两点,线段AB 的垂直平分线交抛物线P 于C ,D 两点,求证:A ,B ,C ,D 四点共圆.例题4.如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程;(2)若线段|AB |=20,求直线l 的方程.例题5:已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎪⎭⎫ ⎝⎛250,为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.。

高三抛物线定理知识点

高三抛物线定理知识点

高三抛物线定理知识点抛物线是高中数学中重要且常见的曲线。

在高三阶段,学生需要掌握抛物线定理,并且能够灵活运用于解决相关问题。

本文将介绍高三抛物线定理的基本概念以及其应用。

一、抛物线的定义与特点抛物线是由平面上距离一个定点距离相等的点构成的图形。

该定点称为焦点,到直线称为准线。

1. 对称性:抛物线以准线为对称轴对称。

2. 焦距:焦点到准线的距离称为焦距,用f表示。

3. 定义域与值域:抛物线的定义域为实数集,值域为y≥d,其中d为抛物线与其准线的最低点的纵坐标。

二、顶点与对称轴在抛物线中,顶点是其中最高(或最低)的点。

对称轴是过焦点和顶点的直线。

1. 顶点:抛物线的顶点坐标为(h,k),其中h和k分别为抛物线的顶点的横坐标和纵坐标。

2. 对称轴:对称轴的方程为 x = h。

三、抛物线的一般方程抛物线的一般方程为 y = ax² + bx + c,其中a≠0。

在高三阶段,学生需要了解如何通过抛物线的顶点和焦点坐标来确定抛物线方程。

四、抛物线的焦点与准线的关系抛物线的焦点坐标为(f,0),其中焦距f的计算公式为 f = 1/4a。

准线的方程为 x = -f。

五、抛物线的平移抛物线可以通过平移进行位置上的变换。

1. 抛物线上下平移:将抛物线原方程中的常数c进行上下平移。

2. 抛物线左右平移:将抛物线原方程中的常数b进行左右平移。

六、抛物线的应用抛物线的定理在物理学、工程学等领域有广泛的应用。

1. 抛物线光学:在光学实验中,抛物线是一种能够将平行光线聚焦于焦点的曲线形状。

2. 抛物线运动:在物理学中,抛物线也描述了平抛运动的轨迹,如投掷物体的运动。

七、高三抛物线定理解题方法1. 根据已知条件绘制抛物线,并确定抛物线的顶点、焦点和准线。

2. 列出抛物线的一般方程,并代入已知条件,解出未知变量。

3. 运用抛物线定理或几何特性,解答相关问题。

八、总结高三抛物线定理是数学中重要的知识点,掌握抛物线的基本概念、性质以及应用方法对于高中数学学习具有重要意义。

初中抛物线解析式

初中抛物线解析式

初中抛物线解析式一、抛物线的定义与性质抛物线是一种重要的数学曲线,它的解析式为y=ax^2+bx+c。

其中,a、b、c是常数,且a≠0。

抛物线具有以下几个性质:1. 对称性:抛物线关于直线x=-b/2a对称。

2. 焦点和准线:抛物线上的每一点到焦点F的距离等于该点到准线l的距离,焦点F的坐标为(-b/2a,c-b^2/4a),准线l的方程为y=c-b^2/4a。

3. 开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二、抛物线的应用1. 物理学中的抛物线:抛物线是物理学中一个重要的概念,例如,一个自由落体物体在重力作用下的运动轨迹就是一个抛物线。

2. 弹道学中的抛物线:弹道学研究的是飞行物体在重力作用下的运动轨迹,例如,炮弹、导弹等的飞行轨迹都是抛物线。

3. 建筑设计中的抛物线:抛物线可以被广泛应用于建筑设计中,例如,拱桥、拱顶等的形状都是抛物线。

4. 几何学中的抛物线:抛物线也是几何学中一个重要的概念,它在平面几何和立体几何中都有广泛的应用。

三、我的抛物线故事小时候,我曾经对抛物线产生了浓厚的兴趣。

在数学课上,老师讲解了抛物线的定义与性质,我对它的独特形状和奇妙性质深感着迷。

一天放学后,我在学校操场上看到了一个抛物线形状的秋千。

我迫不及待地坐上去,开始摇晃。

随着秋千的摇摆,我感受到了抛物线的魅力。

我闭上眼睛,想象自己是一个小鸟,飞翔在广阔的天空中。

我飞越高楼大厦,穿越云层,感受到了自由的快乐。

而我的飞行轨迹,竟然也是一个个美丽的抛物线。

这个抛物线秋千成了我童年的乐园,每天放学后,我都会来到这里,享受抛物线带给我的自由与快乐。

四、抛物线的魅力抛物线的魅力在于它的独特性和广泛应用。

无论是物理学、弹道学还是建筑设计,抛物线都扮演着重要的角色。

抛物线不仅是数学的一部分,更是人类思维的延伸和创造力的体现。

它的美丽曲线,让我们感受到数学的魅力和无限可能性。

在抛物线的世界里,我们可以追寻自由和梦想,感受到生活的美好和无限可能。

抛物线的各类公式

抛物线的各类公式

抛物线的各类公式抛物线这玩意儿,在数学里那可是相当重要的角色!咱先来说说抛物线的标准方程,一般式是 y = ax² + bx + c (a ≠ 0)。

这其中的 a 可不得了,它决定了抛物线的开口方向和大小。

要是 a大于 0 ,抛物线开口就朝上,像个乐观向上的笑脸;要是 a 小于 0 ,开口就朝下,仿佛一张哭丧的脸。

顶点式是 y = a(x - h)² + k ,这里的(h,k)就是抛物线的顶点坐标。

我给您举个例子,有次我在公园里散步,看到喷泉喷出的水形成的弧线,那可不就是一条抛物线嘛!当时我就想到了抛物线的顶点式。

那个喷泉的最高点,就是顶点(h,k)。

从这个顶点开始,水向两边洒落,形成了对称的美丽弧线。

还有焦点式,y = 4px²,其中 p 是焦点到准线的距离。

咱们再来说说抛物线的对称轴。

对于一般式,对称轴就是 x = -b /2a 。

想象一下,你拿着一把刀,沿着这条对称轴把抛物线切成两半,两边完全对称,是不是很神奇?抛物线的焦半径公式也得了解一下。

焦点在x 轴正半轴上的抛物线,焦半径是 |x + p/2| ;焦点在 x 轴负半轴上的,焦半径是 |x - p/2| 。

给您说个我教学时候的事儿。

有个学生,怎么都搞不明白抛物线的这些公式,愁得直挠头。

我就给他画了个大大的抛物线在黑板上,然后一步一步地给他讲解,从标准方程到顶点式,再到对称轴和焦半径公式。

我一边讲一边观察他的表情,看到他从迷茫逐渐变得恍然大悟,那一瞬间,我心里别提多有成就感了!在解决抛物线相关的题目时,要灵活运用这些公式。

比如求抛物线的顶点、焦点,或者根据给定的条件确定抛物线的方程。

总之,抛物线的各类公式虽然看起来有点复杂,但只要咱们多做几道题,多观察生活中的抛物线现象,就能把它们掌握得妥妥的!就像我在公园里看到的喷泉抛物线,它就在提醒我,数学无处不在,抛物线的公式也能在生活中找到生动的例子。

所以呀,别害怕抛物线的公式,多琢磨多练习,您一定能搞定它们!。

高中数学公式—抛物线及抛物线标准方程_公式总结

高中数学公式—抛物线及抛物线标准方程_公式总结

高中数学公式—抛物线及抛物线标准方程_公式总结
高中数学公式之抛物线公式:
抛物线:y=ax^2+bx+c
就是y等于ax 的平方加上bx再加上c
a &gt; 0时开口向上
a &lt; 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)^2 + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 以上是小编为大家整理的高中数学公式的抛物线方程,希望便于大家牢记。

抛物线二级定理

抛物线二级定理

抛物线二级定理抛物线二级定理引言在平面几何中,抛物线是一种重要的曲线,具有许多独特的性质和应用。

本文将介绍抛物线二级定理,该定理是关于抛物线的一个基本性质,对于理解抛物线的性质和应用具有重要意义。

一、基本概念1. 抛物线:抛物线是一种平面曲线,由一个固定点(焦点)F和一条直线(准线)L组成,定义为到焦点距离与到准线距离相等的点的轨迹。

2. 焦距:焦距是指焦点到准线的距离。

3. 对称轴:对称轴是指过焦点垂直于准线的直线。

4. 顶点:顶点是指抛物线上离对称轴最近的点。

5. 参数方程:参数方程是指用参数表示曲线上每个点坐标的方程。

6. 标准方程:标准方程是指将抛物线移到以对称轴为x轴、以顶点为原点的坐标系中后得到的方程。

7. 切线:切线是指与曲面相切于一点且在该点处与曲面重合的直线。

8. 法线:法线是指与切线垂直的直线。

二、抛物线二级定理的表述抛物线二级定理又称为焦点定理,它表述了一个点到抛物线焦点的距离等于这个点到抛物线准线距离的平方与这个点到抛物线顶点距离的平方之和的一半。

具体地说,设P(x,y)为抛物线上任意一点,F为焦点,L为准线,V为顶点,则有:PF² = (x-a)² + (y-b)²PL = |y-c|PV² = (x-a)² + (y-b+c)²其中a,b,c分别是标准方程y²=2px中的参数。

则有:PF² = (PL² + PV²)/2三、证明过程1. 基本思路:首先将抛物线移到以对称轴为x轴、以顶点为原点的坐标系中,并将焦点F移到原点O处。

然后通过参数方程求出P(x,y)到O和L的距离,并利用勾股定理和代数运算得到PF²、PL和PV²。

最后代入公式中进行简化即可得到结论。

2. 具体步骤:(1)将抛物线移到以对称轴为x轴、以顶点为原点的坐标系中,此时抛物线的标准方程为y²=2px。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线上的点到准线的公式
抛物线是我们经常在日常生活中见到的一种曲线,它具有很多特点。

其中,抛物线上的点到准线的公式是一个非常重要的概念。

首先,我们来了解一下什么是抛物线。

抛物线是一种二次曲线,
它的特点是与一个固定点(称为焦点)的距离与一条直线(称为准线)的距离相等。

这个固定点和直线也是抛物线的两个重要元素。

对于抛物线上的任意一点,它到准线的距离与它到焦点的距离有
一定的关系。

这个关系可以用抛物线上点的坐标以及焦点和准线的位
置公式来表示。

具体来说,对于一个一般式的抛物线y = ax² + bx + c,其中a
不等于0,它的焦点坐标为(0,1/4a),准线的方程为y = -1/4a。

则抛物线上一点P(x,y)到准线的距离为:
d=|y + 1/4a|
这个公式可以用来求解抛物线上任意一点到准线的距离。

我们可以举一个具体的例子来说明这个公式的应用。

比如,我们
考虑一个经典的抛物线问题:一个小球从高度为h的位置抛出,落地
时的位置距离投掷点为d。

假设空气阻力可以忽略不计,抛物线与地面平行。

则小球到达地面时的速度为:
v²=2g(h-d)
其中,g是重力加速度,v是速度。

根据这个公式,我们可以计算出小球到达地面时的速度。

然后,我们可以使用抛物线上点到准线的公式,计算小球飞行过程中离地距离最远的点到准线的距离,从而得到小球的最远飞行距离。

这个例子说明了抛物线上点到准线的公式的实际应用价值。

通过这个公式,我们可以解决很多关于抛物线的实际问题,从物理学到工程学、建筑学等各个领域。

总之,抛物线上点到准线的公式是抛物线的重要性质之一,具有很广泛的应用价值。

掌握这个公式可以帮助我们更好地理解抛物线的性质,并解决很多实际问题。

相关文档
最新文档